
Dynamic Programming

1

Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 4

• Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

– Chapter 4

• David Silver lecture on Dynamic Programming

– https://www.youtube.com/watch?v=Nd1-UUMVfz4

2

http://www.incompleteideas.net/book/the-book-2nd.html

Overview of Dynamical Programming

• A classical algorithm for computing solutions to problems that
can be separated into subproblems with known solutions

– E.g., all shortest paths

– Essentially, store all subproblem solutions in a table and
reuse them when necessary

• If we have a finite (state and action) MDP, we can find the
optimal policy by incremental search

– Find the optimal policy for 1 step, then 2 steps, etc.

–Actually done backwards in time

• Polynomial complexity in the number of states

–Number of states can be large

3

Policy Evaluation

• In order to find the best policy, we first need a way to evaluate
policies

– i.e., compute the state-value function 𝑣𝜋(𝑠) for each state 𝑠

–Also compute the action-value function 𝑞𝜋(𝑠, 𝑎)

• Every time we change the policy, we need to evaluate it (in
order to check if we improved it)

• So far, we’ve seen one way to compute state values

–How?

– For a given policy 𝜋, compute the matrix form of the value
function vector

4

Policy Evaluation: the infinite-horizon case

• In the infinite-horizon case, we can use the Bellman equation:

𝑣𝜋(𝑠) = 𝑅𝜋 𝑠 + 𝛾 ෍

𝑎,𝑠′

𝑃 𝑠, 𝑎, 𝑠′ 𝜋 𝑎 𝑠 𝑣𝜋 𝑠′

–which can be rewritten in matrix form:
𝑣𝜋 𝒔 = 𝑅𝜋 𝒔 + 𝛾𝑷𝜋𝑣𝜋(𝒔)

• Thus, the state value vector is:
𝑣𝜋 𝒔 = 𝑰 − 𝛾𝑷𝜋

−1𝑅𝜋(𝒔)

5

Workday example, MDP -> MRP

6

Policy

MDP

MRP

Gridworld example, MDP -> MRP

7

Policy

MDP

MRP

0

1

5
𝑅𝑖𝑔ℎ𝑡

𝐷𝑜𝑤𝑛

1

1

𝑅 = 0

𝑅 = 0

…

0

1

5
1

𝑅 = 0

…

9

6

1

1

𝑅 = 0 𝑅 = 0
𝑅 = 10

𝑅 = 0

0.5

0.5

Iterative Policy Evaluation

• Inverting 𝑰 − 𝛾𝑷 may be expensive if number of states is large

• Another approach is to use linear systems theory!

• Start from a random initialization for 𝑣 𝒔 = 𝑣0(𝒔)

• Look at linear system
𝑣𝑘 𝒔 = 𝑅 𝒔 + 𝛾𝑷𝑣𝑘−1 𝒔

• System is stable. Why?

–All entries (and eigenvalues) of 𝛾𝑷 are < 1 (for 𝛾 < 1)

• System converges to unique solution 𝑰 − 𝛾𝑷 −1𝑅(𝒔)

–Why?

– If 𝑣𝑘+1(𝒔) = 𝑣𝑘(𝒔) = 𝒗, then 𝒗 = 𝑅 𝒔 + 𝛾𝑷𝒗, i.e.,
𝒗 = 𝑰 − 𝛾𝑷 −1𝑅(𝒔)

• Keep in mind 𝑰 − 𝛾𝑷 is not invertible when 𝛾 = 1 8

Workday example, Iterative Value evolution

• Recall state values are (for 𝛾 = 0.9)
𝑰 − 𝛾𝑷 −1𝑅 𝒔 = 5.54 1 1 −0.69 4.49 𝑇

• Using iterative evaluation

– Starting with 𝒗0 = 0 0 0 0 0 𝑇

𝒗10 = 4.59 0.65 0.65 −1.58 3.64 𝑇

𝒗30 = 5.43 0.96 0.96 0 − 0.80 4.38 𝑇

𝒗50 = 5.53 0.99 0.99 0 − 0.70 4.47 𝑇

• After 50 iterations, converged within 0.01 if the true values

9

• Recall state values are

• Using iterative evaluation

– Starting from 𝒗0 = 𝟎 ∈ ℝ25

• 𝑣10 is

• 𝑣50 is

• After 50 iterations, converge within 0.15 of true values

• In general, can stop iterating when 𝑣𝑘+1 − 𝑣𝑘 ≤ 𝜖

–Where 𝜖 is a hyperparameter

Gridworld Example, iterative value evolution

10

21.86 24.29 21.86 19.29 17.36

19.68 21.86 19.68 17.71 15.94

17.71 19.68 17.71 15.94 14.29

15.94 17.71 15.94 14.29 12.86

14.29 15.94 14.29 12.86 11.58

14.31 15.90 14.31 10.90 9.81

12.88 14.31 12.88 11.59 10.44

11.59 12.88 11.59 10.44 5.90

10.44 11.59 10.44 5.90 5.31

5.90 10.44 5.90 5.31 4.78

What about the finite-horizon case?

• Evaluate a policy recursively, starting from the last step 𝑇

–Use the Bellman equation

𝑣𝜋
𝑡 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠

• Remember, the policy and the value function may be time-
dependent in the finite-horizon case!

11

Bellman Optimality Equation

• A policy 𝜋 is better than another policy 𝜋′ if
𝑣𝜋 𝑠 ≥ 𝑣𝜋′ 𝑠 , ∀𝑠 ∈ 𝑆

• A policy 𝜋∗ is optimal if there exists no better policy than 𝜋∗

• Turns out the optimal policy also has a nice recursive property
𝜋∗ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋∗(𝑠, 𝑎)

–Another version of the Bellman equation

– Pick the action with the highest value

–Obvious in a sense
• But any policy that satisfies the Bellman optimality equation is

optimal

12

Bellman Optimality Equation, proof

• Bellman optimality equation:
𝜋∗ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋∗

(𝑠, 𝑎)

 = 𝑎𝑟𝑔 max
𝑎

𝔼∗[𝑅𝑡+1 + 𝛾𝑣𝜋∗
(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• Proof by induction backward in time (for finite horizon 𝑇):

– Base case (𝑡 = 𝑇 − 1):
• Only one step to make

• For any state 𝑠, the optimal action is
𝑎𝑟𝑔 max

𝑎
𝔼∗[𝑅𝑇|𝑆𝑇−1 = 𝑠, 𝐴𝑇−1 = 𝑎] =

 = 𝑎𝑟𝑔 max
𝑎

𝑞𝜋∗
(𝑠, 𝑎)

• So 𝜋∗ is optimal by construction

13

Bellman Optimality Equation, proof

• Proof by induction backward in time (for finite horizon 𝑇):

– Inductive case:

–Assume 𝜋∗ is optimal at time 𝑡 + 1

• i.e., 𝑣𝜋∗
𝑡+1 𝑠 ≥ 𝑣𝜋′

𝑡+1 𝑠 , ∀𝑠, 𝜋′

–What do we need to show?

𝑣𝜋∗
𝑡 𝑠 ≥ 𝑣𝜋′

𝑡 𝑠 , ∀𝑠, 𝜋′

–Using the Bellman equation for 𝜋∗:
𝑣𝜋∗

𝑡 𝑠 = 𝑞𝜋∗
𝑡 𝑠, 𝜋∗ 𝑠

= max
𝑎

𝑞𝜋∗
𝑡 𝑠, 𝑎

 = max
𝑎

𝔼𝜋∗
𝑅𝑡+1 + 𝛾𝑣𝜋∗

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

14

Bellman Optimality Equation, proof

• Proof by induction backward in time (for finite horizon 𝑇):

–Assume 𝜋∗ is optimal at time 𝑡 + 1

• i.e., 𝑣𝜋∗
𝑡+1 𝑠 ≥ 𝑣𝜋′

𝑡+1 𝑠 , ∀𝑠, 𝜋′

– Consider any other policy 𝜋′

𝑣𝜋∗
𝑡 𝑠 = max

𝑎
𝔼𝜋∗

𝑅𝑡+1 + 𝛾𝑣𝜋∗
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = max
𝑎

𝑅𝑒 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋∗
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ max
𝑎

𝑅𝑒 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

– Inequality true for any 𝑎, so true for max also

15

Bellman Optimality Equations, proof

• Proof by induction backward in time(for finite horizon 𝑇):

 𝑣𝜋∗
𝑡 𝑠 = max

𝑎
𝔼𝜋∗

𝑅𝑡+1 + 𝛾𝑣𝜋∗
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋∗
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ 𝑅 𝑠, 𝜋′ 𝑠 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝜋′ 𝑠 , 𝑠′

 = 𝔼𝜋′ 𝑅𝑡+1 + 𝛾𝑣𝜋′
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝜋′ 𝑠

= 𝔼𝜋′ 𝑅𝑡+1 + 𝛾𝑣𝜋′
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠

= 𝑣𝜋′
𝑡 𝑠

16

Deterministic
policy version

Bellman Optimality Equations, proof

• Proof by induction backward in time(for finite horizon 𝑇):

 𝑣𝜋∗
𝑡 𝑠 = max

𝑎
𝔼𝜋∗

𝑅𝑡+1 + 𝛾𝑣𝜋∗
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋∗
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ ෍

𝑎′

𝜋′ 𝑎′ 𝑠 𝑅 𝑠, 𝑎′ + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎′, 𝑠′

= 𝑣𝜋′
𝑡 𝑠

17

Stochastic
policy
version

Marginalize
over all
actions

Dynamic Programming: All Pairs Shortest Paths

• A famous application of dynamic programming

– Compute shortest paths from a node to all other nodes in a
graph

– E.g., all shortest paths from 𝑎 to other nodes

18

2 1

−1

1

3

5

𝑒

𝑐

𝑏

𝑎

𝑑

𝑎 0

𝑏 2

𝑐 5

𝑑 ∞

𝑒 ∞

1 step

Dynamic Programming: All Pairs Shortest Paths

• A famous application of dynamic programming

– Compute shortest paths from a node to all other nodes in a
graph

– E.g., all shortest paths from 𝑎 to other nodes

19

2 1

−1

1

3

5

𝑒

𝑐

𝑏

𝑎

𝑑

𝑎 0 0

𝑏 2 2

𝑐 5 5

𝑑 ∞ 3

𝑒 ∞ 4

1 step 2 steps

Loop through all 1-step nodes and see if you can reach other nodes in 1 step at lower cost

Dynamic Programming: All Pairs Shortest Paths

• A famous application of dynamic programming

– Compute shortest paths from a node to all other nodes in a
graph

– E.g., all shortest paths from 𝑎 to other nodes

20

2 1

−1

1

3

5

𝑒

𝑐

𝑏

𝑎

𝑑

𝑎 0 0 0

𝑏 2 2 2

𝑐 5 5 4

𝑑 ∞ 3 3

𝑒 ∞ 4 4

1 step 3 steps2 steps

Dynamic Programming: All Pairs Shortest Paths

• A famous application of dynamic programming

– Compute shortest paths from a node to all other nodes in a
graph

– E.g., all shortest paths from 𝑎 to other nodes

21

2 1

−1

1

3

5

𝑒

𝑐

𝑏

𝑎

𝑑

𝑎 0 0 0 0

𝑏 2 2 2 2

𝑐 5 5 4 4

𝑑 ∞ 3 3 3

𝑒 ∞ 4 4 3

1 step 3 steps2 steps 4 steps

Cost to 𝑒 through 𝑐 is updated to 3

Dynamic Programming: All Pairs Shortest Paths

• Repeat until no more improvements can be made

– For each node 𝑛, go through all edges 𝑛, 𝑛′

• If 𝑐𝑜𝑠𝑡 𝑎, 𝑛′ > 𝑐𝑜𝑠𝑡 𝑎, 𝑛 + 𝑐𝑜𝑠𝑡 𝑛, 𝑛′

• Set 𝑐𝑜𝑠𝑡 𝑎, 𝑛′ = 𝑐𝑜𝑠𝑡 𝑎, 𝑛 + 𝑐𝑜𝑠𝑡 𝑛, 𝑛′

• What is the worst-case complexity of the algorithm?

– Complexity is 𝑂(𝑛3), where 𝑛 is the number of nodes

• Each loop requires O 𝑛2 operations

– For each node, go through all other nodes and see if a shorter path
exists

• A total of 𝑛 loops

– Longest path to any node is 𝑛 steps

• Turns out the same algorithm can be applied to MDPs

– Find the optimal policy from any node
22

Workday Example

• Suppose 𝑇 = 2

• What is 𝑣∗
𝑇−1 𝑃𝑢𝑏 ?

 𝑞𝜋∗
𝑇−1 𝑃𝑢𝑏, 𝑊𝑜𝑟𝑘 = −0.5

 𝑞𝜋∗
𝑇−1 𝑃𝑢𝑏, 𝑅𝑒𝑙𝑎𝑥 = −0.1

• 𝑅𝑒𝑙𝑎𝑥 is better

• What is 𝑣∗
𝑇−1(𝑂𝐻)?

𝑞𝜋∗
𝑇−1 𝑂𝐻, 𝑅𝑒𝑙𝑎𝑥 = 0.5

• What is 𝑣∗
𝑇−1(𝐹𝐿𝐸)?

𝑞𝜋∗
𝑇−1 𝐹𝐿𝐸, 𝑊𝑜𝑟𝑘 = −0.32

• Similarly, 𝑞𝜋∗
𝑇−1 𝑀𝐿𝑆, 𝑅𝑒𝑙𝑎𝑥 = 0.5

• Similarly, 𝑞𝜋∗
𝑇−1 𝑇𝑒𝑎𝑐ℎ, 𝑅𝑒𝑙𝑎𝑥 = 2.9

23

Workday Example

• Suppose 𝛾 = 0.9

• What is 𝑣∗
0 𝑃𝑢𝑏 ?

 𝑞𝜋∗
0 𝑃𝑢𝑏, 𝑊𝑜𝑟𝑘 =

 −0.5 + 0.9 ∗ 𝑣𝜋∗
1 𝑇𝑒𝑎𝑐ℎ

 = 2.11

 𝑞𝜋∗
0 𝑃𝑢𝑏, 𝑅𝑒𝑙𝑎𝑥 =

 −0.1 + 0.9 ∗ 𝑣𝜋∗
1 𝑃𝑢𝑏

 = −0.19

• What is 𝑣∗
0 𝐹𝐿𝐸 ?

 𝑞𝜋∗
0 𝐹𝐿𝐸, 𝑊𝑜𝑟𝑘 = 0.2 ∗ −2 + 0.8 ∗ 0.1 +

 0.2 ∗ 0.9 ∗ 𝑣𝜋∗
1 𝐹𝐿𝐸 + 0.8 ∗ 0.9 ∗ 𝑣𝜋∗

1 𝑀𝐿𝑆 =

 = −0.0176

 𝑞𝜋∗
0 𝐹𝐿𝐸, 𝑅𝑒𝑙𝑎𝑥 = −1 − 0.9 ∗ 0.276 = −1.25

24

𝑇𝑒𝑎𝑐ℎ 2.9

𝑂𝐻 0.5

𝑀𝐿𝑆 0.5

𝐹𝐿𝐸 −0.32

𝑃𝑢𝑏 −0.1

𝑡 = 1𝑡 = 0

V
alu

e tab
le

Workday Example

• Suppose 𝛾 = 0.9

• The other action values
computed similarly

25

𝑡 = 1𝑡 = 0

V
alu

e tab
le

𝑇𝑒𝑎𝑐ℎ 2.9

𝑂𝐻 0.5

𝑀𝐿𝑆 0.5

𝐹𝐿𝐸 −0.0176 −0.32

𝑃𝑢𝑏 2.11 −0.1

Dynamic Programming Summary

• Iterate backwards, starting from last decision step 𝑇 − 1

• First, compute 𝑞𝜋∗
𝑇−1(𝑠, 𝑎) for each state/action pair

– i.e., compute the one-step expected reward

– Then set 𝑣𝜋∗
𝑇−1 𝑠 = max

𝑎
𝑞𝜋∗

𝑇−1(𝑠, 𝑎)

• For 𝑡 < 𝑇 − 1, use Bellman equation to compute 𝑞𝜋∗
𝑡 (𝑠, 𝑎)

𝑞𝜋∗
𝑡 𝑠, 𝑎 = 𝔼𝜋∗

𝑅𝑡+1 + 𝛾𝑣𝜋∗
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

– Then set 𝑣𝜋∗
𝑡 𝑠 = max

𝑎
𝑞𝜋∗

𝑡 (𝑠, 𝑎)

• What is the complexity of dynamic programming?

𝑂 𝑇𝑆2𝐴

–where 𝑆 is the number of states, 𝐴 is the number of actions

– for each state, loop through all actions and all other states
26

Dynamic Programming Assumptions

• So far dynamic programming only works for the case of

– Finite horizon

– Finite-state space

– Finite-action space

• Finite-state and –action spaces hard to relax (for now)

• But we can modify algorithm for infinite horizon

• Policy iteration!

27

Policy Improvement Theorem

• Suppose we have a current policy 𝜋, potentially not optimal

– Suppose we know 𝑣𝜋 𝑠 , 𝑞𝜋 𝑠, 𝑎 , ∀𝑠, 𝑎

–How can we improve the policy for a given 𝑠?

– Pick an action that has a higher 𝑞 value

• We know 𝑣𝜋 𝑠 = 𝑞𝜋(𝑠, 𝜋(𝑠))

–What if there existed an action 𝑎′ s.t.
𝑞𝜋 𝑠, 𝑎′ ≥ 𝑞𝜋(𝑠, 𝜋(𝑠))

– Turns out the policy that selects 𝑎′ is better

• Policy Improvement Theorem:

–A policy 𝜋′ is as good as, or better than, another policy 𝜋 if
for all 𝑠 ∈ 𝑆

𝑞𝜋 𝑠, 𝜋′ 𝑠 ≥ 𝑣𝜋(𝑠)
28

Policy Improvement Theorem Proof

• First recall that for a specific action 𝑎, the 𝑞 value is:

𝑞𝜋 𝑠, 𝑎 = 𝑅𝑒 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠, 𝑎, 𝑠′ 𝑣 𝑠′

 = 𝑅𝑒 𝑠, 𝑎 + 𝛾𝒑 𝑠, 𝑎 𝑇𝑣 𝒔

–where 𝒑 𝑠, 𝑎 𝑇 = 𝑃 𝑠, 𝑎, 𝑠1 , … , 𝑃 𝑠, 𝑎, 𝑠𝑁

• Wlog, suppose 𝜋′ is different from 𝜋 only at 𝑠1, i.e.,
𝑞𝜋 𝑠1, 𝜋′ 𝑠1 ≥ 𝑣𝜋(𝑠1)

• Using the Bellman equation:

𝑞𝜋 𝑠1, 𝜋′ 𝑠1 = 𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1
𝑇

𝑣𝜋 𝒔

 𝑣𝜋 𝑠1 = 𝑞𝜋 𝑠1, 𝜋 𝑠1 = 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

• Then
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1 , 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔 ≥ 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1

𝑇
𝑣𝜋 𝒔

29

Policy Improvement Theorem Proof, cont’d

• We now construct matrix-form Bellman equations for 𝜋 and 𝜋′

• For 𝜋

𝑣𝜋 𝒔 =
𝑞𝜋 𝑠1, 𝜋 𝑠1

…
𝑞𝜋 𝑠𝑁, 𝜋 𝑠𝑁

 =
𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1

𝑇
𝑣𝜋 𝒔

…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

= 𝑅𝜋 𝒔 + 𝛾𝑷𝜋𝑣𝜋 𝒔

30

Policy Improvement Theorem Proof, cont’d

• We now construct matrix-form Bellman equations for 𝜋 and 𝜋′

• For 𝜋′

𝑣𝜋′ 𝒔 =

𝑞𝜋′ 𝑠1, 𝜋′ 𝑠1

𝑞𝜋′ 𝑠2, 𝜋 𝑠2

…
𝑞𝜋′ 𝑠𝑁, 𝜋 𝑠𝑁

 =

𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1
𝑇

𝑣𝜋′ 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋′ 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋′ 𝒔

= 𝑅𝜋′ 𝒔 + 𝛾𝑷𝜋′𝑣𝜋′ 𝒔

–Note that 𝑷𝜋 and 𝑷𝜋′ only differ in their first row

31

Policy Improvement Theorem Proof, cont’d

• Wlog, suppose 𝜋′ is different from 𝜋 only at 𝑠1, i.e.,
𝑞𝜋 𝑠1, 𝜋′ 𝑠1 ≥ 𝑣𝜋(𝑠1)

• Using the Bellman equation:

𝑞𝜋 𝑠1, 𝜋′ 𝑠1 = 𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1
𝑇

𝑣𝜋 𝒔

 𝑣𝜋 𝑠1 = 𝑞𝜋 𝑠1, 𝜋 𝑠1 = 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

• Then
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1 , 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔 ≥ 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1

𝑇
𝑣𝜋 𝒔

• Stack remaining values for 𝜋 in a vector as follows:
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

≥

𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

–where the inequality is interpreted element-wise

32

Policy Improvement Theorem Proof, cont’d

• Stack remaining values for 𝜋 in a vector as follows:
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

≥

𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

• In matrix form:
𝑅𝜋′ 𝒔 + 𝛾𝑷𝜋′𝑣𝜋 𝒔 ≥ 𝑅𝜋 𝒔 + 𝛾𝑷𝜋𝑣𝜋 𝒔
𝑅𝜋′ 𝒔 + 𝛾𝑷𝜋′𝑣𝜋 𝒔 ≥ 𝑣𝜋 𝒔

 𝑅𝜋′ 𝒔 ≥ 𝑣𝜋 𝒔 − 𝛾𝑷𝜋′𝑣𝜋 𝒔

 𝑅𝜋′ 𝒔 ≥ 𝑰 − 𝛾𝑷𝜋′ 𝑣𝜋 𝒔

• Pre-multiply both sides by 𝑰 − 𝛾𝑷𝜋′
−1

• Inequalities don’t switch sides (don’t have time to prove)

𝑰 − 𝛾𝑷𝜋′
−1

𝑅𝜋′ 𝒔 ≥ 𝑣𝜋(𝒔)

 𝑣𝜋′ 𝐬 ≥ 𝑣𝜋(𝒔)

33

Deterministic Policies: Greedy Policy

Improvement

• Suppose we are given a deterministic policy 𝜋

• We can greedily improve 𝜋 for each state
𝜋′ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋(𝑠, 𝑎)

 = 𝑎𝑟𝑔 max
𝑎

𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• By the policy improvement theorem, 𝜋′ is better than or equal
to 𝜋

• If 𝜋′ = 𝜋, then 𝜋′ = 𝜋∗:

𝑣𝜋′ 𝑆𝑡 = max
𝑎

𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋′ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

– Bellman optimality equation!

34

Policy Iteration

• The greedy policy improvement approach suggests an
algorithm for finding the optimal policy through iterating

– Start from a policy, compute its value function, improve
greedily for one state, repeat…

– Terminate when you find optimal policy

• Guaranteed to terminate because there are finitely many
policies in a finite-state MDP

• Policy iteration is trickier in the finite-horizon case

–Need to evaluate the policy at each time 𝑡

– Just use dynamic programming in the finite-horizon case
35

Policy Iteration, Workday Example

• What are the optimal actions in the long run?
• 𝜋∗ 𝑇𝑒𝑎𝑐ℎ = 𝑅𝑒𝑙𝑎𝑥

• 𝜋∗ 𝑂𝐻 = 𝑅𝑒𝑙𝑎𝑥

• 𝜋∗ 𝑀𝐿𝑆 = 𝑅𝑒𝑙𝑎𝑥

• 𝜋∗ 𝐹𝐿𝐸 = 𝑊𝑜𝑟𝑘

• 𝜋∗ 𝑃𝑢𝑏 = 𝑊𝑜𝑟𝑘

• Corresponding values are
𝑣∗ 𝑠 = [9.18 6.31 6.31 5.15 7.76]

36

Policy Iteration Summary

• Start with a random policy 𝜋

• Repeat until you find the optimal policy:

– Loop through all states

– For each state 𝑠, loop through all actions

– If you find an action 𝑎 for which 𝑞𝜋 𝑠, 𝑎 > 𝑣𝜋(𝑠)
• Modify 𝜋 such that 𝜋 𝑠 = 𝑎

• Recalculate values 𝑣𝜋′ for modified policy 𝜋′

• Go back to main loop

– If you did not change the policy at all, terminate
• You found the optimal!

37

Value Iteration

• Policy iteration requires evaluating each new policy

– i.e., need to compute 𝑣𝜋(𝑠) for all states

–May take significant time

• Another approach is to use the Bellman optimality equation
𝑣𝜋∗

𝑠 = max
𝑎

𝑞𝜋∗
(𝑠, 𝑎)

 = max
𝑎

𝔼𝜋∗
𝑅𝑡+1 + 𝛾𝑣𝜋∗

𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• The Bellman optimality equation suggests the recursion

𝑣𝑘+1 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

– Starting from any 𝑣0

38

Value Iteration, cont’d

• The Bellman optimality equation suggests the recursion

𝑣𝑘+1 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• The sequence is guaranteed to converge

– Consider the mapping

𝐿𝑣 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

–Map 𝐿 can be shown to be contractive
• i.e., any 2 sequences get closer to each other after each iteration

– The sequence 𝑣𝑘 converges to a unique 𝑣∗ for all 𝑣0

• The unique 𝑣∗ satisfies the Bellman optimality equation

𝑣∗ 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

– So it is the value function corresponding to the optimal
policy 39

Value Iteration Considerations

• Given a value function, the corresponding policy is
𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑞𝜋 𝑠, 𝑎

 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = 𝑎𝑟𝑔max
𝑎

𝑅𝑒 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

• Note that a 𝑣𝑘 may not have the actual state values of the
policy it represents

– There are finitely many policies but infinitely many 𝑣𝑘

–Ultimately, we don’t care what the state values are as long
as the policy is optimal

–Of course, when the 𝑣𝑘 converge, the values will converge
to the values of the optimal policy

40

Value Iteration Summary

• Start from an arbitrary 𝑣0

• For each state 𝑠, update 𝑣𝑘+1 as follows:

𝑣𝑘+1 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• Iterate until 𝑣𝑘+1 − 𝑣𝑘 < 𝜖

–Where 𝜖 is a hyperparameter

– Can use your favorite norm above, e.g., 𝐿∞

• Unlike policy iteration, no need to invert large matrices

– Though may require many more iterations

– For large-state-space MDPs, value iteration likely to scale
better

41

Workday Comparison

• The workday example has 5 states and 2 actions

–How many policies are there in total?
25 = 32

– Policy iteration likely to converge in several iterations

• Value iteration takes several dozen iterations to converge to
true values

– From an initial state of all 0’s

– Though you don’t need to converge fully until you uncover
the optimal policy

• Grid world has a bigger policy space
425

–Optimal policy is very simple, so policy iteration still fast
42

Summary

• Dynamic programming is a powerful iterative algorithm

• Very popular in some fields of computer science and
engineering

–Widely used in control, in a similar way to RL

• Vanilla algorithm only works for finite-space MDPs

–Overall iteration idea is still mainstream RL, however

• All algorithms discussed so far also need the user to know the
MDP structure

–Not realistic in many cases

43

	Slide 1: Dynamic Programming
	Slide 2: Reading
	Slide 3: Overview of Dynamical Programming
	Slide 4: Policy Evaluation
	Slide 5: Policy Evaluation: the infinite-horizon case
	Slide 6: Workday example, MDP -> MRP
	Slide 7: Gridworld example, MDP -> MRP
	Slide 8: Iterative Policy Evaluation
	Slide 9: Workday example, Iterative Value evolution
	Slide 10: Gridworld Example, iterative value evolution
	Slide 11: What about the finite-horizon case?
	Slide 12: Bellman Optimality Equation
	Slide 13: Bellman Optimality Equation, proof
	Slide 14: Bellman Optimality Equation, proof
	Slide 15: Bellman Optimality Equation, proof
	Slide 16: Bellman Optimality Equations, proof
	Slide 17: Bellman Optimality Equations, proof
	Slide 18: Dynamic Programming: All Pairs Shortest Paths
	Slide 19: Dynamic Programming: All Pairs Shortest Paths
	Slide 20: Dynamic Programming: All Pairs Shortest Paths
	Slide 21: Dynamic Programming: All Pairs Shortest Paths
	Slide 22: Dynamic Programming: All Pairs Shortest Paths
	Slide 23: Workday Example
	Slide 24: Workday Example
	Slide 25: Workday Example
	Slide 26: Dynamic Programming Summary
	Slide 27: Dynamic Programming Assumptions
	Slide 28: Policy Improvement Theorem
	Slide 29: Policy Improvement Theorem Proof
	Slide 30: Policy Improvement Theorem Proof, cont’d
	Slide 31: Policy Improvement Theorem Proof, cont’d
	Slide 32: Policy Improvement Theorem Proof, cont’d
	Slide 33: Policy Improvement Theorem Proof, cont’d
	Slide 34: Deterministic Policies: Greedy Policy Improvement
	Slide 35: Policy Iteration
	Slide 36: Policy Iteration, Workday Example
	Slide 37: Policy Iteration Summary
	Slide 38: Value Iteration
	Slide 39: Value Iteration, cont’d
	Slide 40: Value Iteration Considerations
	Slide 41: Value Iteration Summary
	Slide 42: Workday Comparison
	Slide 43: Summary

