Optimization

Reading @ Rensselaer

* Deep Learning: chapters 4.3, 6.5, 8

— https://www.deeplearningbook.org/contents/optimization.
html

* Optimization overview, with a deep learning bias

https://www.deeplearningbook.org/contents/optimization.html
https://www.deeplearningbook.org/contents/optimization.html

Optimization Overview @®) Rensselaer

Optimization is a very large research field (typically
taught/studied in engineering departments)
* Many tasks can be formulated as an optimization problem

— Allocating different people to different jobs to maximize
productivity

— Choosing the best control action for your autonomous car
—Finding the best parameters for your neural network

Standard form
minimize f(x)
X

subjectto g(x) <C

Optimization is either minimization or maximization

Optimization in ML @®) Rensselaer

* The optimization problem in ML is indirect

— Want to perform well according to metric P (e.g.,
classification accuracy) but optimize some loss L (e.g., least
squares)

— Want to maximize performance on true data distribution
but can only maximize performance on sampled data

Empirical Risk Minimization @®) Rensselaer

» Expected value of loss function is called risk in ML
J(0) = Exy)~P,opuiation L (X; 6),Y)

* Empirical risk is the average of the loss function over dataset

1 N
) Paee L6 0),Y) =~ > L(f (x50,)
=1

ML is all about empirical risk minimization

2 challenges
— Formulating the right minimization problem
* Pick the architecture, loss, regularization, etc.

— Solving the minimization problem

* Find global optimum, scale well with more data, complex models

Setup @ Rensselaer

* A 3-input, 2-output network
—The inputs are x = [x; X, x3]
—The parameters are

0 = [W111» Wi112:W113,W121,W122,W123,W211,W212, W221, szz]
— No offsets in this example

Some losses are better than others @ Rensselaer

* |n classification, one is tempted to choose weights that
minimize a 0-1 loss (1 for incorrect classification, O for correct)

— However, picking the weights that minimize 0-1 loss is a
hard computational task

* Other losses often more efficient

—E.g., NLL is a smooth function of the data, which makes it
easier to minimize

* Cannot compute solution in closed form for any loss, e.g.,
N
1
ming NZ(YL' — f(x;0))°
i=1

— Also, NN makes the loss functions non-convex
— Why would convexity be a nice property?

Gradient Descent Idea

® Rensselaer

e Section 4.3 in the book
— Gradient is the word for derivate in higher dimensions

* Some functions can be minimized in closed form
—E.g., convex functions are minimized when derivative is O

 Hard to find root of derivative in most cases

* Also, most functions are not convex (including neural nets)

Gradient Descent, cont’d ® Rensselaer

* |f you can’t find the root of the derivative, you can try to
iteratively minimize the function

— Start from some x, compute f'(x) and make a step in the
opposite direction

—We know that f(x —ef’(x)) < f(x) for small €

* €islearning rate

Gradient Descent, cont’d ® Rensselaer

* |f you can’t find the root of the derivative, you can try to
iteratively minimize the function

— Start from some x, compute f'(x) and make a step in the
opposite direction

—We know that f(x —ef’(x)) < f(x) for small €

* €islearning rate

10

Aside: Vector Calculus @©@ Rensselaer

* Suppose we are given a function f: R" - R

What is the derivative of f?

« Whenn = 1, itis just the partial derivative f' = g—i

When n > 1, the derivative is a vector of all partial derivatives:
Cof -

dx,
of
02y,

—This is called the “gradient” of f

—The gradient is the multi-dimensional extension of the
derivative

Vof =

11

Gradient Descent, cont’d ® Rensselaer

 What about non-convex functions?
— Can easily get stuck in a local min

 What about saddle points?
— Derivative can be very small

— Major concern in high-dimensional spaces
Minimum Maximumn Saddle point Source: WIkIpEdIa

\.//\

e Despite all these limitations, neural network training usually
finds a good local minimum

— Beware: larger networks can easily minimize the loss and
overfit (more on this next)

12

Back Propagation @) Rensselaer

e An algorithm for computing gradients quickly
—This is what makes deep learning so efficient

— No need to worry about it too much — implemented in deep
learning libraries

— But good to understand it when choosing an
architecture/loss combination
* Computing NN derivatives involves multiple repeated
expressions

— Backprop is an efficient way of reusing previously computed
values

Computing NN derivatives is a massive chain
rule

® Rensselaer

* Most derivates have interesting properties

¢ o'(x) = a(x)(l — a(x))

 tanh’(x) = 1 — tanh?(x)

Oif x <0

* ReLU'(x) = Step(x) = {1 if x>0

* Most derivatives can be expressed in terms of the original
function

— Also appear multiple times

14

Example @ Rensselaer

* Suppose we have a two-neuron neural network with 3 inputs
and 2 outputs

— RelU activation in hidden layer and linear last layer

* Suppose loss is least squares (assume y; € {0,1})

N
1
N;m — F())? + (= y) = Fy(x)”

Example, cont’d @ Rensselaer

* To compute the gradient, need to compute partial derivative
w.r.t. each weight

 Start with wy14

* The partial derivative of the first term in the sum is

d(y; — F1(x;))? _ 0F; (x;)
Gwiis = —2(y; — F1(x)) Wi,
0F; (x;) _ 0(Wa11Mq (X;) + Waiano (X)) anq(x;)

= W211
0W111 0w111 owq11

16

Example, cont’d @ Rensselaer

* To compute the gradient, need to compute partial derivative
w.r.t. each weight

 Start with wy14

* The partial derivative of the first term in the sum is

0(y; — Fy (xi))z 0F (x;)
= —2(y; — F1(x;))
anll yl 1(l) anll
0F; (x;) _ d(Wa11M1 (X;) + Wyion5(X;)) — W an, (x;)
0w111 0w111 1 0w111

on, OReLU(Wy111Xi1 + W112Xi2 + Wyq3X;3)

(3W111 anll
= Xj1Step(Wy11%Xi1 + W112Xi2 + Wi13X;3)

Example, cont’d @ Rensselaer

* Thus, the partial derivative of the 1t term w.r.t. wyq14 is

—2(y; — F1(x;))W211 X1 Step(W111 X1 + Wi12Xi2 + Wiq3Xi3)
* The partial derivative of the 15t term w.r.t. wy{, is

—2(y; — F1(x;))W211X;2Step(Wi11 X1 + Wiq2Xi + Wiq3Xi3)

* Thus, the partial derivative of the 2" term w.r.t. w1 is
—2((1 — y;) — Fo(x))wa1xi1 Step(Wr11 X1 + Wi12Xiz + Wy13Xi3)

* Need to do this for all weights and for all datapoints
— Many repeated terms, especially for big NNs

General setup: one-hot encoding @) Rensselaer

* To make writing losses easier, the training labels are often
stored as one-hot encodings

* Suppose we have a label y;
—The one-hot encodingis y; =[0 0 ... 1 0 ... 0]
—With a 1 in position y;

* Thus, y; has the same dimension as the NN output layer

* Can now write least squares as:
N N

D NIFGD =yl =) (FG) =y (FCx) — y)
=1 =1

* Other losses can be written similarly

Computational Graphs @) Rensselaer

e Store all operations in a graph to be reused later
— Nodes represent intermediate variables
— Edges represent operations on variables

* Most derivatives appear multiple times
— Graph representation can save a lot of time
—Same idea as dynamic programming

* Gradient computation really involves two computations
— Forward propagation: compute the actual value of the loss

— Backward propagation: compute the gradient using the
chain rule

Example, forward propagation

® Rensselaer

ReLU
O

dot product

QOOOOC

dot product square

difference

G square

Example, backward propagation (start) @) Rensselaer

@

[ReLU’

L dot product square
ny nq
ReLU

0 difference
' ReLU

dot product @ e Q

—2(y; — F1(x;))wy11xi1Step(Wy11Xj1 + Wi12Xi2 + W113X;3)

square

DOOOOEC

difference

22

Implementation

* Many optimizations to make gradient computation fast
— Linear operations performed on GPUs (gamers know why)
— Variables stored as tensors (high-dimensional matrices)

* Several popular deep learning libraries
— Mostly in python
—Tensorflow — a bit clunky, but fairly flexible
— Pytorch — a bit less flexible, but very easy to use
* You don’t need to worry about most of the low-level details in
this lecture when implementing NNs

— However, you need to have a good working knowledge of
the low-levels if you want your code to work

® Rensselaer

Minibatch Algorithms @) Rensselaer

* A major reason for the success of deep learning

* Computing the gradient over all examples each time is too
expensive

* What if use just a few examples per gradient computation?

 Randomly sample a few examples each time
—Sample called a minibatch
— Compute gradient on minibatch
— Algorithm called stochastic gradient descent (SGD)

SGD Properties @ Rensselaer

Z
Vn

* o is the true standard deviation for one example

» Standard error of the gradient is

* nis the number of examples in the minibatch

—Standard error decreases slowly 0(1/\/%)

* Larger minibatches don’t bring significant benefits

* Using minibatches also useful when data has low natural
variance (why?)

— Not usually true, but many examples may be similar

* Entire minibatch can be processed in parallel on GPU
—The bottleneck is fitting all data in memory

e Overall, computation speedup offsets noise due to using a
minibatch

Epochs @) Rensselaer

* |deally, each minibatch is selected randomly every time
— Nearby examples may often be correlated
— Impractical for big datasets
* Instead, we shuffle the dataset before training and then
process minibatches in order
— Each pass of the full dataset is called an epoch

— Other hyper-parameters may also change in between
epochs

* E.g., learning rate, regularization, etc.

Optimization Challenges @®) Rensselaer

* Local Minima
* Gradient is ~0, so no progress can be made

* Local minima are very common

— One of the most impressive achievements of NNs is that
they are able to generalize well despite using suboptimal
weights

— A possible explanation for this phenomenon is that all local
minima have similar values

— An active research area

27

® Rensselaer

Optimization Challenges, cont’d

* Plateaus, saddles

Mininmim Maximum Saddle point

* More problematic than local minima

— Gradient is also ~0, but loss is not low

—Very common in high-dimensional spaces and in NN
optimization

— However, gradient descent is usually able to escape

28

Optimization Challenges, cont’d @) Rensselaer

* Exploding gradients

* Gradients can get very large when
reaching a cliff in loss function

— Can destabilize training (parameters jumping around)
— Can also cause numerical issues

* Disaster can be avoided by using gradient clipping
—If gradient norm above some threshold, reduce learning rate

29

SGD Summary @) Rensselaer

Algorithm 8.1 Stochastic gradient descent (SGD) update

Require: Learning rate schedule ¢, e, . ..
Require: Initial parameter @
k+1
while stopping criterion not met do
Sample a minibatch of m examples from the training set {_;E[:l:} x (™)} with
corresponding targets y("':}.
Compute gradient estimate: g < %V@ > L(f(z');0),y")
Apply update: @ < 0 — €19
k+—k+1
end while

* Learning rate is usually gradually decreased to some final value
— Linear, exponential rates of decay both work
— Typically, you can also just keep it constant
—What are the trade-offs between small/large learning rate?

30

Momentum ® Rensselaer

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate e, momentum parameter o
Require: Initial parameter @, initial velocity v
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z1), ... x ™)} with
corresponding targets y(""»}.
Compute gradient estimate: g + =V . L(f(x);8),y")).
Compute velocity update: v < av — eg.
Apply update: 8 «+ 6 + v.

end while

 Descent direction is smoothed out
over time in order to filter out noise
due to minibatch variance

— Essentially a low-pass filter
(in signal processing terms)

— Allows you to increase the
learning rate somewhat

31

Parameter Initialization @) Rensselaer

* Parameter initialization may have a serious impact on training
* Unlikely to be a major issue but it could slow down training
significantly
—If you try hard, you could also find unstable initializations

* |nitialization strategies are heuristics
— Not fully clear why they work and when

—There is also a difference between what weights are good
for optimization and for generalization

—The only thing we know for certain is to avoid the same
weights across units (why?)

e Gradients will be the same; weights will always remain the same
* “break symmetry”

Parameter Initialization, cont’d @©@ Rensselaer

* Usually, we select initial weights from a Gaussian or Uniform
distribution

— Larger weights avoid the “symmetry” problem
—Too large weights can result in exploding gradients

e Standard choices are initial uniform distributions

U(1 1>U< 6 6)
ym' ym)’ Vn+m Jn+m
—where n is number of neurons in the layer, m is number of

inputs

* Biases are initialized similarly

Batch Normalization

* Another important factor for the success of deep learning

* |t is common practice to normalize all training data to be O-
mean and bounded between [-0.5, 0.5]
X—p
o
— Can do the same for inputs to all hidden layers also

* Gradient descent can be brittle for deep networks

— Updates all layers simultaneously, using a local linear
approximation

—However, the output of the NN is a non-linear (composite)
function of the weights

— Complex non-linear relationships may make it hard to
choose the right learning rate

® Rensselaer

® Rensselaer

Batch Norm, cont’d

* For a given minibatch, let H; be the output of layer [

* \We can normalize it as follows

H_
H', = I — U

o
—where 4 and o are the (element-wise) mean and variance of
H,; over the minibatch

* Crucially, we backpropagate through this operation in order to
stabilize the gradients across layers

* At test time, we can use a running average of u and o
accumulated during training

Batch Norm Summary @ Rensselaer

* In practice, we introduce learned parameters y and B such
that the output of the batch norm layer is

YH + B
* Seems a bit counter-intuitive since we are adding back a mean
and a variance
—The hope is that gradient descent finds suitable parameters
that make training more stable
e Batch normalization most useful for deep convolutional NNs
— It may be useful in the big deep learning homework

	Slide 1: Optimization
	Slide 2: Reading
	Slide 3: Optimization Overview
	Slide 4: Optimization in ML
	Slide 5: Empirical Risk Minimization
	Slide 6: Setup
	Slide 7: Some losses are better than others
	Slide 8: Gradient Descent Idea
	Slide 9: Gradient Descent, cont’d
	Slide 10: Gradient Descent, cont’d
	Slide 11: Aside: Vector Calculus
	Slide 12: Gradient Descent, cont’d
	Slide 13: Back Propagation
	Slide 14: Computing NN derivatives is a massive chain rule
	Slide 15: Example
	Slide 16: Example, cont’d
	Slide 17: Example, cont’d
	Slide 18: Example, cont’d
	Slide 19: General setup: one-hot encoding
	Slide 20: Computational Graphs
	Slide 21: Example, forward propagation
	Slide 22: Example, backward propagation (start)
	Slide 23: Implementation
	Slide 24: Minibatch Algorithms
	Slide 25: SGD Properties
	Slide 26: Epochs
	Slide 27: Optimization Challenges
	Slide 28: Optimization Challenges, cont’d
	Slide 29: Optimization Challenges, cont’d
	Slide 30: SGD Summary
	Slide 31: Momentum
	Slide 32: Parameter Initialization
	Slide 33: Parameter Initialization, cont’d
	Slide 34: Batch Normalization
	Slide 35: Batch Norm, cont’d
	Slide 36: Batch Norm Summary

