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Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement 
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 3

• Puterman, Martin L. Markov decision processes: discrete 
stochastic dynamic programming. John Wiley & Sons, 2014.

– Chapters 2, 3, 4

• David Silver lecture on Markov Decision Processes

– https://www.youtube.com/watch?v=lfHX2hHRMVQ

–Overall good, but with a bias for MDPs with a terminal state

• MDP formalization

–We’ll only talk about MDP in these slides
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Overview

• Markov reward processes (MRPs) are an extension of Markov 
chains

– You get a reward after each state transition

– You can calculate your expected reward over time

• Markov decision processes (MDPs) are an extension of MRPs

–Add actions to influence the transition probabilities

–Model the control problem

• Both models lead to classical recursive equalities known as the 
Bellman equations
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𝑃𝑢𝑏

MDP for Workday Example
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Questions

• What is the expected reward in 𝑇𝑒𝑎𝑐ℎ if I choose to 𝑅𝑒𝑙𝑎𝑥
5 ∗ 0.7 − 2 ∗ 0.3 = 2.9

• In the infinite-horizon, undiscounted case, what is one strategy 
that gives infinite reward w.p. 1?

–Alternate between 𝑀𝐿𝐸 and 𝑂𝐻 by applying 𝑊𝑜𝑟𝑘

– If 𝛾 = 0.9, what is the discounted reward in this case?

෍

𝑘=0

∞

𝛾𝑘0.1 =
0.1

1 − 0.9
= 1
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MDP Formalization

• An MDP is a 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝜂) where

• 𝑆 is the set of states (aka the state space)

• 𝐴 is the set of actions

• 𝑃: 𝑆 × 𝐴 × 𝑆 → ℝ is the probabilistic transition function

• ℙ 𝑆𝑡 𝑆𝑡−1, 𝐴𝑡−1 = 𝑃 𝑆𝑡−1, 𝐴𝑡−1, 𝑆𝑡

• 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ is the reward function
• One-step reward when applying action 𝐴𝑡−1 from state 𝑆𝑡−1 and 

landing in state 𝑆𝑡: 𝑅(𝑆𝑡−1, 𝐴𝑡−1, 𝑆𝑡)

• Can also derive expected reward from state 𝑠 and action 𝑎: 
𝑅𝑒 𝑠, 𝑎 = 𝔼 𝑅𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• By convention, the reward associated with some transition is 
actually received on the next step

• The reward is typically determined by which state you land in

• 𝜂: 𝑆 → ℝ is the initial state distribution
6



Example: Recycling Robot

• Robot looking for soda cans to recycle
– Two battery states: ℎ𝑖𝑔ℎ and 𝑙𝑜𝑤

– Actions are 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒, 𝑤𝑎𝑖𝑡 (for someone to bring a can) and 𝑠𝑒𝑎𝑟𝑐ℎ

– While searching in ℎ𝑖𝑔ℎ mode, battery can become depleted with some 
probability 1 − 𝛼

– While searching in 𝑙𝑜𝑤 mode, robot may need to be rescued with 
probability 1 − 𝛽
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Policy

• The policy (i.e., the controller) 𝜋 is a function from 
observations/states to actions

– Can be deterministic or stochastic

– For stochastic policies, the notation 𝜋(𝑎|𝑠) means
ℙ𝜋[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠]

• When clear from context, we’ll use 𝜋(𝑠) for deterministic 
policies

• In the fully observable case, there always exists an optimal 
deterministic policy

–Any real-world controller is a deterministic system anyway
• Modulo hardware failures, cosmic rays, etc.
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MDP vs MRP

• Given a policy 𝜋, the MDP is essentially an MRP

– True for both stochastic and deterministic policies

• Everything we know about MRPs directly applies to MDPs

• Of course, the main challenge in MDPs is how to choose 𝜋

– This is the RL problem
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Converting an MDP to MRP, Workday Example

• Let’s define 𝜋 as follows:
• 𝜋 𝑇𝑒𝑎𝑐ℎ = 𝑅𝑒𝑙𝑎𝑥

• 𝜋 𝑂𝐻 = 𝑊𝑜𝑟𝑘

• 𝜋 𝑀𝐿𝑆 = 𝑊𝑜𝑟𝑘

• 𝜋 𝐹𝐿𝐸 = 𝑅𝑒𝑙𝑎𝑥

• 𝜋 𝑃𝑢𝑏 = 𝑊𝑜𝑟𝑘
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Converting an MDP to MRP, Workday Example
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Workday Example MRP, Infinite Horizon

• New matrices are

𝑷 =

0 0 0 0.3 0.7
0 0 1 0 0
0 1 0 0 0
0 0 0 0.8 0.2
1 0 0 0 0

, 𝑅𝑒 𝒔 =

2.9
0.1
0.1 
−1

−0.5

• For 𝛾 = 0.9, the state values are
𝑰 − 𝛾𝑷 −1𝑅𝑒 𝒔 = 5.54 1 1 −0.69 4.49 𝑇

• For 𝛾 = 0.5, the state values are
𝑰 − 𝛾𝑷 −1𝑅𝑒 𝒔 = 3.03 0.2 0.2 −1.50 1.02 𝑇

• State values are higher than in the previous MRP case. Why?

– Control actions altered the MRP probabilities

– The policy 𝜋 has done something right
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Converting an MDP to MRP, General Procedure

• To calculate MRP probabilities in case of deterministic policy

– For each pair of states 𝑠1 and 𝑠2:
𝑃𝑀𝑅𝑃 𝑠1, 𝑠2 = 𝑃𝑀𝐷𝑃 𝑠1, 𝜋 𝑠1 , 𝑠2

• Similarly, for the reward:
𝑅𝑀𝑅𝑃 𝑠1, 𝑠2 = 𝑅𝑀𝐷𝑃 𝑠1, 𝜋 𝑠1 , 𝑠2

• In case of stochastic policy 𝜋:

𝑃𝑀𝑅𝑃 𝑠1, 𝑠2 = ෍

𝑎

𝑃𝑀𝐷𝑃 𝑠1, 𝑎, 𝑠2 𝜋(𝑎|𝑠1)

𝑅𝑀𝑅𝑃 𝑠1, 𝑠2 = ෍

𝑎

𝑅𝑀𝐷𝑃 𝑠1, 𝑎, 𝑠2 𝜋 𝑎 𝑠1
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Policy Notation

• We use 𝜋 subscripts to indicate probabilities with respect to 𝜋

– E.g., ℙ𝜋 and 𝔼𝜋

• For example:
ℙ𝜋 𝑅𝑡 = 𝑟 𝑆𝑡−1 = 𝑠 = 

= ෍

𝑎

ℙ 𝑅𝑡 = 𝑟, 𝐴𝑡−1 = 𝑎 𝑆𝑡−1 = 𝑠  

= ෍

𝑎

ℙ 𝑅𝑡 = 𝑟 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎 𝜋 𝑎 𝑠  

 = ෍

𝑎

෍

𝑠′

ℙ 𝑅𝑡 = 𝑟, 𝑆𝑡 = 𝑠′ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎 𝜋 𝑎 𝑠

 = ෍

𝑎

෍

𝑠′

ℙ 𝑅𝑡 = 𝑟 𝑆𝑡 = 𝑠′, 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎 𝑃(𝑠, 𝑎, 𝑠′) 𝜋 𝑎 𝑠

–where ℙ 𝑅𝑡 = 𝑟 𝑆𝑡 = 𝑠′, 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎 = 1 if 
𝑅 𝑠, 𝑎, 𝑠′ = 𝑟 (and 0, otherwise)
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State Value Function

• In the finite-horizon case, the value function is
𝑣𝜋

𝑡 𝑠 ≔ 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾𝑇−𝑡+1𝑅𝑇 𝑆𝑡 = 𝑠

= 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠  

–where 𝑣𝜋 is the state-value function for policy 𝜋

–where 𝔼𝜋 is the expected value when policy 𝜋 is used, i.e.,

𝔼𝜋 𝑅𝑡+1 𝑆𝑡 = 𝑠 = ෍

𝑟

𝑟ℙ𝜋[𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠] 

 = ෍

𝑟

𝑟 ෍

𝑎

ℙ𝜋 𝑅𝑡+1 = 𝑟, 𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠  

 = ෍

𝑟

𝑟 ෍

𝑎

ℙ 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝜋(𝑎|𝑠)

 = ෍

𝑎

𝜋(𝑎|𝑠) ෍

𝑟

𝑟ℙ 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= ෍

𝑎

𝜋 𝑎 𝑠 𝑅𝑒(𝑠, 𝑎) 
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State Value Function, cont’d

• In the infinite-horizon case, it is
𝑣𝜋 𝑠 ≔ 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ 𝑆𝑡 = 𝑠

= 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠  

• This is exactly the same as the MRP case, except we now also 
have a policy 𝜋

–Already saw Workday example values
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Action Value Function

• Similar to the state value, but for a specific action

• In the finite-horizon case, the value function is

𝑞𝜋
𝑡 𝑠, 𝑎 ≔ 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾𝑇−𝑡+1𝑅𝑇 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

• In the infinite-horizon case:
𝑞𝜋 𝑠, 𝑎 ≔ 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

• Intuitively, how good is a given action for a specific state

– In other words, how good is a given action-state pair

17



Workday Example, Action Values

• What is the 1-step value of applying 𝑊𝑜𝑟𝑘 from 𝑇𝑒𝑎𝑐ℎ
−2 ∗ 0.2 + 0.1 ∗ 0.4 + 0.1 ∗ 0.4 = −0.32

• What is the 1-step value of applying 𝑊𝑜𝑟𝑘 from 𝑂𝐻
0.1
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Bellman Equation

• For a given policy 𝜋, the Bellman equation for MDPs is similar to 
the MRP one

–Not surprising given that for any fixed policy, an MDP is an 
MRP

– In the finite-horizon case, policies may also be time-
dependent
• Technically, need to write 𝜋𝑡, but will ignore 𝑡 to avoid clutter

• The recursion is similar to the MRP case

𝑣𝜋
𝑡 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾𝑇−𝑡+1𝑅𝑇 𝑆𝑡 = 𝑠 

 = 𝔼𝜋 𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + ⋯ + 𝛾𝑇−𝑡𝑅𝑇) 𝑆𝑡 = 𝑠 

= 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠 

• Again, similar to the MRP case

𝔼𝜋 𝐺𝑡+1 𝑆𝑡 = 𝑠 = 𝔼 𝑣𝜋
𝑡+1 𝑆𝑡+1 𝑆𝑡 19



Bellman Equation, cont’d

• Again, similar to the MRP case
𝔼𝜋 𝐺𝑡+1 𝑆𝑡 = 𝑠 = 

= ෍

𝑔

𝑔ℙ𝜋[𝐺𝑡+1 = 𝑔 |𝑆𝑡 = 𝑠] 

= ෍

𝑔

𝑔 ෍

𝑠′

ℙ𝜋[𝐺𝑡+1 = 𝑔, 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠] 

 = ෍

𝑔

𝑔 ෍

𝑠′

ℙ𝜋 𝐺𝑡+1 = 𝑔 𝑆𝑡+1 = 𝑠′, 𝑆𝑡 = 𝑠 ℙ𝜋[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠]

 = ෍

𝑠′

ℙ𝜋 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠 ෍

𝑔

𝑔ℙ𝜋 𝐺𝑡+1 = 𝑔 𝑆𝑡+1 = 𝑠′

= ෍

𝑠′

ℙ𝜋 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠 𝑣𝑡+𝑡(𝑠′) 

= 𝔼𝜋 𝑣𝜋
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠  
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Bellman Equation, cont’d

• So finally,

𝑣𝜋
𝑡 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋

𝑡+1(𝑆𝑡+1) 𝑆𝑡 = 𝑠

• Exactly the same as in the MRP case

– Book’s expression is the same but notation a bit different

• What about the Bellman equation for the action value?

– Turns out we can derive two similar recursive definitions

𝑞𝜋
𝑡 𝑠, 𝑎 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋

𝑡+1(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

𝑞𝜋
𝑡 𝑠, 𝑎 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑞𝜋

𝑡+1(𝑆𝑡+1, 𝐴𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• A similar recursive definition exists for the action value function
𝑞𝜋

𝑡 𝑠, 𝑎 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
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Bellman Equation for Action Values

• To derive the first version, start from the definition
𝑞𝜋

𝑡 𝑠, 𝑎 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• As in the MRP case, note that
𝔼𝜋 𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 

= ෍

𝑔

𝑔 ෍

𝑠′

ℙ𝜋[𝐺𝑡+1 = 𝑔, 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

 = ෍

𝑔

𝑔 ෍

𝑠′

ℙ𝜋 𝐺𝑡+1 = 𝑔 𝑆𝑡+1 = 𝑠′, 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ∗

∗ ℙ𝜋[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

 = ෍

𝑔

𝑔 ෍

𝑠′

ℙ𝜋 𝐺𝑡+1 = 𝑔 𝑆𝑡+1 = 𝑠′ ℙ𝜋[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

= ෍

𝑠′

ℙ𝜋[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]𝑣𝑡+1(𝑠′) 

= 𝔼𝜋 𝑣𝑡+1(𝑠′) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

22



Bellman Equation for Action Values, cont’d

• To derive the second version, we need an extra marginalization
𝔼𝜋 𝐺𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 

= ෍

𝑔

𝑔 ෍

𝑠′,𝑎′

ℙ𝜋 𝐺𝑡+1 = 𝑔, 𝑆𝑡+1 = 𝑠′, 𝐴𝑡+1 = 𝑎′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = ෍

𝑔

𝑔 ෍

𝑠′,𝑎′

ℙ𝜋 𝐺𝑡+1 = 𝑔 𝑆𝑡+1 = 𝑠′, 𝐴𝑡+1 = 𝑎′, 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ∗

∗ ℙ𝜋[𝑆𝑡+1 = 𝑠′, 𝐴𝑡+1 = 𝑎′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

= ෍

𝑠′,𝑎′

ℙ𝜋[𝑆𝑡+1 = 𝑠′, 𝐴𝑡+1 = 𝑎′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] ∗ 

 ∗ ෍

𝑔

𝑔ℙ𝜋 𝐺𝑡+1 = 𝑔 𝑆𝑡+1 = 𝑠′, 𝐴𝑡+1 = 𝑎′

= ෍

𝑠′

෍

𝑎′

ℙ𝜋 𝑆𝑡+1 = 𝑠′, 𝐴𝑡+1 = 𝑎′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝑞𝑡+1(𝑠′, 𝑎′)

= 𝔼𝜋 𝑞𝑡+1 𝑆𝑡+1, 𝐴𝑡+1 𝑆𝑡 = 𝑎, 𝐴𝑡 = 𝑎  
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Bellman Equation, cont’d

• So finally,

𝑣𝜋
𝑡 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋

𝑡+1(𝑆𝑡+1) 𝑆𝑡 = 𝑠  

𝑞𝜋
𝑡 𝑠, 𝑎 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋

𝑡+1(𝑆𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

𝑞𝜋
𝑡 𝑠, 𝑎 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑞𝜋

𝑡+1(𝑆𝑡+1, 𝐴𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• Note that one can express 𝑣𝜋
𝑡  in terms of 𝑞𝜋

𝑡  (how?)

–Using marginalization:

𝑣𝜋
𝑡 𝑠 = ෍

𝑠′,𝑎

𝑃 𝑠, 𝑎, 𝑠′ 𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑣 𝜋
𝑡+1 𝑠′

= ෍

𝑎

𝜋 𝑎 𝑠 𝑞𝜋
𝑡 (𝑠, 𝑎) 

– For deterministic policies

𝑣𝜋
𝑡 𝑠 = 𝑞𝜋

𝑡 𝑠, 𝜋 𝑠
24



Bellman Equation Matrix Form

• The Bellman equation in the infinite-horizon case is
𝑣𝜋 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠

• If we expand the expectation, we get:

𝑣𝜋 𝑠 = 𝑅𝜋(𝑠) + 𝛾 ෍

𝑎,𝑠′

ℙ𝜋 𝑆𝑡+1 = 𝑠′, 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠 𝑣𝜋(𝑠′)

= 𝑅𝜋 𝑠 + 𝛾 ෍

𝑎,𝑠′

𝑃 𝑠, 𝑎, 𝑠′ 𝜋 𝑎 𝑠 𝑣𝜋 𝑠′  

–where 𝑅𝜋(𝑠) = σ𝑎 𝜋 𝑎 𝑠 𝑅𝑒(𝑠, 𝑎)

• We can once again write the Bellman equation in matrix form
𝑣𝜋 𝒔 = 𝑅𝜋 𝒔 + 𝛾𝑷𝑣𝜋(𝒔)

–where 𝑃𝑖𝑗 = σ𝑎 𝑃 𝑠𝑖 , 𝑎, 𝑠𝑗 𝜋(𝑎|𝑠𝑖)
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Bellman Equation Matrix Form, cont’d

• The action-value Bellman equation is
𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑞𝜋(𝑆𝑡+1, 𝐴𝑡+1) 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• If we expand the expectation, we get:

𝑞𝜋 𝑠, 𝑎 = 𝑅𝑒(𝑠, 𝑎) + 𝛾 ෍

𝑎′,𝑠′

ℙ 𝑆𝑡+1 = 𝑠′, 𝐴𝑡+1 = 𝑎′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝑞𝜋(𝑠′, 𝑎′)

= 𝑅𝑒 𝑠, 𝑎 + 𝛾 ෍

𝑎′,𝑠′

𝑃 𝑠, 𝑎, 𝑠′ 𝜋(𝑎′|𝑠′)𝑞𝜋(𝑠′, 𝑎′) 

• We can once again write the Bellman equation in matrix form
𝑞𝜋 𝒔, 𝒂 = 𝑅𝑒 𝒔, 𝒂 + 𝛾𝑷𝑞𝜋(𝒔, 𝒂)

–What is the dimension of the 𝑞 vector?
• Number of states × number of actions

– This is non-standard, so rarely used
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Optimal Policy

• A policy 𝜋 is better than another policy 𝜋′ if 

𝑣𝜋
𝑡 𝑠 ≥ 𝑣𝜋′

𝑡 𝑠 , ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 1, 𝑇

• A policy 𝜋∗ is optimal if there exists no better policy than 𝜋∗

• The state-value function corresponding to 𝜋∗ is denoted by 𝑣∗:
𝑣∗(𝑠) = max

𝜋
𝑣𝜋(𝑠)

– Similarly for 𝑞∗

• For (finite) MDPs, 𝑣∗ has a unique solution

–We will discuss several approaches to find 𝑣∗
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Example

• Robot has 4 actions: 𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡

• Each action results in a deterministic cell change

–No change if agent tries to leave environment

–All actions from A lead to A’ and all actions
from B lead to B’

• Get a reward of 10 from A, 5 from B, -1 if you hit a wall, and 0 
otherwise

– Reward discount is 0.9

• What is the optimal policy from each cell?

–What are corresponding value functions?
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Example, cont’d

• Loop between A and A’ takes 5 moves for a reward of 10

• Loop between B and B’ takes 3 moves for a reward of 5

– Looping between A and A’ is more efficient

– The value of 𝐴 is then
𝑣 𝐴 = 10 + 0.95 ∗ 10 + 0.910 ∗ 10 + ⋯

 = ෍

𝑘=0

∞ 

10 0.95 𝑘
=

10

1 − 0.95
= 24.4

• How do we compute the values for all states?
𝑰 − 𝛾𝑷 −1𝑅(𝒔)

– What is the dimension of 𝑷?
• 25 × 25

– We’ll look at other methods next
time
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Example, cont’d

• Loop between A and A’ takes 5 moves for a reward of 10

• Loop between B and B’ takes 3 moves for a reward of 5

– Looping between A and A’ is more efficient

– The value of 𝐵 is then
𝑣 𝐵 = 5 + 0.93 ∗ 5 + 0.96 ∗ 5 + ⋯

 = ෍

𝑘=0

∞ 

5 0.93 𝑘
=

5

1 − 0.93
= 18.45

30


	Slide 1: Markov Decision Processes
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: MDP for Workday Example
	Slide 5: Questions
	Slide 6: MDP Formalization
	Slide 7: Example: Recycling Robot
	Slide 8: Policy
	Slide 9: MDP vs MRP
	Slide 10: Converting an MDP to MRP, Workday Example
	Slide 11: Converting an MDP to MRP, Workday Example
	Slide 12: Workday Example MRP, Infinite Horizon
	Slide 13: Converting an MDP to MRP, General Procedure
	Slide 14: Policy Notation
	Slide 15: State Value Function
	Slide 16: State Value Function, cont’d
	Slide 17: Action Value Function
	Slide 18: Workday Example, Action Values
	Slide 19: Bellman Equation
	Slide 20: Bellman Equation, cont’d
	Slide 21: Bellman Equation, cont’d
	Slide 22: Bellman Equation for Action Values
	Slide 23: Bellman Equation for Action Values, cont’d
	Slide 24: Bellman Equation, cont’d
	Slide 25: Bellman Equation Matrix Form
	Slide 26: Bellman Equation Matrix Form, cont’d
	Slide 27: Optimal Policy
	Slide 28: Example
	Slide 29: Example, cont’d
	Slide 30: Example, cont’d

