Monte Carlo Methods




Reading @) Rensselaer

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapter 5

e David Silver lecture on Dynamic Programming
— https://www.youtube.com/watch?v=PnHCvfgC_ZA&t=585s
— First part of the lecture (on Monte-Carlo learning)



http://www.incompleteideas.net/book/the-book-2nd.html

Overview

® Rensselaer

* Monte Carlo methods are very effective for estimating
distribution parameters through sampling

—Means, variances, etc.
— Strong convergence theory, due to the law of large numbers

* Suppose we have access to a number of episodes of length T
— “Training data”
— We don’t have access to the full MDP anymore

* Estimate value functions averaging over multiple episodes

—If we can sample a v ;(s) for a given policy  and for each
episode i, then the v ;(s) are IID

— By law of large numbers, the average of the v ;(s) will
converge to the true v (s) asi — oo




Policy Evaluation @) Rensselaer

* Suppose we are given N runs of an MDP, each of length T
—Each run has the form Sy, 4y, Ry, S1, 441, ..., R7, St
— Also works for an MRP

— For now, assume we used the same policy  in all

* Suppose we wish to estimate the value of a given state, v, (s)
—How do we do that?

— High-level idea: every time we visit state s, compute the
discounted return from then on

 Then average all returns

—What issues can you spot?




® Rensselaer

Policy Evaluation, cont’d

* High-level idea: every time we visit state s, compute the
discounted return from then on

* We might visit s at different times in each trace

* Furthermore, might visit s multiple times per trace
— Breaks IID assumption (Law of Large numbers doesn’t apply)

 How do we proceed?

— Problem is very hard for time-dependent MDPs
* Ideally, we try to estimate v5(s) for each t
* Would require multiple examples visiting s for each t

—The book focuses purely on time-independent MDPs

e E.g., MDPs with terminal states such as games

* Takes of care of the time-dependency challenge
— What about the multiple visits problem?




MDPs with a Terminal State @) Rensselaer

* MDP assumption:
— MDP is assumed to have a terminal state
— Each available trace must reach the terminal state

* Why is this convenient?
—The infinite-horizon and finite-horizon are now the same

—Terminal node can be assumed to have a self-transition w.p.
1 and reward of O

— An infinite trace that reaches terminal node at T looks like
So, 40, R, 51,44, ... ST, A7, R7414,ST741,A74+1, 0, ...
* Where S; =Srforallt > T

—Now, v (s) is time-independent

— Monte Carlo method now gives us a sample of v, (s)




First-visit Method ® Rensselaer

* The first-visit method works by only calculating the average
return after the first time we visit state s in an episode

— Future visits in the same episode are ignored

First-visit MC prediction, for estimating V = v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following m: So, Ao, B1,51, A1, Ro, ..., S7_1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:
G+ ";r'G —+ R.t+1
Unless S; appears in Sp, S1,...,5t—1:
Append G to Returns(S:)
V' (S:) < average( Returns(S:))




First-Visit Method Issue @) Rensselaer

* May not visit each state enough times for good convergence
— Either due to the policy or insufficient number of traces

 What’s one way around it?
— Average over all visits!
—Samples no longer |ID
 If two visits occurred in the same trace, not independent
* Turns out the every-visit method is biased!
—i.e., the expectation is not exactly v, (s)
—But it is consistent!

* j.e., the bias converges to 0 with more data

— Overall, trade-off between more samples and bias




Comparison between first-visit and every-visit @) Rensselaer

e Consider the following environment

R=-1
Safer path
Optimal path | 1
| .
S The Cliff G
R VA y
-_.."\". , '/ : ”
N R=-100 _—

Goal is to reach G from S

e Actions are up, down, left, right

* Reward of -1 after each step

* Reward of -100 if you fall off The Cliff

e Goal is a sink state (so no more negative reward at that point)




Comparison between first-visit and every-visit,

cont’d @ Rensselaer

» Estimate values for a random policy

 Difficult for MC methods since rewards vary a lot
— May take a long time to get to goal

* Both methods converge slowly
— Every-visit method has larger error initially
— Due to bias
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Monte Carlo Control @©@ Rensselaer

* So far, we've seen how to estimate state values for a given
policy

Now, we’d like to find a better policy (i.e., learn)

It is tempting to use the value iteration recursion, since we
already have the values

Vis1(8) = m;lx[]E[Rt+1 + Yo (Ses)ISe = 5,4 = a]]
—What’s wrong with that?

We don’t have an estimate for the expected reward

Need to compute expected rewards for all actions
—l.e., g values
—What is a potential challenge with this?




Monte Carlo Control, cont’d @2 Rensselaer

* Recall a Workday Example policy T we had:
 m(Teach) = Relax
* T1(OH) = Work
e T(MLS) = Work
* m(FLE) = Relax
 m(Pub) = Work

* If | collect traces with T, what g values won’t | see?
q.(OH, Relax), q,(Pub, Relax), etc.

* Will not see all g values in general, especially with a
deterministic policy
—What can we do?
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e-greedy policies @ Rensselaer

* Will not see all g values in general, especially with a
deterministic policy
* This is part of the RL exploration vs exploitation challenge
— Need to explore more state/action pairs while maximizing
intermediate rewards
* One way around this is to make m probabilistic
—For each s, add an € probability that you don’t select i (s)

—i.e., define m, s.t.
e . (s) = n(s)wp 1—¢€

e m.(s) =aw.p.— a | where a # n(s), |A| is the number of actions

* This way, all state/action pairs will be observed eventually




e-greedy Monte Carlo Control ®) Rensselaer

* Use policy iteration with Monte Carlo estimates of g values
* We use e-greedy policies instead of deterministic ones

* Issues?
— g estimates may be wrong (due to finite data)
— Does policy improvement theorem still work?
— After each policy update, need more data to re-estimate

On-policy first-visit MC control (for e-soft policies), estimates m ~ m,

Algorithm parameter: small £ > 0

Initialize:
7 <« an arbitrary =-soft poliey
()(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) + empty list, for all s € 8, a £ A(s)

Repeat forever (for each episode):
Generate an episode following w: Sy, Ag, R1,...,57_1,Ar_1, Rr
G+0
Loop for each step of episode, t =T-1,T-2,...,0:
G« "‘-"G + Rr+l
Unless the pair S;, A; appears in Sy, Ag, S1,41...,5_1,4:_1:
Append G to Returns(S;, A;)
Q(S;, A;) « average(Returns(S;, A;))
A* + argmax, ()(5¢, a) (with ties broken arbitrarily)
For all a € A(S;):
1—e+¢ef|A(S:)| ifa= A"
m(alSe) < { £/|A(Sy) ifa# A*
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®) Rensselaer

e-greedy Monte Carlo Control

* Issues?
— g estimates may be wrong (due to finite data)

e Always a concern with RL methods
e Especially in high-dimensional problems

— Does policy improvement theorem still work?

* Yes, see proof in book
* Will find the best e-greedy policy

On-policy first-visit MC control (for e-soft policies), estimates m ~ m,

Algorithm parameter: small € > 0

Initialize:
7 <« an arbitrary =-soft poliey
Q(s,a) = R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) + empty list, for all s € 8, a £ A(s)

Repeat forever (for each episode):
Generate an episode following m: Sp, Ag, R1, ...,
G+0
Loop for each step of episode, t =T-1,T-2,...,0:
G« "‘,"G + Rf+l
Unless the pair S;, A; appears in Sy, Ag, S1,41...,5_1,4:_1:
Append G to Returns(S;, 4;)
Q(S;, A;) « average(Returns(S;, 4,))
A* + argmax, ()(5¢, a)
For all a € A(S;):

Sr_1,Ar_1, Rt

(with ties broken arbitrarily)

1—c+e/JA(S;)| ifa=A"
m(a|Se) + { £/|A(S,)] ifasA*




e-greedy Monte Carlo Control

® Rensselaer

* |ssues?
— After each policy update, need more data to re-estimate
* A major issue with Monte Carlo methods

e Cannot really get around it
e But can alleviate it. Any ideas?

On-policy first-visit MC control (for e-soft policies), estimates m ~ m,

Algorithm parameter: small € > 0

Initialize:
7 <« an arbitrary =-soft poliey
Q(s,a) = R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) + empty list, for all s € 8, a £ A(s)

Repeat forever (for each episode):
Generate an episode following w: Sy, Ag, R1,...,57_1,Ar_1, Rr
G+ 0
Loop for each step of episode, t =T-1,T-2,...,0:
G« "‘,"G + Rf+l
Unless the pair S;, A; appears in Sy, Ag, S1,41...,5_1,4:_1:
Append G to Returns(S;, A;)
Q(S;, A;) « average(Returns(S;, A;))
A* + argmax, ()(5¢, a)
For all a € A(S;):

(with ties broken arbitrarily)

1—c+e/JA(S;)| ifa=A"
m(a|Se) + { £/|A(S,)] ifasA*
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Off-Policy vs. On-Policy Methods @®) Rensselaer

* An important distinction in RL

* In on-policy training, our training data was collected using our
current policy ™
—|.e., data can be directly used to calculate state values

* In off-policy training, training data was collected using a policy
7' that is different from current policy

— Need to know some relation between ™ and ' in order to
calculate state values for i©




Off-Policy vs. On-Policy, cont’d @) Rensselaer

* Exploration vs. exploitation

— Often need to take suboptimal actions in order to explore
new state space

— On-policy methods not well suited for this because we are
using the same policy to explore and to make optimal
decisions

— Off-policy allows you to have one exploratory policy
(behavior policy) and one learning policy (target policy)
* Overall, on-policy is simpler but may not explore enough
— Off-policy is more complex and may converge slowly

* but may find non-trivial solutions




Off-policy Prediction/Evaluation @®) Rensselaer

e Suppose you have a behavior policy b and a target policy
—i.e., your traces were collected using b but you will
eventually use i (since it brings higher rewards)
* How do we evaluate v, (s)?
— Intuitively, we should be able to use past knowledge about
state/action rewards
* Need to know something about relationship between b and
— Note that both need to be probabilistic in this setting
—If b is not probabilistic, we won’t see all state/action pairs

— 1t (or ) will often be a behavior policy in the next iteration
anyway




® Rensselaer

Off-policy Prediction/Evaluation, cont’d

* First, let’s look at v, (s), in the two-step case:
vp(s) = EplGe|S; = 5]
= Ep[Rt11 + YRi42|S: = 5]

* Expanding the expectation:

EplGelSe = s] = Eng[Gt = g|S; = s]
g

- ;‘.9 7 PylG: = 9,A: = a,S¢41 = 5", Ap=q = a'|S; = 5]

g a,al,s’
— — o o _
= S“g 7 Pb[Gt = glAt =a,5¢41 =S, A1 =a, 5 = s] *
g a,al,s’

* PplAryr = a', i1 = 5", 4 = alS; = 5]

= Z PplAeyr = a',Serq =, A = alS; = s =
a,al,s’
EplGelAr = a,Seq1 = 5", Ap=1 = @', 5¢ = 5]
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Off-policy Prediction/Evaluation, cont’d @®) Rensselaer

* First, let’s look at v, (s), in the two-step case:
vp(s) = EplGe|S; = 5]
= Ep[Rt11 + YRi42|S: = 5]

* Expanding the expectation:

EylGelSe =51 = ) PplAess = @', Span = ', Ac = alS, = 51 »
a,al,s’

IIE:D [thAt = a, St+1 — S’JAt=1 — a’rSt = S]

* Note that s, a,a’, s’ is just the current episode’s trace
—Callthat tr = (s,a,a’,s")

e Expectation becomes

Ey[GelSe = 51 = ) Pylerls, = sIE [Geler, S, = s]
tr

— where tr loops over all possible sequences A¢, S¢414, .., ST




Off-policy Prediction/Evaluation, cont’d @®) Rensselaer

* |In the general finite-horizon case:

Ey[GelSe = 5= ) PyltriS, = s|Ey[Geler, S, = s]
tr

* Note that the transition probabilities are determined by b
— But the rewards are independent of b

— Any policy that generates tr will observe the same rewards:
]Eb[thtr,St — S] - ]En-[thtr,St — S]

* Allows us to write v,; as a function of v,

ve(s) = ) Prltrls, = sIEx[Geler, S, = s)
tr

P :tT St — S:
) Z P: tr|S; = s] Ppltr|S; = s]E;[G¢ltr, S; = s]
T




® Rensselaer

Off-policy Prediction/Evaluation, cont’d

* Allows us to write v,; as a function of vy:

=Itr|S; = s]
ve(s) = Z BT ls =] PolIr1S: = SIEalGeler, 5, = s

= 2 perPyltrlS, =51 ) gPIG, = gler, S, = s]

= Z pergPplGe = g, tr|S = 5]
g.tr
= Eplpe.rGelSe = s]

—where py.r = Py [Tr|S; = s|/Py[T1¢|S; = 5]

* Tryis arandom variable corresponding to the trace starting at ¢
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Importance Sampling @ Rensselaer

 Since we have no (or little) data from the target policy, we can’t
use vanilla Monte Carlo to estimate state values

— Must instead use the relationship between the two policies

— Importance sampling! N
I
* In importance sampling, we generate data 1% ~
using some distribution, g
— Called a proposal distribution ) f:,.f’ﬂ“\
* We'd like to reweight the data according o L
to another distribution, f
A
— Called the target distribution 4o\

* Almost as if we had generated data withthe —————
target distribution

Source: Thrun, S., Burgard, W. and Fox, D., 2006.
Probalistic robotics. Kybernetes.




Computing state values with importance
sampling

® Rensselaer

* In summary, to compute v,(s), we note that
Ve (s) = Ep[pr.7-1G|St = 5]
* Note that the ratio can be simplified
P_[tr|S; = s]
P, [tr|S; = s]
7T(A ISOP(Se, A, Se41)T(Ars1Se41) - P(Sr—1,Ar—1,57)
I’I?(A |St)P(StiAt'St+1)b(At+1|St+1) P(ST 1'AT 1JST)
(A |Sk)
b(Ak|Sk)

Pt:T—1 =

k=t
—where the MDP transitions conveniently cancel out
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Computing state values with importance
sampling, cont’d

® Rensselaer

» Recall that we are given a set of trajectories from b
—Callit T'(s)

* To estimate v, (s), we just average all the returns as before
5 (S) . ZtrET(s) Gy
’ |7 ()|

* Of course, we want to estimate v, so we need the extra p factor

Qitrer(s) Pr:r-1Gt
1T (s)]

— Any challenges with this approach?

V(s) = p(s) =

—The ratio p can get quite large
* Multiple divisions by small numbers
* Variance is unbounded




Weighted Importance Sampling @®) Rensselaer

* Ordinary importance sampling is unbiased but the ratio p can
be quite large

To alleviate this issue, one can use weighted sampling instead

2. 7-1G
V(s) = ter(s) Pt:T-1Ut

Ztej}"(s) pt:T—l

Alleviates the effect of very large ratios
* This estimate is biased, but it works well in practice

* Bias converges asymptotically to O
— Consistent estimator! v |

square |
error

(average over
100 runs)

ol - e—
0 10 100 1000 10.000

Episodes (log scale)

Figure 5.3: Weighted importance sampling produces lower error estimates of the value of a
single blackjack state from off-policy episodes. |
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Incremental Implementation @) Rensselaer

* Similar to the case of bandits, we don’t re-compute the average
after every new return

— Rather, we keep a moving average and update it every time
— Implementation much faster

* The estimate after k trajectories can be computed as follows
Pr11Ge1 + Prr2Ge2 + o+ Prr Gk

VE(s) =
Pt.r1 t Prr2 t "+ Prrk
k—1
j=1 Pt:T,j (pt:T,th,l + e+ pt:T,k—th,k—l) 1
o . —1 + k pt:T,th,k
j=1 pt:T,j j=1 pt:T,j j=1 pt:T,j
— pt:T,k —
= VE"1(s) + = (Gese = V1))

* This is almost temporal difference learning, as we’ll see next




Off-policy Monte Carlo Control ®) Rensselaer

 Similar to on-policy, except state values estimated using off-
policy methods

— Behavior policy could be anything but we need enough
episodes for each state-action pair

Off-policy MC control, for estimating 7 =~ 7,

Initialize, for all s € §, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a)+0
m(s) < argmax, (J(s,a) (with ties broken consistently)

Loop forever (for each episode):

b + any soft policy

Generate an episode using b: Sy, Ag, Ry, ..., S7_1,Ar_1, By

G+ 0

W1

Loop for each step of episode, t =T—-1,T—-2,...,0:
G+ vG+ R
C(Si, Ap) « C(Se, Ap) + W
Q(Si, Ay) +— Q(Se, Ar) + ﬁ [G —Q(S:, Ar))
7(S,;) + argmax, Q(S;,a) (with ties broken consistently)
If A; # w(S;) then exit inner Loop (proceed to next episode)
W W

1
b(A¢]5¢)
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Comparison between on- and off-policy control ® Rensselaer

Safer path
» Consider the cliff environment again o
. o SI The Cliff %G
* We compare the two MC variants N\Z

* Both eventually converge to the safe path
— On-policy approach needs much more data (why?)

» Off-policy separates exploration from learning
* Epsilons gradually reduced to reduce variance

* Both converge to safer path
—Why?
— Not enough exploration 1 \( v

UII

—Need more data and a

lower ¢ o .w Mll Wi

600 800 1000
sode number 30

ward per Episode




Off-policy Monte Carlo Control, cont’d @®) Rensselaer

* What issues do you see with the algorithm?

* If the behavior policy b is more or less random, it will take a lot
of episodes to converge
* An improved approach would be to update b once in a while
—How can we update it?
—You can use the current o (or an e-greedy version)
—This technique actually used frequently in deep RL

e Stabilizes training




Summary @ Rensselaer

* Monte Carlo methods are more flexible than dynamic
programming
— Do not require knowledge of the MDP — just prior runs
— Can use simulators, which may be very complex to model

* The main drawback of Monte Carlo methods is that they
require a lot of data

— Also do not work out-of-the-box on infinite-state systems

* Reinforcement learning is effectively a Monte Carlo method
where we learn the value functions instead of approximating
them from past data
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