Q-Learning



Reading @ Rensselaer

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapters 6.5-6.9

e David Silver lecture on Model-free Control
— https://www.youtube.com/watch?v=0g4j2k Ggc4

* Smith, James E., and Robert L. Winkler. "The optimizer’s curse:
Skepticism and postdecision surprise in decision
analysis." Management Science 52.3 (2006): 311-322.

— Mostly just to motivate maximization bias



http://www.incompleteideas.net/book/the-book-2nd.html
https://www.youtube.com/watch?v=0g4j2k_Ggc4

Overview

* Q-learning is the most popular algorithm in RL
— It is essentially off-policy TD learning

— Similar to other off-policy methods, it is less stable but may
find better policies

— A lot of stabilization techniques have been developed over
the years
* Most modern deep RL algorithms are in large part based on
the standard Q-learning algorithm

— Main difference is that Q-learning is essentially search, since
it still only works for finite-state MDPs

— Over the next few weeks, we’ll start relaxing that
assumption

® Rensselaer




On-Policy vs Off-Policy Control @) Rensselaer

* Recall the SARSA Q-value recursion
Q' (St,Ar) = Q(Sp, Ap) + a[Ryq +¥Q(St41, A1) — Q(Sp, Ap)]

* Why is this on-policy?

— Need to wait for next action A;, ¢, selected by current
* What action can we choose instead?

—What would be the best given what we know from m?

—Think policy improvement theorem

—How about the action that maximizes the Q value?

Q'(St,Ar) = Q(St, Ap) + a|Reyq +y mjlx Q(S¢41,a) — Q(St'At)]

* This is Q-learning




Off-policy TD Control: Q-learning @) Rensselaer

* Similar to on-policy, but try to estimate g, directly
Q'(St,Ar) = Q(St, Ap) + a|Reyq + ymC?XQ(St+1» a) — Q(St'At)]

* May require less exploration as it “takes” the optimal action

* Guaranteed to converge as long as all state-action pairs are
continually updated
—In some sense, this assumption is unavoidable — guarantees
sufficient exploration

Q-learning (off-policy TD control) for estimating 7 = .,

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + « [R + ymax, Q(5’,a) — Q(S, 4)]
S+ 5

until S is terminal




Q-learning Exploration @) Rensselaer

e Exploration is crucial in any RL algorithm

* Q-learning enforces exploration through e-greedy policies

—i.e., start from your current deterministic policy m and make
it e-greedy

— Next iteration, 7' will be deterministic again, so make it e-
greedy once more
* This exploration is OK, but it’s quite limited
—Why?
— All exploration is slight deviation from current policy
— May not explore much, especially if T changes slowly

 We'll talk about better ways to explore later on




Comparison between on-policy and off-policy @) Rensselaer

e Consider the following environment

R=-1
Safer path
Optimal path | 1
| .
S The Cliff G
R VA y
-_.."\". , '/ : ”
N R=-100 _—

Goal is to reach G from S

e Actions are up, down, left, right

* Reward of -1 after each step

* Reward of -100 if you fall of The Cliff

e Goal is a sink state (so no more negative reward at that point)




Comparison between on-policy and off-policy, comfidiensselaer

* Consider the following environment — o

R=-1

Safer path

Optimal path

'_
Reward per Episode

|
S The Cliff e
1-'*--\ .. . e
\\‘E‘/ - -
\\;j__ %f 100 |
* Q-learning learns the optimal Sarsa
path but is less safe due to
- i S f 50-
€ greedy pO“Cy reﬁ..frgrgs * Q-learning
. . during
* |f e-greediness is gradually episode .
removed, both would converge
to the optimal T 0 a0 0 w0 s

Episodes




Convergence of Q-learning @ Rensselaer

Proof is fairly technical?

* Q-learning is guaranteed to converge if the following are true
 All state-action pairs are visited infinitely often
* i =
+ Yiaf < oo

* The learning rates must converge to 0 but not too quickly

One of the strongest theoretical results in RL
— Uses the fact that the Bellman operator is a contractive map

1Watkins, Christopher JCH, and Peter Dayan. "Q-learning." Machine learning 8.3 (1992): 279-292.
2Tsitsiklis, John N. "Asynchronous stochastic approximation and Q-learning." Machine learning 16.3 (1994): 185-202.
9




Convergence of Q-learning @) Rensselaer

* Let H denote the Bellman operator, i.e., (for a given g function)
Hq(s,a) = E [Rm +ymaxq (Sey1,@)|Se =5, 4; = a]

= E P(s',a,s) [R(s, a,s") +ymaxq (s a’)]
a
S/

* One can show that for any g4, g5:
IHqs — Hq,l| _ <v|la1 —q:l|
—Where the each g function is interpreted as a vector
q= [Q(51»a1) q(s1,az) . q(sy,aq) - CI(SN» ap)]T

— And the infinity norm is the just the max element
2], = max|x;]




Convergence of Q-learning, cont’d @) Rensselaer

||HCI1 _I'qu||oo =

Ss,a

= max z P(s',a,s) [R(S, a,s") +ymaxqy (s',a') = R(s,a,5") —y maxq, (s, b’)]
a
Sl

= y max Z P(s’,a,s) lmax q, (s',a’) —maxq, (s, b’)]
s,a a’ b’
S’

<y maxz P(s’,a,s) |max q, (s',a’) —maxq, (s/, b’)|
5,0 LI a’ b’
S

Inequality true because |ax + by| < alx| + b|y| fora,b > 0

11




Convergence of Q-learning, cont’d @®) Rensselaer

[Hq: —Hq,l| <y “;%XZ P(s',a,s) |n}3x q1 (s',a") —maxq, (s', b’)|
Sl
<y maxz P(s’,a,s) max|q.(s’,a") — g,(s',a’)]
S,a a’
Sl

* For second inequality, need to analyze each case:
— Case 1: suppose max q; (s',a’) — max q; (s",b")=0,i.e,
a
max q; (s',a’) — maxq; (s, b’)‘ = maxqy (s',a") —maxq, (s', b")
a a
* Leta® = argmaxq, (s',a’). Then
a
maxq, (s',a’) = q1(s", a’)
maxq; (s',b") 2 qz(s’,a’)
* e,
maxq, (s',a’) —maxq, (s',b") < q,(s",a") = qa2(s", a’)

< max|q,(s’,a") — g,(s’,a’)|
a’

12




Convergence of Q-learning, cont’d @®) Rensselaer

[Hq: —Hq,l| <y “;%XZ P(s',a,s) |n}3x q1 (s',a") —maxq, (s', b’)|
Sl
<y maxz P(s’,a,s) max|q.(s’,a") — g,(s',a’)]
S,a a’
Sl

* For second inequality, need to analyze each case:
— Case 2: suppose max q, (s’,a") — max g (s’,b") <0, i.e,
max q; (s',a’) — maxq; (s, b’)‘ = maxq, (s',b") —maxqy (s', a)
* Leta® = argmaxq, (s’,a’). Then
maxq; (s',a) = ¢;(s',a")
rrga,lx qz (s',b") = qz(s’,a”)
° je,
maxq, (s’,b") — HE}X q1 (s',a") < qx(s',a") — q.(s’,a")

bl
< max|q,(s’,a") — g,(s’,a’)|
a’

13




Convergence of Q-learning, cont’d @) Rensselaer

||Hq1 — qu”oo < )/rrSI%XZS, P(s',a,s) |rrlléllx q, (s',a") — rr}jg,lx q, (s’, b/)|

< y max E P(s’,a,s) max|q,(s’,a’") — gq,(s',a’)]
S,a S, al’
< y max E P(s’,a,s) max|g,(s",a") — q,(s",a")|
s,a - s’ a’
S

Sl

= V||CI1 - qz||oo

14




Convergence of Q-learning @) Rensselaer

* Let H denote the Bellman operator, i.e., (for a given g function)
Hq(s,a) = E [Rm +ymaxq (See1,@)|Se =5, 4; = a]

_ E P(s',a,s) [R (s,a,s") +ymaxq (s a’)]
a
S/

* One can show that for any q4, q:
IHqs —Hql| _<v|la: — a2l
* |n particular, the Bellman optimality equation tells us that
Hq. = q.
* So applying the Bellman operator multiple times gets us closer
to the optimal
— Policy improvement theorem!




Maximization Bias @ Rensselaer

* Turns out taking the max over running averages is biased

—In essence, the Q-learning actions are based on too
“optimistic” estimates of the max

— Leads to much slower convergence in some cases

16




Maximization Bias, cont’d @©@ Rensselaer

Let X1, X5, X3 be lID standard normal distributions
E[X;] = 0, Vi

—Therefore, max E[X;] = 0
l
* Suppose we have running averages for each X;

. 1 .
—i.e, §; = ;Zj x;j, where x;; are realizations of X;
l

If we estimate max E[X;] using max S;, estimate is biased
l l

Distribution of maximum
value estimate
(EV = 0.85)

Distribution of each

* Figure shows distributions for 1 sample vl sstmat
per X;

* Gets even worse with more X;

— But improves with more samples —_— ==
Smith, James E., and Robert L. Winkler. "The optimizer’s curse: Skepticism and postdecision surprise in decision
analysis." Management Science 52.3 (2006): 311-322.




Maximization Bias, cont’d @©@ Rensselaer

* Same phenomenon occurs when estimating Q values

e Consider this MDP from the book
N{—0.1,1)

(B)—= “
I et right
e Start from A

—If you go right, you terminate with reward of O

—If you go left, you take one of many actions, where each
reward is distributed normal with mean -0.1
* Going left has expected reward of -0.1

— But Q estimate may be positive initially, due to the
maximization bias

— Will significantly slow down learning




Double Q-Learning @ Rensselaer

* Intuitively, the bias comes from the fact that we’re using the
same estimator both to estimate Q values and the max

—How do we improve this?
—Two independent Q estimators!
* Suppose @, is used to determine the max Q value, i.e.,
A" = argmax, Q1 (a)

* And Q, is used to get the actual value of 47, i.e.,

Q.(4") = Q; (arggnax ¢1 (a))

* Now it can be shown that this is unbiased, i.e.,

E[Q,(47)] = q(47)
 Can do the same for Q, (argmax Q- (a))

a




Double Q-Learning, cont’d @) Rensselaer

* To ensure 1 and @, are independent, train on different data

» After every step, update one or the other
— Can flip a coin to decide which one

— Crucially, use Q, (S’, argmax Q,(S’, a)) to remove bias
a

* Or vice versa, depending on which one you update

Double Q-learning, for estimating @; = Q2 = q.

Algorithm parameters: step size a € (0, 1], small £ > 0
Initialize Q1(s,a) and (2(s,a), for all s € §7,a € A(s), such that Q(terminal,-) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy s-greedy in @1 + Q-
Take action A, observe R, S’
With 0.5 probabilility:

Qi(5.4) — Qi(S5.4) + a (R +1Qx(S", argmax, Qu(5',)) — Q1 (5. 1)
else:
Q(8, 4) ¢ Qo(S, 4) + o (R + Q1 (', argmax, Qx(S',a)) — Qa(S, 4) )

S 9
until S is terminal

20




Benefit of Double Q-learning @ Rensselaer

* Double Q-learning may significantly speed up learning
— Takes a while until Q-learning bias is reduced

* Double Q-learning is also used in modern RL
— Often helps with neural nets, but it’s not a silver bullet

— Estimation bias smaller when actions bring significantly
different rewards (i.e., identifying the max is easier)

100%r N(-0.1,1)

0 0
| b : <—o—®—o—~
75% | \-.\_ D@ left right D
% left )

|
actions so%|'

\Q-learning
from A ™

25%| J-learning

B ——— oo optimal
Ok . . )
1 100 200 300

Episodes

21




Deficiencies of standard Q-learning

* The assumption that all state-action pairs be visited infinitely
often is quite strong

—Hard to ensure in high-dimensional settings or in infinite-
state MDPs (which are more realistic)

—Training may be very slow if we have a high-dimensional
state-space, if we wait for the algorithm to visit all pairs
 MDP transition distribution needs to be stationary
—i.e., does not change over time

— May not be very realistic for most systems, e.g., partially
observable MDPs with changing sensor noise

— Stationarity not an issue per se as long as the MDP does not
change too quickly

® Rensselaer




n-step off-policy learning

e Similar to n-step TD learning
* Instead of updating values every step, wait for n steps
* A combination between Q-learning and off-policy MC control

* Recall that off-policy MC requires us to know the relationship
between behavior policy b and target policy m:

Vr(s) = [Eb[pt:T—thlst = 5]

(A |S
—where Pt.T = ’;;:t bEAI;:SIIS

* The rest is almost the same as n-step SARSA

® Rensselaer




n-step off-policy learning, cont’d @) Rensselaer

* Return after n steps is G;.¢4n

 Q update then becomes
Q'(St, Ap) = Q(St, Ap) + aprsttanlGetan T V" Q(Stan Aten) — Q(St, Ap)]

* Same as n-step SARSA, with the addition of p
—Note that p startsatt + 1
* Don’t weight first action, A, similar to standard Q-learning
* Note that this is different from Q-learning as it doesn’t select the
maximizing action attime t + n
— All of the exploration is outsourced to the behavior policy

— Still might be better than on-policy SARSA since the behavior
policy might explore aggressively




	Slide 1: Q-Learning
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: On-Policy vs Off-Policy Control
	Slide 5: Off-policy TD Control: Q-learning
	Slide 6: Q-learning Exploration
	Slide 7: Comparison between on-policy and off-policy
	Slide 8: Comparison between on-policy and off-policy, cont’d
	Slide 9: Convergence of Q-learning
	Slide 10: Convergence of Q-learning
	Slide 11: Convergence of Q-learning, cont’d
	Slide 12: Convergence of Q-learning, cont’d
	Slide 13: Convergence of Q-learning, cont’d
	Slide 14: Convergence of Q-learning, cont’d
	Slide 15: Convergence of Q-learning
	Slide 16: Maximization Bias
	Slide 17: Maximization Bias, cont’d
	Slide 18: Maximization Bias, cont’d
	Slide 19: Double Q-Learning
	Slide 20: Double Q-Learning, cont’d
	Slide 21: Benefit of Double Q-learning
	Slide 22: Deficiencies of standard Q-learning
	Slide 23: bold italic n-step off-policy learning
	Slide 24: bold italic n-step off-policy learning, cont’d

