
Optimization
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Reading

• Deep Learning: chapters 4.3, 6.5, 8

– https://www.deeplearningbook.org/contents/optimization.
html

• Optimization overview, with a deep learning bias
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Optimization Overview

• Optimization is a very large research field (typically 
taught/studied in engineering departments)

• Many tasks can be formulated as an optimization problem

–Allocating different people to different jobs to maximize 
productivity

– Choosing the best control action for your autonomous car

– Finding the best parameters for your neural network

• Standard form
minimize

𝒙
 𝑓(𝒙)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔 𝒙 ≤ 𝐶

• Optimization is either minimization or maximization
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Optimization in ML

• The optimization problem in ML is indirect

–Want to perform well according to metric 𝑃 (e.g., 
classification accuracy) but optimize some loss 𝐿 (e.g., least 
squares)

–Want to maximize performance on true data distribution 
but can only maximize performance on sampled data
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Empirical Risk Minimization

• Expected value of loss function is called risk in ML
𝐽 𝜽 = 𝔼 𝑿,𝑌 ~ℙ𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝐿(𝑓 𝑿; 𝜽 , 𝑌)

• Empirical risk is the average of the loss function over dataset

𝔼 𝑿,𝑌 ~ℙ𝑑𝑎𝑡𝑎
𝐿 𝑓 𝑿; 𝜽 , 𝑌 =

1

𝑁


𝑖=1

𝑁

𝐿 𝑓 𝒙𝑖; 𝜽 , 𝑦𝑖

• ML is all about empirical risk minimization

• 2 challenges

– Formulating the right minimization problem 
• Pick the architecture, loss, regularization, etc.

– Solving the minimization problem
• Find global optimum, scale well with more data, complex models
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Setup

• A 3-input, 2-output network

– The inputs are 𝒙 = 𝑥1 𝑥2 𝑥3

– The parameters are
𝜽 = [𝑤111, 𝑤112, 𝑤113, 𝑤121, 𝑤122, 𝑤123, 𝑤211, 𝑤212, 𝑤221, 𝑤222]

–No offsets in this example
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Some losses are better than others

• In classification, one is tempted to choose weights that 
minimize a 0-1 loss (1 for incorrect classification, 0 for correct)

–However, picking the weights that minimize 0-1 loss is a 
hard computational task

• Other losses often more efficient

– E.g., NLL is a smooth function of the data, which makes it 
easier to minimize

• Cannot compute solution in closed form for any loss, e.g.,

𝑚𝑖𝑛𝜽

1

𝑁


𝑖=1

𝑁

𝑦𝑖 − 𝑓(𝒙𝑖; 𝜽) 2

–Also, NN makes the loss functions non-convex

–Why would convexity be a nice property?
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Gradient Descent Idea

• Section 4.3 in the book

–Gradient is the word for derivate in higher dimensions

• Some functions can be minimized in closed form

– E.g., convex functions are minimized when derivative is 0

• Hard to find root of derivative in most cases

• Also, most functions are not convex (including neural nets)
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Gradient Descent, cont’d

• If you can’t find the root of the derivative, you can try to 
iteratively minimize the function

– Start from some 𝑥, compute 𝑓′(𝑥) and make a step in the 
opposite direction

–We know that 𝑓 𝑥 − 𝜖𝑓′ 𝑥 < 𝑓(𝑥) for small 𝜖

• 𝜖 is learning rate
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Aside: Vector Calculus

• Suppose we are given a function 𝑓: ℝ𝑛 → ℝ

• What is the derivative of 𝑓?

• When 𝑛 = 1, it is just the partial derivative 𝑓′ =
𝜕𝑓

𝜕𝑥

• When 𝑛 > 1, the derivative is a vector of all partial derivatives:

∇𝒙𝑓 =

𝜕𝑓

𝜕𝑥1…
𝜕𝑓

𝜕𝑥𝑛

– This is called the “gradient” of 𝑓

– The gradient is the multi-dimensional extension of the 
derivative
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Gradient Descent, cont’d

• What about non-convex functions?

– Can easily get stuck in a local min

• What about saddle points?

–Derivative can be very small

–Major concern in high-dimensional spaces

• Despite all these limitations, neural network training usually 
finds a good local minimum

– Beware: larger networks can easily minimize the loss and 
overfit (more on this next)
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Back Propagation

• An algorithm for computing gradients quickly

– This is what makes deep learning so efficient

–No need to worry about it too much – implemented in deep 
learning libraries

– But good to understand it when choosing an 
architecture/loss combination

• Computing NN derivatives involves multiple repeated 
expressions

– Backprop is an efficient way of reusing previously computed 
values
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Computing NN derivatives is a massive chain 

rule

• Most derivates have interesting properties

• 𝜎′ 𝑥 = 𝜎 𝑥 1 − 𝜎 𝑥

• tanh′ 𝑥 = 1 − tanh2 𝑥

• 𝑅𝑒𝐿𝑈′(𝑥) = 𝑆𝑡𝑒𝑝 𝑥 ≔  ቊ
0 𝑖𝑓 𝑥 ≤ 0
1 𝑖𝑓 𝑥 > 0

• Most derivatives can be expressed in terms of the original 
function

–Also appear multiple times
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Example

• Suppose we have a two-neuron neural network with 3 inputs 
and 2 outputs

– ReLU activation in hidden layer and linear last layer

• Suppose loss is least squares (assume 𝑦𝑖 ∈ 0,1 )

1

𝑁


𝑖=1

𝑁

𝑦𝑖 − 𝐹1(𝒙𝑖) 2 + 1 − 𝑦𝑖 − 𝐹2(𝒙𝑖)
2
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Example, cont’d

• To compute the gradient, need to compute partial derivative 
w.r.t. each weight

• Start with 𝑤111

• The partial derivative of the first term in the sum is
𝜕 𝑦𝑖 − 𝐹1(𝒙𝑖) 2

𝜕𝑤111
= −2 𝑦𝑖 − 𝐹1(𝒙𝑖)

𝜕𝐹1(𝒙𝑖)

𝜕𝑤111
𝜕𝐹1(𝒙𝑖)

𝜕𝑤111
=

𝜕(𝑤211𝑛1(𝒙𝑖) + 𝑤212𝑛2(𝒙𝑖))

𝜕𝑤111
= 𝑤211

𝜕𝑛1(𝒙𝑖)

𝜕𝑤111
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Example, cont’d

• To compute the gradient, need to compute partial derivative 
w.r.t. each weight

• Start with 𝑤111

• The partial derivative of the first term in the sum is
𝜕 𝑦𝑖 − 𝐹1(𝒙𝑖) 2

𝜕𝑤111
= −2 𝑦𝑖 − 𝐹1(𝒙𝑖)

𝜕𝐹1(𝒙𝑖)

𝜕𝑤111
𝜕𝐹1(𝒙𝑖)

𝜕𝑤111
=

𝜕(𝑤211𝑛1(𝒙𝑖) + 𝑤212𝑛2(𝒙𝑖))

𝜕𝑤111
= 𝑤211

𝜕𝑛1(𝒙𝑖)

𝜕𝑤111
𝜕𝑛1

𝜕𝑤111
=

𝜕𝑅𝑒𝐿𝑈(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

𝜕𝑤111

 = 𝑥𝑖1𝑆𝑡𝑒𝑝(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)
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Example, cont’d

• Thus, the partial derivative of the 1st term w.r.t. 𝑤111 is
−2 𝑦𝑖 − 𝐹1(𝒙𝑖) 𝑤211𝑥𝑖1𝑆𝑡𝑒𝑝(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

• The partial derivative of the 1st term w.r.t. 𝑤112 is
−2 𝑦𝑖 − 𝐹1(𝒙𝑖) 𝑤211𝑥𝑖2𝑆𝑡𝑒𝑝(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

• …

• Thus, the partial derivative of the 2nd term w.r.t. 𝑤111 is
−2 (1 − 𝑦𝑖) − 𝐹2(𝒙𝑖) 𝑤221𝑥𝑖1𝑆𝑡𝑒𝑝(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

• …

• Need to do this for all weights and for all datapoints

–Many repeated terms, especially for big NNs
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General setup: one-hot encoding

• To make writing losses easier, the training labels are often 
stored as one-hot encodings

• Suppose we have a label 𝑦𝑖

– The one-hot encoding is  𝒚𝑖 = [0 0 …  1 0 …  0]

–With a 1 in position 𝑦𝑖

• Thus, 𝒚𝑖 has the same dimension as the NN output layer

• Can now write least squares as:



𝑖=1

𝑁

𝑭 𝑥𝑖 − 𝒚𝑖 2

2
= 

𝑖=1

𝑁

𝑭 𝑥𝑖 − 𝒚𝑖
𝑇(𝑭 𝑥𝑖 − 𝒚𝑖)

• Other losses can be written similarly
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Computational Graphs

• Store all operations in a graph to be reused later

–Nodes represent intermediate variables

– Edges represent operations on variables

• Most derivatives appear multiple times

–Graph representation can save a lot of time

– Same idea as dynamic programming

• Gradient computation really involves two computations

– Forward propagation: compute the actual value of the loss

– Backward propagation: compute the gradient using the 
chain rule

20



Example, forward propagation
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Example, backward propagation (start)
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Implementation

• Many optimizations to make gradient computation fast

– Linear operations performed on GPUs (gamers know why)

–Variables stored as tensors (high-dimensional matrices)

• Several popular deep learning libraries

–Mostly in python

– Tensorflow – a bit clunky, but fairly flexible

– Pytorch – a bit less flexible, but very easy to use

• You don’t need to worry about most of the low-level details in 
this lecture when implementing NNs

–However, you need to have a good working knowledge of 
the low-levels if you want your code to work
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Minibatch Algorithms

• A major reason for the success of deep learning

• Computing the gradient over all examples each time is too 
expensive

• What if use just a few examples per gradient computation?

• Randomly sample a few examples each time

– Sample called a minibatch

– Compute gradient on minibatch

–Algorithm called stochastic gradient descent (SGD)

24



SGD Properties

• Standard error of the gradient is 
𝜎

𝑛

• 𝜎 is the true standard deviation for one example

• 𝑛 is the number of examples in the minibatch

– Standard error decreases slowly 𝑂 1/ 𝑛

• Larger minibatches don’t bring significant benefits

• Using minibatches also useful when data has low natural 
variance (why?)

–Not usually true, but many examples may be similar

• Entire minibatch can be processed in parallel on GPU

– The bottleneck is fitting all data in memory

• Overall, computation speedup offsets noise due to using a 
minibatch
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Epochs

• Ideally, each minibatch is selected randomly every time

–Nearby examples may often be correlated

– Impractical for big datasets

• Instead, we shuffle the dataset before training and then 
process minibatches in order

– Each pass of the full dataset is called an epoch

–Other hyper-parameters may also change in between 
epochs
• E.g., learning rate, regularization, etc.
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Optimization Challenges

• Local Minima

• Gradient is ~0, so no progress can be made

• Local minima are very common

–One of the most impressive achievements of NNs is that 
they are able to generalize well despite using suboptimal 
weights

–A possible explanation for this phenomenon is that all local 
minima have similar values

–An active research area
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Optimization Challenges, cont’d

• Plateaus, saddles

• More problematic than local minima

–Gradient is also ~0, but loss is not low

–Very common in high-dimensional spaces and in NN 
optimization

–However, gradient descent is usually able to escape 
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Optimization Challenges, cont’d

• Exploding gradients

• Gradients can get very large when
reaching a cliff in loss function

– Can destabilize training (parameters jumping around)

– Can also cause numerical issues

• Disaster can be avoided by using gradient clipping

– If gradient norm above some threshold, reduce learning rate
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SGD Summary

• Learning rate is usually gradually decreased to some final value

– Linear, exponential rates of decay both work

– Typically, you can also just keep it constant

–What are the trade-offs between small/large learning rate?
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Momentum

• Descent direction is smoothed out
over time in order to filter out noise 
due to minibatch variance

– Essentially a low-pass filter 
(in signal processing terms)

–Allows you to increase the 
learning rate somewhat
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Parameter Initialization

• Parameter initialization may have a serious impact on training

• Unlikely to be a major issue but it could slow down training 
significantly

– If you try hard, you could also find unstable initializations

• Initialization strategies are heuristics

–Not fully clear why they work and when

– There is also a difference between what weights are good 
for optimization and for generalization

– The only thing we know for certain is to avoid the same 
weights across units (why?)
• Gradients will be the same; weights will always remain the same

• “break symmetry”
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Parameter Initialization, cont’d

• Usually, we select initial weights from a Gaussian or Uniform 
distribution

– Larger weights avoid the “symmetry” problem

– Too large weights can result in exploding gradients

• Standard choices are initial uniform distributions

𝑈 −
1

𝑚
,

1

𝑚
, 𝑈 −

6

𝑛 + 𝑚
,

6

𝑛 + 𝑚

–where 𝑛 is number of neurons in the layer, 𝑚 is number of 
inputs

• Biases are initialized similarly
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Batch Normalization

• Another important factor for the success of deep learning

• It is common practice to normalize all training data to be 0-
mean and bounded between [-0.5, 0.5]

𝑿 − 𝝁

𝝈
– Can do the same for inputs to all hidden layers also

• Gradient descent can be brittle for deep networks 

–Updates all layers simultaneously, using a local linear 
approximation

–However, the output of the NN is a non-linear (composite) 
function of the weights

– Complex non-linear relationships may make it hard to 
choose the right learning rate
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Batch Norm, cont’d

• For a given minibatch, let 𝑯𝑙 be the output of layer 𝑙

• We can normalize it as follows

𝑯′𝑙 =
𝑯𝑙 − 𝝁

𝝈
–where 𝝁 and 𝝈 are the (element-wise) mean and variance of 

𝑯𝑙 over the minibatch

• Crucially, we backpropagate through this operation in order to 
stabilize the gradients across layers

• At test time, we can use a running average of 𝝁 and 𝝈 
accumulated during training
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Batch Norm Summary

• In practice, we introduce learned parameters 𝜸 and 𝜷 such 
that the output of the batch norm layer is 

𝜸𝑯′ + 𝜷

• Seems a bit counter-intuitive since we are adding back a mean 
and a variance

– The hope is that gradient descent finds suitable parameters 
that make training more stable

• Batch normalization most useful for deep convolutional NNs

– It may be useful in the big deep learning homework
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