
Monte Carlo Methods

1

Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 5

• David Silver lecture on Dynamic Programming

– https://www.youtube.com/watch?v=PnHCvfgC_ZA&t=585s

– First part of the lecture (on Monte-Carlo learning)

2

http://www.incompleteideas.net/book/the-book-2nd.html

Overview

• Monte Carlo methods are very effective for estimating
distribution parameters through sampling

–Means, variances, etc.

– Strong convergence theory, due to the law of large numbers

• Suppose we have access to a number of episodes of length 𝑇

– “Training data”

–We don’t have access to the full MDP anymore

• Estimate value functions averaging over multiple episodes

– If we can sample a 𝑣𝜋,𝑖(𝑠) for a given policy 𝜋 and for each

episode 𝑖, then the 𝑣𝜋,𝑖(𝑠) are IID

– By law of large numbers, the average of the 𝑣𝜋,𝑖(𝑠) will
converge to the true 𝑣𝜋(𝑠) as 𝑖 → ∞

3

Policy Evaluation

• Suppose we are given 𝑁 runs of an MDP, each of length 𝑇

– Each run has the form 𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, … , 𝑅𝑇 , 𝑆𝑇

–Also works for an MRP

– For now, assume we used the same policy 𝜋 in all

• Suppose we wish to estimate the value of a given state, 𝑣𝜋(𝑠)

–How do we do that?

–High-level idea: every time we visit state 𝑠, compute the
discounted return from then on
• Then average all returns

–What issues can you spot?

4

Policy Evaluation, cont’d

• High-level idea: every time we visit state 𝑠, compute the
discounted return from then on

• We might visit 𝑠 at different times in each trace

• Furthermore, might visit 𝑠 multiple times per trace

– Breaks IID assumption (Law of Large numbers doesn’t apply)

• How do we proceed?

– Problem is very hard for time-dependent MDPs
• Ideally, we try to estimate 𝑣𝜋

𝑡 (𝑠) for each 𝑡

• Would require multiple examples visiting 𝑠 for each 𝑡

– The book focuses purely on time-independent MDPs
• E.g., MDPs with terminal states such as games

• Takes of care of the time-dependency challenge

– What about the multiple visits problem? 5

MDPs with a Terminal State

• MDP assumption:

–MDP is assumed to have a terminal state

– Each available trace must reach the terminal state

• Why is this convenient?

– The infinite-horizon and finite-horizon are now the same

– Terminal node can be assumed to have a self-transition w.p.
1 and reward of 0

–An infinite trace that reaches terminal node at 𝑇 looks like
𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, … , 𝑆𝑇 , 𝐴𝑇 , 𝑅𝑇+1, 𝑆𝑇+1, 𝐴𝑇+1, 0, …
• Where 𝑆𝑡 = 𝑆𝑇 for all 𝑡 > 𝑇

–Now, 𝑣𝜋(𝑠) is time-independent

–Monte Carlo method now gives us a sample of 𝑣𝜋(𝑠)
6

First-visit Method

• The first-visit method works by only calculating the average
return after the first time we visit state 𝑠 in an episode

– Future visits in the same episode are ignored

7

First-Visit Method Issue

• May not visit each state enough times for good convergence

– Either due to the policy or insufficient number of traces

• What’s one way around it?

–Average over all visits!

– Samples no longer IID
• If two visits occurred in the same trace, not independent

• Turns out the every-visit method is biased!

– i.e., the expectation is not exactly 𝑣𝜋(𝑠)

– But it is consistent!
• i.e., the bias converges to 0 with more data

–Overall, trade-off between more samples and bias

8

Comparison between first-visit and every-visit

• Consider the following environment

• Goal is to reach 𝐺 from 𝑆

• Actions are up, down, left, right

• Reward of -1 after each step

• Reward of -100 if you fall off The Cliff

• Goal is a sink state (so no more negative reward at that point)

9

Comparison between first-visit and every-visit,

cont’d

• Estimate values for a random policy

• Difficult for MC methods since rewards vary a lot

–May take a long time to get to goal

• Both methods converge slowly

– Every-visit method has larger error initially

–Due to bias

10

Monte Carlo Control

• So far, we’ve seen how to estimate state values for a given
policy 𝜋

• Now, we’d like to find a better policy (i.e., learn)

• It is tempting to use the value iteration recursion, since we
already have the values

𝑣𝑘+1 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

–What’s wrong with that?

• We don’t have an estimate for the expected reward

• Need to compute expected rewards for all actions

– I.e., 𝑞 values

–What is a potential challenge with this?

11

Monte Carlo Control, cont’d

• Recall a Workday Example policy 𝜋 we had:
• 𝜋 𝑇𝑒𝑎𝑐ℎ = 𝑅𝑒𝑙𝑎𝑥

• 𝜋 𝑂𝐻 = 𝑊𝑜𝑟𝑘

• 𝜋 𝑀𝐿𝑆 = 𝑊𝑜𝑟𝑘

• 𝜋 𝐹𝐿𝐸 = 𝑅𝑒𝑙𝑎𝑥

• 𝜋 𝑃𝑢𝑏 = 𝑊𝑜𝑟𝑘

• If I collect traces with 𝜋, what 𝑞 values won’t I see?

𝑞𝜋 𝑂𝐻, 𝑅𝑒𝑙𝑎𝑥 , 𝑞𝜋 𝑃𝑢𝑏, 𝑅𝑒𝑙𝑎𝑥 , etc.

• Will not see all 𝑞 values in general, especially with a
deterministic policy

–What can we do?

12

𝝐-greedy policies

• Will not see all 𝑞 values in general, especially with a
deterministic policy

• This is part of the RL exploration vs exploitation challenge

–Need to explore more state/action pairs while maximizing
intermediate rewards

• One way around this is to make 𝜋 probabilistic

– For each 𝑠, add an 𝜖 probability that you don’t select 𝜋(𝑠)

– i.e., define 𝜋𝜖 s.t.
• 𝜋𝜖 𝑠 = 𝜋(𝑠) w.p. 1 − 𝜖

• 𝜋𝜖 𝑠 = 𝑎 w.p.
𝜖

𝐴 −1
, where 𝑎 ≠ 𝜋(𝑠), |𝐴| is the number of actions

• This way, all state/action pairs will be observed eventually

13

𝝐-greedy Monte Carlo Control

• Use policy iteration with Monte Carlo estimates of 𝑞 values

• We use 𝜖-greedy policies instead of deterministic ones

• Issues?

– 𝑞 estimates may be wrong (due to finite data)

–Does policy improvement theorem still work?

–After each policy update, need more data to re-estimate

14

𝝐-greedy Monte Carlo Control

• Issues?

– 𝑞 estimates may be wrong (due to finite data)
• Always a concern with RL methods

• Especially in high-dimensional problems

–Does policy improvement theorem still work?
• Yes, see proof in book

• Will find the best 𝜖-greedy policy

15

𝝐-greedy Monte Carlo Control

• Issues?

–After each policy update, need more data to re-estimate
• A major issue with Monte Carlo methods

• Cannot really get around it

• But can alleviate it. Any ideas?

16

Off-Policy vs. On-Policy Methods

• An important distinction in RL

• In on-policy training, our training data was collected using our
current policy 𝜋

– I.e., data can be directly used to calculate state values

• In off-policy training, training data was collected using a policy
𝜋′ that is different from current policy 𝜋

–Need to know some relation between 𝜋 and 𝜋′ in order to
calculate state values for 𝜋

17

Off-Policy vs. On-Policy, cont’d

• Exploration vs. exploitation

–Often need to take suboptimal actions in order to explore
new state space

–On-policy methods not well suited for this because we are
using the same policy to explore and to make optimal
decisions

–Off-policy allows you to have one exploratory policy
(behavior policy) and one learning policy (target policy)

• Overall, on-policy is simpler but may not explore enough

–Off-policy is more complex and may converge slowly
• but may find non-trivial solutions

18

Off-policy Prediction/Evaluation

• Suppose you have a behavior policy 𝑏 and a target policy 𝜋

– i.e., your traces were collected using 𝑏 but you will
eventually use 𝜋 (since it brings higher rewards)

• How do we evaluate 𝑣𝜋(𝑠)?

– Intuitively, we should be able to use past knowledge about
state/action rewards

• Need to know something about relationship between 𝑏 and 𝜋

–Note that both need to be probabilistic in this setting

– If 𝑏 is not probabilistic, we won’t see all state/action pairs

–𝜋 (or 𝜋𝜖) will often be a behavior policy in the next iteration
anyway

19

Off-policy Prediction/Evaluation, cont’d

• First, let’s look at 𝑣𝑏(𝑠), in the two-step case:
𝑣𝑏 𝑠 = 𝔼𝑏 𝐺𝑡 𝑆𝑡 = 𝑠

= 𝔼𝑏 𝑅𝑡+1 + 𝛾𝑅𝑡+2 𝑆𝑡 = 𝑠

• Expanding the expectation:

𝔼𝑏 𝐺𝑡 𝑆𝑡 = 𝑠 = ෍

𝑔

𝑔 𝑃𝑏 𝐺𝑡 = 𝑔 𝑆𝑡 = 𝑠

= ෍

𝑔

𝑔 ෍

𝑎,𝑎′,𝑠′

𝑃𝑏 𝐺𝑡 = 𝑔, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′, 𝐴𝑡=1 = 𝑎′ 𝑆𝑡 = 𝑠

= ෍

𝑔

𝑔 ෍

𝑎,𝑎′,𝑠′

𝑃𝑏 𝐺𝑡 = 𝑔 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′, 𝐴𝑡=1 = 𝑎′, 𝑆𝑡 = 𝑠 ∗

∗ ℙ𝑏 𝐴𝑡+1 = 𝑎′, 𝑆𝑡+1 = 𝑠′, 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

= ෍

𝑎,𝑎′,𝑠′

ℙ𝑏 𝐴𝑡+1 = 𝑎′, 𝑆𝑡+1 = 𝑠′, 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠 ∗

𝔼𝑏 𝐺𝑡 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′, 𝐴𝑡=1 = 𝑎′, 𝑆𝑡 = 𝑠
20

Off-policy Prediction/Evaluation, cont’d

• First, let’s look at 𝑣𝑏(𝑠), in the two-step case:
𝑣𝑏 𝑠 = 𝔼𝑏 𝐺𝑡 𝑆𝑡 = 𝑠

= 𝔼𝑏 𝑅𝑡+1 + 𝛾𝑅𝑡+2 𝑆𝑡 = 𝑠

• Expanding the expectation:

𝔼𝑏 𝐺𝑡 𝑆𝑡 = 𝑠 = ෍

𝑎,𝑎′,𝑠′

ℙ𝑏 𝐴𝑡+1 = 𝑎′, 𝑆𝑡+1 = 𝑠′, 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠 ∗

𝔼𝑏 𝐺𝑡 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′, 𝐴𝑡=1 = 𝑎′, 𝑆𝑡 = 𝑠

• Note that 𝑠, 𝑎, 𝑎′, 𝑠′ is just the current episode’s trace

– Call that 𝑡𝑟 = 𝑠, 𝑎, 𝑎′, 𝑠′

• Expectation becomes

𝔼𝑏 𝐺𝑡 𝑆𝑡 = 𝑠 = ෍

𝑡𝑟

ℙ𝑏 𝑡𝑟 𝑆𝑡 = 𝑠 𝔼𝑏 𝐺𝑡 𝑡𝑟, 𝑆𝑡 = 𝑠

– where 𝑡𝑟 loops over all possible sequences 𝐴𝑡 , 𝑆𝑡+1, … , 𝑆𝑇 21

Off-policy Prediction/Evaluation, cont’d

• In the general finite-horizon case:

𝔼𝑏 𝐺𝑡 𝑆𝑡 = 𝑠 = ෍

𝑡𝑟

ℙ𝑏 𝑡𝑟 𝑆𝑡 = 𝑠 𝔼𝑏 𝐺𝑡 𝑡𝑟, 𝑆𝑡 = 𝑠

• Note that the transition probabilities are determined by 𝑏

– But the rewards are independent of 𝑏

–Any policy that generates 𝑡𝑟 will observe the same rewards:
𝔼𝑏 𝐺𝑡 𝑡𝑟, 𝑆𝑡 = 𝑠 = 𝔼𝜋 𝐺𝑡 𝑡𝑟, 𝑆𝑡 = 𝑠

• Allows us to write 𝑣𝜋 as a function of 𝑣𝑏:

𝑣𝜋 𝑠 = ෍

𝑡𝑟

ℙ𝜋 𝑡𝑟 𝑆𝑡 = 𝑠 𝔼𝜋 𝐺𝑡 𝑡𝑟, 𝑆𝑡 = 𝑠

 = ෍

𝑡𝑟

ℙ𝜋 𝑡𝑟 𝑆𝑡 = 𝑠

ℙ𝑏 𝑡𝑟 𝑆𝑡 = 𝑠
ℙ𝑏 𝑡𝑟 𝑆𝑡 = 𝑠 𝔼𝜋 𝐺𝑡 𝑡𝑟, 𝑆𝑡 = 𝑠

22

Off-policy Prediction/Evaluation, cont’d

• Allows us to write 𝑣𝜋 as a function of 𝑣𝑏:

𝑣𝜋 𝑠 = ෍

𝑡𝑟

ℙ𝜋 𝑡𝑟 𝑆𝑡 = 𝑠

ℙ𝑏 𝑡𝑟 𝑆𝑡 = 𝑠
ℙ𝑏 𝑡𝑟 𝑆𝑡 = 𝑠 𝔼𝜋 𝐺𝑡 𝑡𝑟, 𝑆𝑡 = 𝑠

 = ෍

𝑡𝑟

𝜌𝑡:𝑇ℙ𝑏 𝑡𝑟 𝑆𝑡 = 𝑠 ෍

𝑔

𝑔 ℙ 𝐺𝑡 = 𝑔 𝑡𝑟, 𝑆𝑡 = 𝑠

= ෍

𝑔,𝑡𝑟

𝜌𝑡:𝑇𝑔ℙ𝑏 𝐺𝑡 = 𝑔, 𝑡𝑟 𝑆𝑡 = 𝑠

= 𝔼𝑏 𝜌𝑡:𝑇𝐺𝑡 𝑆𝑡 = 𝑠

–where 𝜌𝑡:𝑇 = ℙ𝜋 𝑇𝑟𝑡 𝑆𝑡 = 𝑠 /ℙ𝑏 𝑇𝑟𝑡 𝑆𝑡 = 𝑠
• 𝑇𝑟𝑡 is a random variable corresponding to the trace starting at 𝑡

23

Importance Sampling

• Since we have no (or little) data from the target policy, we can’t
use vanilla Monte Carlo to estimate state values

–Must instead use the relationship between the two policies

– Importance sampling!

• In importance sampling, we generate data
using some distribution, 𝑔

– Called a proposal distribution

• We’d like to reweight the data according
to another distribution, 𝑓

– Called the target distribution

• Almost as if we had generated data with the
target distribution

24

Source: Thrun, S., Burgard, W. and Fox, D., 2006.
Probalistic robotics. Kybernetes.

Computing state values with importance

sampling

• In summary, to compute 𝑣𝜋 𝑠 , we note that
𝑣𝜋 𝑠 = 𝔼𝑏[𝜌𝑡:𝑇−1𝐺𝑡|𝑆𝑡 = 𝑠]

• Note that the ratio can be simplified

𝜌𝑡:𝑇−1 =
ℙ𝜋 𝑡𝑟 𝑆𝑡 = 𝑠

ℙ𝑏 𝑡𝑟 𝑆𝑡 = 𝑠

 =
𝜋 𝐴𝑡 𝑆𝑡 𝑃 𝑆𝑡 , 𝐴𝑡, 𝑆𝑡+1 𝜋 𝐴𝑡+1|𝑆𝑡+1 … 𝑃 𝑆𝑇−1, 𝐴𝑇−1, 𝑆𝑇

𝑏 𝐴𝑡 𝑆𝑡 𝑃 𝑆𝑡 , 𝐴𝑡, 𝑆𝑡+1 𝑏 𝐴𝑡+1|𝑆𝑡+1 … 𝑃 𝑆𝑇−1, 𝐴𝑇−1, 𝑆𝑇

= ෑ

𝑘=𝑡

𝑇−1
𝜋 𝐴𝑘 𝑆𝑘

𝑏 𝐴𝑘 𝑆𝑘

–where the MDP transitions conveniently cancel out

25

Computing state values with importance

sampling, cont’d

• Recall that we are given a set of trajectories from 𝑏

– Call it 𝒯 𝑠

• To estimate 𝑣𝑏 𝑠 , we just average all the returns as before

ො𝑣𝑏 𝑠 =
σ𝑡𝑟∈𝒯(𝑠) 𝐺𝑡

𝒯 𝑠

• Of course, we want to estimate 𝑣𝜋, so we need the extra 𝜌 factor

𝑉 𝑠 ≔ ො𝑣𝜋 𝑠 =
σ𝑡𝑟∈𝒯(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

𝒯 𝑠

–Any challenges with this approach?

– The ratio 𝜌 can get quite large
• Multiple divisions by small numbers

• Variance is unbounded

26

Weighted Importance Sampling

• Ordinary importance sampling is unbiased but the ratio 𝜌 can
be quite large

• To alleviate this issue, one can use weighted sampling instead

𝑉 𝑠 ≔
σ𝑡∈𝒯(𝑠) 𝜌𝑡:𝑇−1𝐺𝑡

σ𝑡∈𝒯(𝑠) 𝜌𝑡:𝑇−1

• Alleviates the effect of very large ratios

• This estimate is biased, but it works well in practice

• Bias converges asymptotically to 0

– Consistent estimator!

27

Incremental Implementation

• Similar to the case of bandits, we don’t re-compute the average
after every new return

– Rather, we keep a moving average and update it every time

– Implementation much faster

• The estimate after 𝑘 trajectories can be computed as follows

𝑉𝑘 𝑠 =
𝜌𝑡:𝑇,1𝐺𝑡,1 + 𝜌𝑡:𝑇,2𝐺𝑡,2 + ⋯ + 𝜌𝑡:𝑇,𝑘𝐺𝑡,𝑘

𝜌𝑡:𝑇,1 + 𝜌𝑡:𝑇,2 + ⋯ + 𝜌𝑡:𝑇,𝑘

 =
σ𝑗=1

𝑘−1 𝜌𝑡:𝑇,𝑗

σ𝑗=1
𝑘 𝜌𝑡:𝑇,𝑗

𝜌𝑡:𝑇,1𝐺𝑡,1 + ⋯ + 𝜌𝑡:𝑇,𝑘−1𝐺𝑡,𝑘−1

σ𝑗=1
𝑘−1 𝜌𝑡:𝑇,𝑗

+
1

σ𝑗=1
𝑘 𝜌𝑡:𝑇,𝑗

𝜌𝑡:𝑇,𝑘𝐺𝑡,𝑘

= 𝑉𝑘−1 𝑠 +
𝜌𝑡:𝑇,𝑘

σ𝑗=1
𝑘 𝜌𝑡:𝑇,𝑗

𝐺𝑡,𝑘 − 𝑉𝑘−1 𝑠

• This is almost temporal difference learning, as we’ll see next

28

Off-policy Monte Carlo Control

• Similar to on-policy, except state values estimated using off-
policy methods

– Behavior policy could be anything but we need enough
episodes for each state-action pair

29

Comparison between on- and off-policy control

• Consider the cliff environment again

• We compare the two MC variants

• Both eventually converge to the safe path

–On-policy approach needs much more data (why?)
• Off-policy separates exploration from learning

• Epsilons gradually reduced to reduce variance

• Both converge to safer path

–Why?

–Not enough exploration

–Need more data and a
lower 𝜖

30

Off-policy Monte Carlo Control, cont’d

• What issues do you see with the algorithm?

• If the behavior policy 𝑏 is more or less random, it will take a lot
of episodes to converge

• An improved approach would be to update 𝑏 once in a while

–How can we update it?

– You can use the current 𝜋 (or an 𝜖-greedy version)

– This technique actually used frequently in deep RL
• Stabilizes training

31

Summary

• Monte Carlo methods are more flexible than dynamic
programming

–Do not require knowledge of the MDP – just prior runs

– Can use simulators, which may be very complex to model

• The main drawback of Monte Carlo methods is that they
require a lot of data

–Also do not work out-of-the-box on infinite-state systems

• Reinforcement learning is effectively a Monte Carlo method
where we learn the value functions instead of approximating
them from past data

32

	Slide 1: Monte Carlo Methods
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Policy Evaluation
	Slide 5: Policy Evaluation, cont’d
	Slide 6: MDPs with a Terminal State
	Slide 7: First-visit Method
	Slide 8: First-Visit Method Issue
	Slide 9: Comparison between first-visit and every-visit
	Slide 10: Comparison between first-visit and every-visit, cont’d
	Slide 11: Monte Carlo Control
	Slide 12: Monte Carlo Control, cont’d
	Slide 13: bold italic script epsilon-greedy policies
	Slide 14: bold italic script epsilon-greedy Monte Carlo Control
	Slide 15: bold italic script epsilon-greedy Monte Carlo Control
	Slide 16: bold italic script epsilon-greedy Monte Carlo Control
	Slide 17: Off-Policy vs. On-Policy Methods
	Slide 18: Off-Policy vs. On-Policy, cont’d
	Slide 19: Off-policy Prediction/Evaluation
	Slide 20: Off-policy Prediction/Evaluation, cont’d
	Slide 21: Off-policy Prediction/Evaluation, cont’d
	Slide 22: Off-policy Prediction/Evaluation, cont’d
	Slide 23: Off-policy Prediction/Evaluation, cont’d
	Slide 24: Importance Sampling
	Slide 25: Computing state values with importance sampling
	Slide 26: Computing state values with importance sampling, cont’d
	Slide 27: Weighted Importance Sampling
	Slide 28: Incremental Implementation
	Slide 29: Off-policy Monte Carlo Control
	Slide 30: Comparison between on- and off-policy control
	Slide 31: Off-policy Monte Carlo Control, cont’d
	Slide 32: Summary

