Dynamic Programming

Reading

Rensselaer

- Sutton, Richard S., and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
 - <u>http://www.incompleteideas.net/book/the-book-2nd.html</u>
 Chapter 4
- Puterman, Martin L. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
 — Chapter 4
- David Silver lecture on Dynamic Programming — https://www.youtube.com/watch?v=Nd1-UUMVfz4

- A classical algorithm for computing solutions to problems that can be separated into subproblems with known solutions
 - E.g., all shortest paths
 - Essentially, store all subproblem solutions in a table and reuse them when necessary
- If we have a finite (state and action) MDP, we can find the optimal policy by incremental search
 - Find the optimal policy for 1 step, then 2 steps, etc.
 - Actually done backwards in time
- Polynomial complexity in the number of states
 - Number of states can be large

Rensselaer

- In order to find the best policy, we first need a way to evaluate policies
 - -i.e., compute the state-value function $v_{\pi}(s)$ for each state s
 - -Also compute the action-value function $q_{\pi}(s, a)$
- Every time we change the policy, we need to evaluate it (in order to check if we improved it)
- So far, we've seen one way to compute state values
 - -How?
 - For a given policy π , compute the matrix form of the value function vector

Policy Evaluation: the infinite-horizon case

• In the infinite-horizon case, we can use the Bellman equation:

$$v_{\pi}(s) = R_{\pi}(s) + \gamma \sum_{a,s'} P(s,a,s')\pi(a|s)v_{\pi}(s')$$

– which can be rewritten in matrix form:

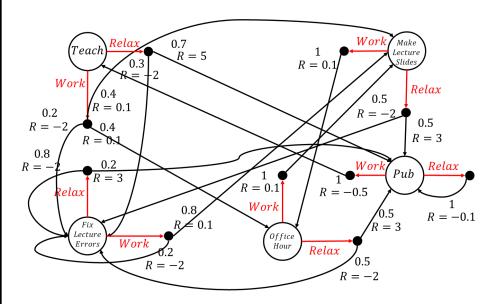
$$v_{\pi}(\boldsymbol{s}) = R_{\pi}(\boldsymbol{s}) + \gamma \boldsymbol{P}_{\pi} v_{\pi}(\boldsymbol{s})$$

• Thus, the state value vector is:

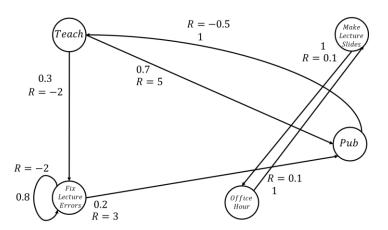
$$v_{\pi}(\boldsymbol{s}) = (\boldsymbol{I} - \gamma \boldsymbol{P}_{\pi})^{-1} R_{\pi}(\boldsymbol{s})$$

Workday example, MDP -> MRP

MDP



MRP

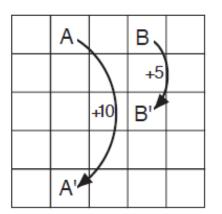


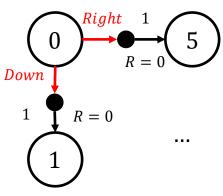
Policy

- Let's define π as follows:
 - $\pi(Teach) = Relax$
 - $\pi(OH) = Work$
 - $\pi(MLS) = Work$
 - $\pi(FLE) = Relax$
 - $\pi(Pub) = Work$

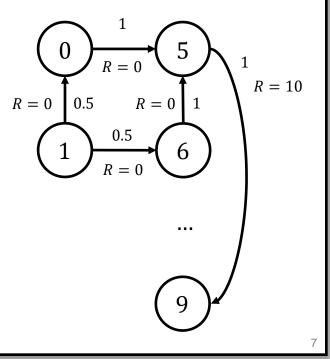
Gridworld example, MDP -> MRP

MDP





MRP



Policy

→	↔	•	↔	←
Ĺ →	1	₽	+	←
1	1	₽	₊1	₊
Ĺ ,	1	t,	₊1	₊
Ĺ ₊	1	₽	₊	₊↑

- Inverting $I \gamma P$ may be expensive if number of states is large
- Another approach is to use linear systems theory!
- Start from a random initialization for $v(s) = v_0(s)$
- Look at linear system

$$v_k(\boldsymbol{s}) = R(\boldsymbol{s}) + \gamma \boldsymbol{P} v_{k-1}(\boldsymbol{s})$$

• System is stable. Why?

-All entries (and eigenvalues) of γP are < 1 (for $\gamma < 1$)

• System converges to unique solution $(I - \gamma P)^{-1}R(s)$ - Why?

$$-\operatorname{lf} v_{k+1}(s) = v_k(s) = v, \text{ then } v = R(s) + \gamma P v, \text{ i.e.},$$
$$v = (I - \gamma P)^{-1} R(s)$$

• Keep in mind $I - \gamma P$ is not invertible when $\gamma = 1$

Workday example, Iterative Value evolution

- Recall state values are (for $\gamma = 0.9$) $(I - \gamma P)^{-1}R(s) = [5.54 \ 1 \ 1 \ -0.69 \ 4.49]^T$
- Using iterative evaluation

-Starting with
$$\boldsymbol{v}_0 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T$$

 $\boldsymbol{v}_{10} = \begin{bmatrix} 4.59 & 0.65 & 0.65 & -1.58 & 3.64 \end{bmatrix}^T$
 $\boldsymbol{v}_{30} = \begin{bmatrix} 5.43 & 0.96 & 0.96 & 0 - 0.80 & 4.38 \end{bmatrix}^T$
 $\boldsymbol{v}_{50} = \begin{bmatrix} 5.53 & 0.99 & 0.99 & 0 - 0.70 & 4.47 \end{bmatrix}^T$

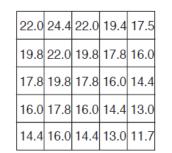
• After 50 iterations, converged within 0.01 if the true values

Rensselaer

Gridworld Example, iterative value evolution

- Recall state values are
- Using iterative evaluation
 - Starting from $\boldsymbol{v}_0 = \mathbf{0} \in \mathbb{R}^{25}$

•	14.31	15.90	14.31	10.90	9.81
• v ₁₀ is	12.88	14.31	12.88	11.59	10.44
10	11.59	12.88	11.59	10.44	5.90
	10.44	11.59	10.44	5.90	5.31
	5.90	10.44	5.90	5.31	4.78
	21.86	24.29	21.86	19.29	17.36
• 17_{-} is	19.68	21.86	19.68	17.71	15.94
• v_{50} is	17.71	19.68	17.71	15.94	14.29
	15.94	17.71	15.94	14.29	12.86
	14.29	15.94	14.29	12.86	11.58



- After 50 iterations, converge within 0.15 of true values
- In general, can stop iterating when $||v_{k+1} v_k|| \le \epsilon$ —Where ϵ is a hyperparameter

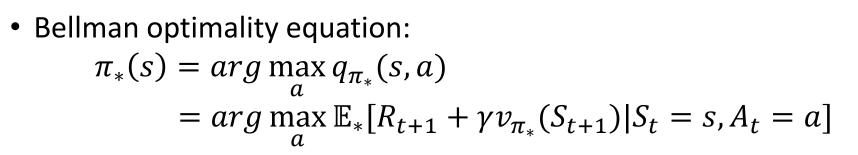
• Evaluate a policy recursively, starting from the last step ${\cal T}$

– Use the Bellman equation

$$\nu_{\pi}^{t}(s) = \mathbb{E}_{\pi} \Big[R_{t+1} + \gamma \nu_{\pi}^{t+1}(S_{t+1}) \Big| S_{t} = s \Big]$$

 Remember, the policy and the value function may be timedependent in the finite-horizon case!

- A policy π is better than another policy π' if $v_{\pi}(s) \ge v_{\pi'}(s), \forall s \in S$
- A policy π^* is optimal if there exists no better policy than π^*
- Turns out the optimal policy also has a nice recursive property $\pi_*(s) = \arg \max_a q_{\pi_*}(s, a)$
 - -Another version of the Bellman equation
 - Pick the action with the highest value
 - Obvious in a sense
 - But any policy that satisfies the Bellman optimality equation is optimal



- Proof by induction backward in time (for finite horizon T):
 - -Base case (t = T 1):
 - Only one step to make
 - For any state *s*, the optimal action is $arg \max_{a} \mathbb{E}_{*}[R_{T}|S_{T-1} = s, A_{T-1} = a] =$ $= arg \max_{a} q_{\pi_{*}}(s, a)$
 - So π_* is optimal by construction

Bellman Optimality Equation, proof

- Proof by induction backward in time (for finite horizon T):
 Inductive case:
 - Assume π_* is optimal at time t + 1
 - i.e., $v_{\pi_*}^{t+1}(s) \ge v_{\pi'}^{t+1}(s), \forall s, \pi'$
 - What do we need to show?

$$v_{\pi_*}^t(s) \ge v_{\pi'}^t(s), \forall s, \pi'$$

– Using the Bellman equation for π_* :

$$v_{\pi_*}^t(s) = q_{\pi_*}^t(s, \pi_*(s))$$

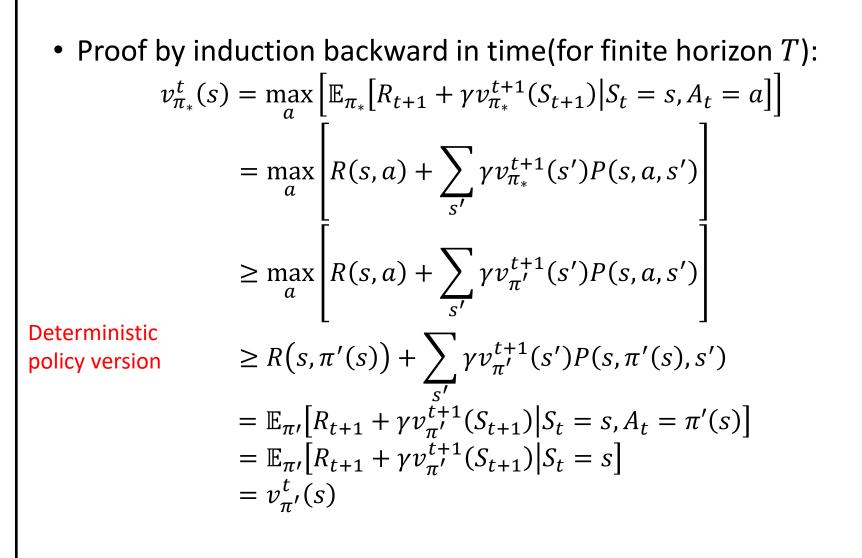
= $\max_a [q_{\pi_*}^t(s, a)]$
= $\max_a [\mathbb{E}_{\pi_*}[R_{t+1} + \gamma v_{\pi_*}^{t+1}(S_{t+1})|S_t = s, A_t = a]]$

- Proof by induction backward in time (for finite horizon *T*):
 - Assume π_* is optimal at time t + 1
 - i.e., $v_{\pi_*}^{t+1}(s) \ge v_{\pi'}^{t+1}(s), \forall s, \pi'$

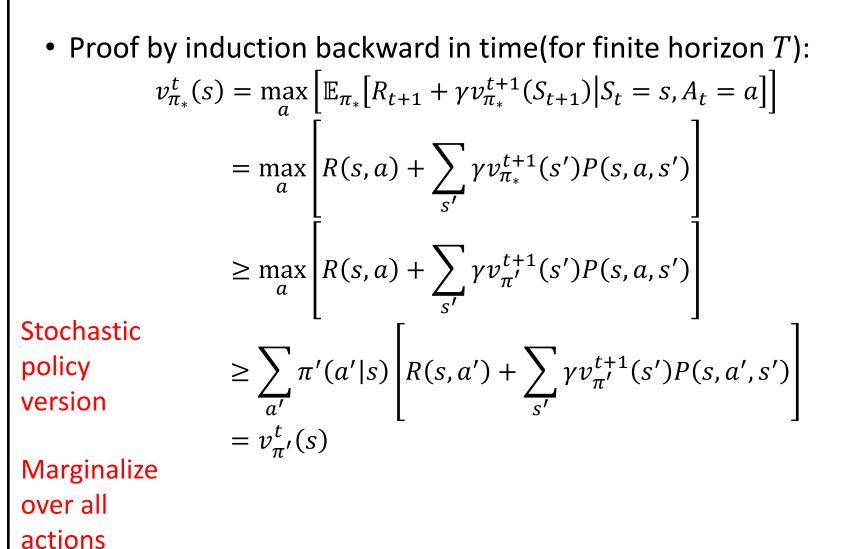
– Consider any other policy π'

$$v_{\pi_*}^t(s) = \max_{a} \left[\mathbb{E}_{\pi_*} \left[R_{t+1} + \gamma v_{\pi_*}^{t+1}(S_{t+1}) \middle| S_t = s, A_t = a \right] \right]$$
$$= \max_{a} \left[R_e(s, a) + \sum_{s'} \gamma v_{\pi_*}^{t+1}(s') P(s, a, s') \right]$$
$$\ge \max_{a} \left[R_e(s, a) + \sum_{s'} \gamma v_{\pi'}^{t+1}(s') P(s, a, s') \right]$$

- Inequality true for any a, so true for max also



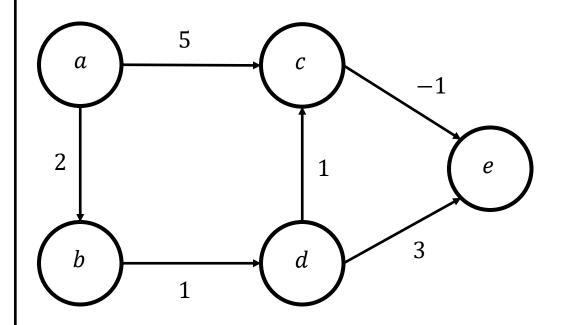
Rensselaer

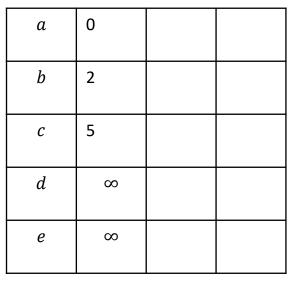


Rensselaer

Dynamic Programming: All Pairs Shortest Paths (2) Rensselaer

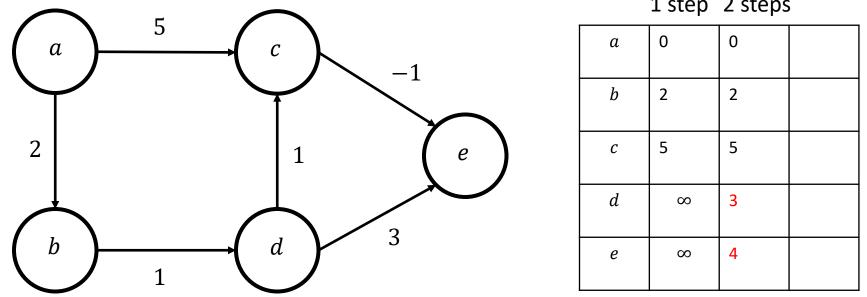
- A famous application of dynamic programming
 - Compute shortest paths from a node to all other nodes in a graph
 - -E.g., all shortest paths from a to other nodes





Dynamic Programming: All Pairs Shortest Paths (1) Rensselaer

- A famous application of dynamic programming
 - Compute shortest paths from a node to all other nodes in a graph
 - -E.g., all shortest paths from a to other nodes

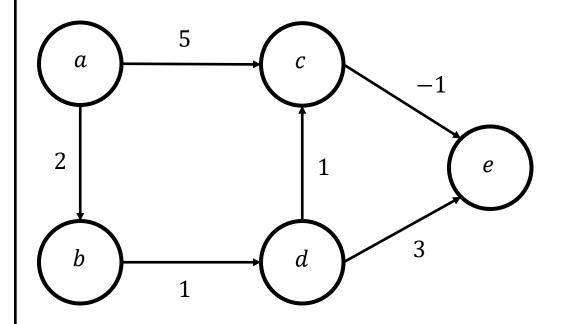


Loop through all 1-step nodes and see if you can reach other nodes in 1 step at lower cost

1 step 2 steps

Dynamic Programming: All Pairs Shortest Paths (2) Rensselaer

- A famous application of dynamic programming
 - Compute shortest paths from a node to all other nodes in a graph
 - -E.g., all shortest paths from a to other nodes

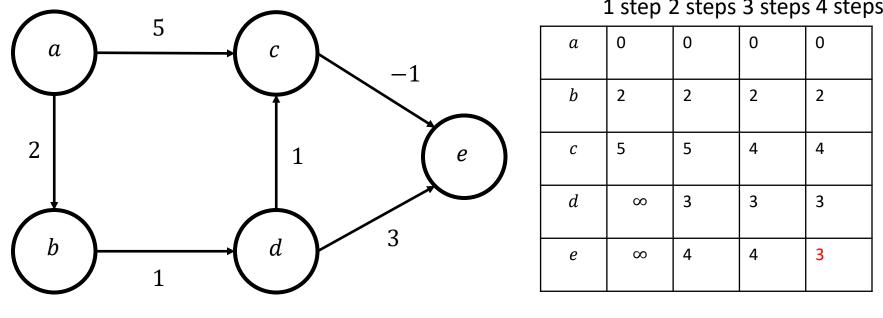


1 step 2 steps 3 steps

а	0	0	0
b	2	2	2
С	5	5	4
d	8	3	3
е	8	4	4

Dynamic Programming: All Pairs Shortest Paths (2) Rensselaer

- A famous application of dynamic programming
 - Compute shortest paths from a node to all other nodes in a graph
 - -E.g., all shortest paths from a to other nodes



Cost to *e* through *c* is updated to 3

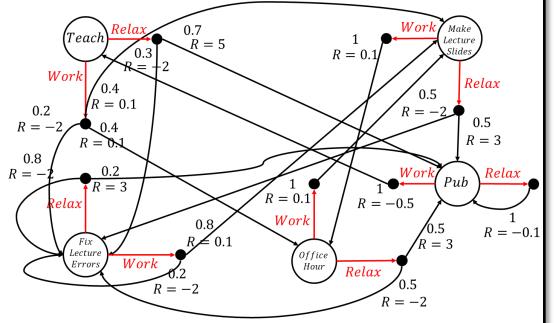
1 step 2 steps 3 steps 4 steps

Dynamic Programming: All Pairs Shortest Paths (1) Rensselaer

- Repeat until no more improvements can be made
 - For each node n, go through all edges (n, n')
 - If cost(a, n') > cost(a, n) + cost(n, n')
 - Set cost(a, n') = cost(a, n) + cost(n, n')
- What is the worst-case complexity of the algorithm?
 - Complexity is $O(n^3)$, where n is the number of nodes
 - Each loop requires $O(n^2)$ operations
 - For each node, go through all other nodes and see if a shorter path exists
 - A total of *n* loops
 - Longest path to any node is n steps
- Turns out the same algorithm can be applied to MDPs
 - Find the optimal policy from any node

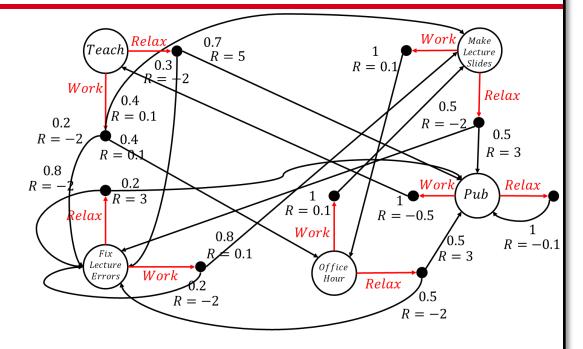
Workday Example

- Suppose T = 2
- What is $v_*^{T-1}(Pub)$? $q_{\pi_*}^{T-1}(Pub, Work) = -0.5$ $q_{\pi_*}^{T-1}(Pub, Relax) = -0.1$
 - *Relax* is better
- What is $v_*^{T-1}(OH)$? $q_{\pi_*}^{T-1}(OH, Relax) = 0.5$
- What is $v_*^{T-1}(FLE)$? $q_{\pi_*}^{T-1}(FLE, Work) = -0.32$
- Similarly, $q_{\pi_*}^{T-1}(MLS, Relax) = 0.5$
- Similarly, $q_{\pi_*}^{T-1}(Teach, Relax) = 2.9$



Workday Example

- Suppose $\gamma = 0.9$
- What is $v_*^0(Pub)$? $q_{\pi_*}^0(Pub, Work) =$ $-0.5 + 0.9 * v_{\pi_*}^1(Teach)$ = 2.11 $q_{\pi_*}^0(Pub, Relax) =$ $-0.1 + 0.9 * v_{\pi_*}^1(Pub)$ = -0.19



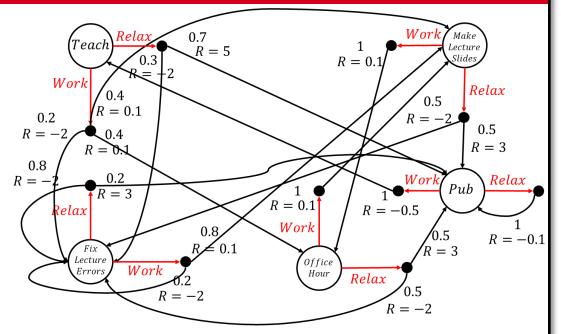
• What is $v_*^0(FLE)$?	
	Teach
$q_{\pi_*}^0(FLE, Work) = (0.2 * -2 + 0.8 * 0.1) + 0.2 * 0.9 * v_{\pi_*}^1(FLE) + 0.8 * 0.9 * v_{\pi_*}^1(MLS) =$	ОН
	MLS
= -0.0176	FLE
$q_{\pi_*}^0(FLE, Relax) = -1 - 0.9 * 0.276 = -1.25$	Pub

	 i	1
Teach	2.9	<
ОН	0.5	Value
MLS	0.5	e table
FLE	-0.32	le
Pub	-0.1	24

t = 0 t = 1

Workday Example

- Suppose $\gamma = 0.9$
- The other action values computed similarly



Teach		2.9	_
ОН		0.5	Value table
MLS		0.5	tab
FLE	-0.0176	-0.32	e
Pub	2.11	-0.1	2

- Iterate backwards, starting from last decision step T-1
- First, compute $q_{\pi_*}^{T-1}(s, a)$ for each state/action pair

-i.e., compute the one-step expected reward

-Then set
$$v_{\pi_*}^{T-1}(s) = \max_a q_{\pi_*}^{T-1}(s, a)$$

- For t < T 1, use Bellman equation to compute $q_{\pi_*}^t(s, a)$ $q_{\pi_*}^t(s, a) = \mathbb{E}_{\pi_*} [R_{t+1} + \gamma v_{\pi_*}^{t+1}(S_{t+1}) | S_t = s, A_t = a]$ -Then set $v_{\pi_*}^t(s) = \max_a q_{\pi_*}^t(s, a)$
- What is the complexity of dynamic programming? $O(TS^2A)$

- where S is the number of states, A is the number of actions

- for each state, loop through all actions and all other states

Dynamic Programming Assumptions

- So far dynamic programming only works for the case of
 - Finite horizon
 - Finite-state space
 - Finite-action space
- Finite-state and –action spaces hard to relax (for now)
- But we can modify algorithm for infinite horizon
- Policy iteration!

- Suppose we have a current policy π , potentially not optimal
 - Suppose we know $v_{\pi}(s)$, $q_{\pi}(s, a)$, $\forall s, a$
 - How can we improve the policy for a given s?
 - Pick an action that has a higher q value
- We know $v_{\pi}(s) = q_{\pi}(s, \pi(s))$

- What if there existed an action a' s.t. $q_{\pi}(s, a') \ge q_{\pi}(s, \pi(s))$

- Turns out the policy that selects a' is better
- Policy Improvement Theorem:
 - A policy π' is as good as, or better than, another policy π if for all $s \in S$

$$q_{\pi}(s,\pi'(s)) \ge v_{\pi}(s)$$

• First recall that for a specific action *a*, the *q* value is:

$$q_{\pi}(s, a) = R_{e}(s, a) + \gamma \sum_{s'} P(s, a, s')v(s')$$
$$= R_{e}(s, a) + \gamma \boldsymbol{p}(s, a)^{T}v(\boldsymbol{s})$$
$$\cdot \text{ where } \boldsymbol{p}(s, a)^{T} = [P(s, a, s_{1}), \dots, P(s, a, s_{N})]$$

- Wlog, suppose π' is different from π only at s_1 , i.e., $q_{\pi}(s_1, \pi'(s_1)) \ge v_{\pi}(s_1)$
- Using the Bellman equation: $q_{\pi}(s_1, \pi'(s_1)) = R_e(s_1, \pi'(s_1)) + \gamma p(s_1, \pi'(s_1))^T v_{\pi}(s)$ $v_{\pi}(s_1) = q_{\pi}(s_1, \pi(s_1)) = R_e(s_1, \pi(s_1)) + \gamma p(s_1, \pi(s_1))^T v_{\pi}(s)$
- Then

 $R_e(s_1, \pi'(s_1)) + \gamma \mathbf{p}(s_1, \pi'(s_1))^T v_{\pi}(\mathbf{s}) \ge R_e(s_1, \pi(s_1)) + \gamma \mathbf{p}(s_1, \pi(s_1))^T v_{\pi}(\mathbf{s})$

• We now construct matrix-form Bellman equations for π and π'

• For π

$$v_{\pi}(\boldsymbol{s}) = \begin{bmatrix} q_{\pi}(s_1, \pi(s_1)) \\ \dots \\ q_{\pi}(s_N, \pi(s_N)) \end{bmatrix}$$
$$= \begin{bmatrix} R_e(s_1, \pi(s_1)) + \gamma \boldsymbol{p}(s_1, \pi(s_1))^T v_{\pi}(\boldsymbol{s}) \\ \dots \\ R_e(s_N, \pi(s_N)) + \gamma \boldsymbol{p}(s_N, \pi(s_N))^T v_{\pi}(\boldsymbol{s}) \end{bmatrix}$$

 $= R_{\pi}(\boldsymbol{s}) + \gamma \boldsymbol{P}_{\pi} \boldsymbol{v}_{\pi}(\boldsymbol{s})$

Rensselaer

• We now construct matrix-form Bellman equations for π and π'

• For π'

$$v_{\pi'}(\mathbf{s}) = \begin{bmatrix} q_{\pi'}(s_1, \pi'(s_1)) \\ q_{\pi'}(s_2, \pi(s_2)) \\ \dots \\ q_{\pi'}(s_N, \pi(s_N)) \end{bmatrix}$$

=
$$\begin{bmatrix} R_e(s_1, \pi'(s_1)) + \gamma \mathbf{p}(s_1, \pi'(s_1))^T v_{\pi'}(\mathbf{s}) \\ R_e(s_2, \pi(s_2)) + \gamma \mathbf{p}(s_2, \pi(s_2))^T v_{\pi'}(\mathbf{s}) \\ \dots \\ R_e(s_N, \pi(s_N)) + \gamma \mathbf{p}(s_N, \pi(s_N))^T v_{\pi'}(\mathbf{s}) \end{bmatrix}$$

 $= R_{\pi\prime}(\boldsymbol{s}) + \gamma \boldsymbol{P}_{\pi\prime} \boldsymbol{v}_{\pi\prime}(\boldsymbol{s})$

– Note that P_{π} and $P_{\pi'}$ only differ in their first row

Rensselaer

- Wlog, suppose π' is different from π only at s_1 , i.e., $q_{\pi}(s_1, \pi'(s_1)) \ge v_{\pi}(s_1)$
- Using the Bellman equation:

$$q_{\pi}(s_{1},\pi'(s_{1})) = R_{e}(s_{1},\pi'(s_{1})) + \gamma \boldsymbol{p}(s_{1},\pi'(s_{1}))^{T} v_{\pi}(\boldsymbol{s})$$
$$v_{\pi}(s_{1}) = q_{\pi}(s_{1},\pi(s_{1})) = R_{e}(s_{1},\pi(s_{1})) + \gamma \boldsymbol{p}(s_{1},\pi(s_{1}))^{T} v_{\pi}(\boldsymbol{s})$$

Then

 $R_e(s_1, \pi'(s_1)) + \gamma \mathbf{p}(s_1, \pi'(s_1))^T v_{\pi}(\mathbf{s}) \ge R_e(s_1, \pi(s_1)) + \gamma \mathbf{p}(s_1, \pi(s_1))^T v_{\pi}(\mathbf{s})$

• Stack remaining values for π in a vector as follows:

 $\begin{bmatrix} R_{e}(s_{1},\pi'(s_{1})) + \gamma \boldsymbol{p}(s_{1},\pi'(s_{1}))^{T} v_{\pi}(\boldsymbol{s}) \\ R_{e}(s_{2},\pi(s_{2})) + \gamma \boldsymbol{p}(s_{2},\pi(s_{2}))^{T} v_{\pi}(\boldsymbol{s}) \\ \dots \\ R_{e}(s_{N},\pi(s_{N})) + \gamma \boldsymbol{p}(s_{N},\pi(s_{N}))^{T} v_{\pi}(\boldsymbol{s}) \end{bmatrix} \geq \begin{bmatrix} R_{e}(s_{1},\pi(s_{1})) + \gamma \boldsymbol{p}(s_{1},\pi(s_{1}))^{T} v_{\pi}(\boldsymbol{s}) \\ R_{e}(s_{2},\pi(s_{2})) + \gamma \boldsymbol{p}(s_{2},\pi(s_{2}))^{T} v_{\pi}(\boldsymbol{s}) \\ \dots \\ R_{e}(s_{N},\pi(s_{N})) + \gamma \boldsymbol{p}(s_{N},\pi(s_{N}))^{T} v_{\pi}(\boldsymbol{s}) \end{bmatrix}$

-where the inequality is interpreted element-wise

• Stack remaining values for π in a vector as follows:

 $\begin{bmatrix} R_{e}(s_{1},\pi'(s_{1})) + \gamma \boldsymbol{p}(s_{1},\pi'(s_{1}))^{T} \boldsymbol{v}_{\pi}(\boldsymbol{s}) \\ R_{e}(s_{2},\pi(s_{2})) + \gamma \boldsymbol{p}(s_{2},\pi(s_{2}))^{T} \boldsymbol{v}_{\pi}(\boldsymbol{s}) \\ \dots \\ R_{e}(s_{N},\pi(s_{N})) + \gamma \boldsymbol{p}(s_{N},\pi(s_{N}))^{T} \boldsymbol{v}_{\pi}(\boldsymbol{s}) \end{bmatrix} \geq \begin{bmatrix} R_{e}(s_{1},\pi(s_{1})) + \gamma \boldsymbol{p}(s_{1},\pi(s_{1}))^{T} \boldsymbol{v}_{\pi}(\boldsymbol{s}) \\ R_{e}(s_{2},\pi(s_{2})) + \gamma \boldsymbol{p}(s_{2},\pi(s_{2}))^{T} \boldsymbol{v}_{\pi}(\boldsymbol{s}) \\ \dots \\ R_{e}(s_{N},\pi(s_{N})) + \gamma \boldsymbol{p}(s_{N},\pi(s_{N}))^{T} \boldsymbol{v}_{\pi}(\boldsymbol{s}) \end{bmatrix}$

• In matrix form:

$$R_{\pi'}(s) + \gamma P_{\pi'} v_{\pi}(s) \ge R_{\pi}(s) + \gamma P_{\pi} v_{\pi}(s)$$

$$R_{\pi'}(s) + \gamma P_{\pi'} v_{\pi}(s) \ge v_{\pi}(s)$$

$$R_{\pi'}(s) \ge v_{\pi}(s) - \gamma P_{\pi'} v_{\pi}(s)$$

$$R_{\pi'}(s) \ge (I - \gamma P_{\pi'}) v_{\pi}(s)$$

- Pre-multiply both sides by $(I \gamma P_{\pi'})^{-1}$
 - Inequalities don't switch sides (don't have time to prove)

$$(\boldsymbol{I} - \gamma \boldsymbol{P}_{\pi'})^{-1} R_{\pi'}(\boldsymbol{s}) \ge v_{\pi}(\boldsymbol{s}) v_{\pi'}(\boldsymbol{s}) \ge v_{\pi}(\boldsymbol{s})$$

34

Deterministic Policies: Greedy Policy Improvement

- Suppose we are given a deterministic policy π
- We can greedily improve π for each state $\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$ $= \arg \max_{a} \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_{t} = s, A_{t} = a]$
- By the policy improvement theorem, π' is better than or equal to π
- If $\pi' = \pi$, then $\pi' = \pi^*$: $v_{\pi'}(S_t) = \max_a \left[\mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi'}(S_{t+1}) | S_t = s, A_t = a] \right]$

- Bellman optimality equation!

- The greedy policy improvement approach suggests an algorithm for finding the optimal policy through iterating
 - Start from a policy, compute its value function, improve greedily for one state, repeat...

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

– Terminate when you find optimal policy

- Guaranteed to terminate because there are finitely many policies in a finite-state MDP
- Policy iteration is trickier in the finite-horizon case
 - Need to evaluate the policy at each time t
 - Just use dynamic programming in the finite-horizon case

Policy Iteration, Workday Example

- What are the optimal actions in the long run?
 - $\pi_*(Teach) = Relax$
 - $\pi_*(OH) = Relax$
 - $\pi_*(MLS) = Relax$
 - $\pi_*(FLE) = Work$
 - $\pi_*(Pub) = Work$
- Corresponding values are $v_*(s) = [9.18 \ 6.31 \ 6.31 \ 5.15 \ 7.76]$

Policy Iteration Summary

- Start with a random policy π
- Repeat until you find the optimal policy:
 - Loop through all states
 - For each state s, loop through all actions
 - If you find an action a for which $q_{\pi}(s, a) > v_{\pi}(s)$
 - Modify π such that $\pi(s) = a$
 - Recalculate values $v_{\pi'}$ for modified policy π'
 - Go back to main loop
 - If you did not change the policy at all, terminate
 - You found the optimal!

🕲 Rensselaer

- Policy iteration requires evaluating each new policy
 - i.e., need to compute $v_{\pi}(s)$ for all states
 - May take significant time
- Another approach is to use the Bellman optimality equation $v_{\pi_*}(s) = \max_a q_{\pi_*}(s, a)$ $= \max_a \left[\mathbb{E}_{\pi_*} [R_{t+1} + \gamma v_{\pi_*}(S_{t+1}) | S_t = s, A_t = a] \right]$
- The Bellman optimality equation suggests the recursion $v_{k+1}(s) = \max_{a} \left[\mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a] \right]$ - Starting from any v_0

- The Bellman optimality equation suggests the recursion $v_{k+1}(s) = \max_{a} \left[\mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a] \right]$
- The sequence is guaranteed to converge
 - Consider the mapping

$$Lv = \max_{a} \left[\mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s, A_t = a] \right]$$

- Map L can be shown to be contractive
 - i.e., any 2 sequences get closer to each other after each iteration
- The sequence v_k converges to a unique v^* for all v_0
- The unique v^* satisfies the Bellman optimality equation $v^*(s) = \max_{a} \left[\mathbb{E}[R_{t+1} + \gamma v^*(S_{t+1}) | S_t = s, A_t = a] \right]$
 - So it is the value function corresponding to the optimal policy

Value Iteration Considerations

- Given a value function, the corresponding policy is $\pi(s) = \operatorname{argmax}_{a} q_{\pi}(s, a)$ $= \operatorname{argmax}_{a} \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_{t} = s, A_{t} = a]$ $= \operatorname{argmax}_{a} \left[R_{e}(s, a) + \sum_{s'} \gamma v_{\pi}(s')P(s, a, s') \right]$
- Note that a v_k may not have the actual state values of the policy it represents
 - There are finitely many policies but infinitely many v_k
 - Ultimately, we don't care what the state values are as long as the policy is optimal
 - Of course, when the v_k converge, the values will converge to the values of the optimal policy

- Start from an arbitrary v_0
- For each state *s*, update v_{k+1} as follows: $v_{k+1}(s) = \max_{a} \left[\mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a] \right]$
- Iterate until $|v_{k+1} v_k| < \epsilon$
 - Where ϵ is a hyperparameter
 - Can use your favorite norm above, e.g., L_{∞}
- Unlike policy iteration, no need to invert large matrices
 - Though may require many more iterations
 - For large-state-space MDPs, value iteration likely to scale better

- The workday example has 5 states and 2 actions
 - How many policies are there in total?

$$2^5 = 32$$

– Policy iteration likely to converge in several iterations

- Value iteration takes several dozen iterations to converge to true values
 - From an initial state of all 0's
 - Though you don't need to converge fully until you uncover the optimal policy
- Grid world has a bigger policy space Δ^{25}

- Optimal policy is very simple, so policy iteration still fast

Summary

- Dynamic programming is a powerful iterative algorithm
- Very popular in some fields of computer science and engineering
 - Widely used in control, in a similar way to RL
- Vanilla algorithm only works for finite-space MDPs
 Overall iteration idea is still mainstream RL, however
- All algorithms discussed so far also need the user to know the MDP structure
 - Not realistic in many cases