Markov Decision Processes




Reading @ Rensselaer

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapter 3

* Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

—Chapters 2,3, 4

e David Silver lecture on Markov Decision Processes
— https://www.youtube.com/watch?v=IfHX2hHRMVQ
— Overall good, but with a bias for MDPs with a terminal state

 MDP formalization
— We'll only talk about MDP in these slides



http://www.incompleteideas.net/book/the-book-2nd.html
https://www.youtube.com/watch?v=lfHX2hHRMVQ

Overview

® Rensselaer

* Markov reward processes (MRPs) are an extension of Markov
chains

—You get a reward after each state transition
—You can calculate your expected reward over time

* Markov decision processes (MDPs) are an extension of MRPs
— Add actions to influence the transition probabilities
— Model the control problem

* Both models lead to classical recursive equalities known as the
Bellman equations




MDP for Workday Example @) Rensselaer
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Questions ® Rensselaer

* What is the expected reward in Teach if | choose to Relax
5x0.7—2%x03=29

* |In the infinite-horizon, undiscounted case, what is one strategy
that gives infinite reward w.p. 17
— Alternate between MLE and OH by applying Work

—Ify = 0.9, what is the discounted reward in this case?

z k01 — 0.1 1
Vo =T 09 ™




MDP Formalization @) Rensselaer

* An MDP is a 5-tuple (S, A4, P, R,n) where
e S is the set of states (aka the state space)

e A is the set of actions

e P:S XA XS — Risthe probabilistic transition function
© P[S¢|Si—1,Ar—1] = P(St—1, Ar—1,St)

* R:S XA XS = Ris the reward function

* One-step reward when applying action A;_; from state S;_; and
landing in state S;: R(S¢—1,A¢—1, S¢)

e Can also derive expected reward from state s and action a:
Re(s,a) = E[R44[S; = s,4; = ]

* By convention, the reward associated with some transition is
actually received on the next step

 The reward is typically determined by which state you land in

* 11: S — Ris the initial state distribution




Example: Recycling Robot ®) Rensselaer

* Robot looking for soda cans to recycle
— Two battery states: high and low
— Actions are recharge, wait (for someone to bring a can) and search

— While searching in high mode, battery can become depleted with some
probability 1 — «

— While searching in low mode, robot may need to be rescued with
probability 1 —
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Policy @ Rensselaer

* The policy (i.e., the controller) i is a function from
observations/states to actions

— Can be deterministic or stochastic
— For stochastic policies, the notation m(a|s) means
Pr|A; = alS; = 5]
* When clear from context, we’ll use m(s) for deterministic
policies
* In the fully observable case, there always exists an optimal
deterministic policy
— Any real-world controller is a deterministic system anyway

 Modulo hardware failures, cosmic rays, etc.




MDP vs MRP @ Rensselaer

* Given a policy r, the MDP is essentially an MRP
—True for both stochastic and deterministic policies

* Everything we know about MRPs directly applies to MDPs

e Of course, the main challenge in MDPs is how to choose
—This is the RL problem




Converting an MDP to MRP, Workday Example ®) Rensselaer

e Let’s define m as follows:
 m(Teach) = Relax
* T1(OH) = Work
e T(MLS) = Work
* m(FLE) = Relax
 m(Pub) = Work
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Converting an MDP to MRP, Workday Example

® Rensselaer
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Workday Example MRP, Infinite Horizon

® Rensselaer

* New matrices are
0
0
P=]0
0
11

* Fory = 0.9, the state values are
(I-yP)"R,(s) =[554 1 1

* Fory = 0.5, the state values are

o = O O

0

0
1
0
0

0

0.3 0.7

0
0

0.8 0.2
0 |

0

0
0

,Re(s)

(I —yP)"'R,(s) =[3.03 02 0.2

 State values are higher than in the previous MRP case. Why?

2.9 ]
0.1

=1 0.1
—1

—0.5.

—0.69 4.49]T

—~1.50 1.02]

— Control actions altered the MRP probabilities

—The policy T has done something right




Converting an MDP to MRP, General Procedure @) Rensselaer

* To calculate MRP probabilities in case of deterministic policy
— For each pair of states s; and s,:
Pyrp(S1,S2) = Pypp(s1,7(51), S2)
e Similarly, for the reward:
Rmrp(S1,52) = Rypp(s1,7(51), 52)

* |n case of stochastic policy m:

Pyrp(s1,52) = z Pypp(s1,a,sy)m(als,)
a

Rurp(S1,82) = Z Rypp(s1,a,sy)m(als;)
a

13




Policy Notation @ Rensselaer

* We use 1 subscripts to indicate probabilities with respect to
—E.g, P and E;

* For example:
PrlR; =7[Seeq = s] =

= Z ]P)[Rt = T,At_]_ = alst—l — S]
a
= Z P[R, = 7|S;_; = 5, A,_, = a] w(als)
a
N ZZ P[R, =7,5; =s'|S;—1 = 5,A;—1 = a] n(als)
a s’
- ZZ IP)[Rt — TlSt = S,rSt—l — S)At—l = a]P(Sl a’S’) T[(CllS)
a s'

—where P[R; =r|S; =5',5;_1 =541 =a] =1if
R(s,a,s’) = r (and 0, otherwise)
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State Value Function

® Rensselaer

* |n the finite-horizon case, the value function is

VE(s) = Ex|Resq + VRegp + -+ yT R[S, = 5]
= Er[G;|S; = 5]

—where v, is the state-value function for policy
—where E; is the expected value when policy 7 is used, i.e.,

Exl[Res1lSe = 51 = ) 1Py[Resy = 718, = 5]

r

- zrz Pr[Riy1 =1 A = alS; = s]
r a

= zrz P[Riy1 =71|S: = 5, 4; = a] w(als)
r a

- Zn(a|s)ZTP[Rt+1 =71|S¢ =54, = a]
r

a

= z mt(al|s)R.(s, a)

a
15




State Value Function, cont’d @ Rensselaer

* In the infinite-horizon case, it is
Ur(S) = En[Rep1 + VReqo + -+ S = 5]
= E,[G¢|S¢ = 5]

* This is exactly the same as the MRP case, except we now also
have a policy T

— Already saw Workday example values

16




Action Value Function @) Rensselaer

 Similar to the state value, but for a specific action

* |n the finite-horizon case, the value function is
t(s,a) = E|Rpy1 + YRyo + -+ YT IRL|S, = 5,4, = a]
dr\S, m|fe+1 T VERey42 14 T |9t y At
= Eg[Ge|S; = 5,4¢ = a]
* In the infinite-horizon case:
qr(s,a) = E|Rey1 + YRey2 + - IS¢ = 5, A = af
= E;|G¢|S; = s, A = a]

* Intuitively, how good is a given action for a specific state
—In other words, how good is a given action-state pair




Workday Example, Action Values @) Rensselaer

* What is the 1-step value of applying Work from Teach
—2%024+01+x04+0.1%04=-0.32

 What is the 1-step value of applying Work from OH
0.1
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® Rensselaer

Bellman Equation

* For a given policy i, the Bellman equation for MDPs is similar to

the MRP one
— Not surprising given that for any fixed policy, an MDP is an

MRP
—In the finite-horizon case, policies may also be time-

dependent
e Technically, need to write ¢, but will ignore t to avoid clutter

* The recursion is similar to the MRP case
vE(s) = En|Rep1 + YReyz + -+ ¥ T 1Re|S,
= Eq[Rer1 + Y(Rerz + -+ ¥ R[S,
= Ez[Res1 + VG1alSe = 5]

b

I
v n
—

* Again, similar to the MRP case
Er[Gei1lS: = 51 = E[v;"" (Se41)|S¢]




Bellman Equation, cont’d @) Rensselaer

* Again, similar to the MRP case
Er[Ges1lSe = s] =

= ngn[Gt+1 =g |5 = 5]
)
= > 9 PulGrir = 6,501 =I5, = 5]
g s
= ZQZ PrlGev1 = glStr1 = 5", St = sIP[St1 = S'|Se = 5]
g s
= PalSess = 51: =51 ) 9PalGrrs = glSees = 5
S/ g9

= z PrlSet1 = s'|Se = S]VHt(S')

Y4
= En[v7€+1(5t+1)|5t = S]
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Bellman Equation, cont’d @ Rensselaer

* So finally,
vi(S) = Eg|Resq + vUE T (Se41)|Se = 5]
e Exactly the same as in the MRP case
— Book’s expression is the same but notation a bit different

 What about the Bellman equation for the action value?

—Turns out we can derive two similar recursive definitions
qr(s,a) = IE:n[Rz:+1 + VU7€+1(St+1)|St =S,A; = a]
qx(s,a) = En[Rt+1 + Vq7€+1(5t+1»14t+1)|5t =5,A; = a]

* A similar recursive definition exists for the action value function
qr(s,a) = Ex[Reyq +VGey1lSe = 5, A = a]




Bellman Equation for Action Values ®) Rensselaer

* To derive the first version, start from the definition
qft(s, a) = Ep[Rey1 +VGryqlSe = 5,4 = af

* As in the MRP case, note that
ErlGey1lSe = s, Ar = al

Z ZP [Gtv1 =9, St+1 =5'|Se = 5,4 = a]
:zgzpn Gev1 = 9lSt41 =5",Se =5, 4 = a] *

Pr[Str1=5'IS = 5,4, = a]
Z Z PrlGer1 = glSer1 = S 1Py [Se41 = SIS = 5,4 = a]

- Z Pr[Ses1 = 5'|Se = 5,4, = a]v**(s")
S/
— En[vt+1(5,)|st = 5,4 = a]
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® Rensselaer

Bellman Equation for Action Values, cont’d

* To derive the second version, we need an extra marginalization
ErlGey1lS: = 5,Ar = a] =

N Zg Z PrlGer1 = 9,Se41 = 5", App1 = a'|Se = 5, A = a]

g sl ar
- zg Z PrlGer1 = glSer1 =5, Apyr = a', S = 5,4 = a] =
g s’ ar

* Pr[Spp1 =", Agpr = @ISy = 5,4, = a]

N Z Pr[St+1 = 5" Aryr = @ISt = 5,A¢ = a] *

sl ar

* z gP[Gri1 = glSt41 = 5", Apyr = a'l
g

B ZZ Pr[Str1 = 5" Apyr = @ISy = 5,A; = a] "1 (s',a")
s’ a’

= En[qt+1(5t+1r‘4t+1)|5t =a,A; = a]
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Bellman Equation, cont’d

® Rensselaer

* So finally,
vﬁ(s) =E;
q%(S, a) =E,
qr(s,a) = E,

_:Rt+1 + Vv7€+1(5t+1)|5t = S]
Rey1 + VUi (Ses1)|Se = 5,A¢ = a

:Rt+1 + VQ7tT+1(St+1'At+1)|St = S,4; = a]

* Note that one can express vt in terms of g5, (how?)

— Using marginalization:

vi(s) = Z P(s,a,s)m(als)|R(s,a,s") + yvii(s))]

= ) n(als)ak(s,a)

a

— For deterministic policies

vi(s) = q5(s, m(s))

24




Bellman Equation Matrix Form @) Rensselaer

* The Bellman equation in the infinite-horizon case is
vn(S) = [En[Rt+1 + yvn(5t+1)|5t = S]
* |f we expand the expectation, we get:

V7 (S) = Ry (s) + Vz Pr[S¢r1 =", A = alS; = s]vg(s")

a,s’

= Re(s) +7 ) P(s,0,5)7(als)ve(s")

a,s’

—where R (s) = ),,m(als) R.(s,a)
* We can once again write the Bellman equation in matrix form
Un(S) — Rn(s) + YPv,(S)
—where P;; = ZaP(Si, a, Sj)n(a|sl-)




Bellman Equation Matrix Form, cont’d @ Rensselaer

* The action-value Bellman equation is
qr(s,a) = Ex[Riiq + ¥Ar(St41, Ae1)1S: = 5,4 = af
* If we expand the expectation, we get:
CITc(Sr a) = R.(s,a)+vy z [P)[St+1 = S,rAt+1 = allst = 5,4 = a]qn(s’, a’)

ar,s’

= Re(5,0) +7 ) P(5,a,5)m(@|)qx(s", @)

al,s’

* We can once again write the Bellman equation in matrix form
4z (s, a) = R.(s,a) + yPq(s,a)
—What is the dimension of the g vector?

* Number of states X number of actions

—This is non-standard, so rarely used




Optimal Policy @) Rensselaer

* A policy i is better than another policy 7’ if
vi(s) = vf;, (s),Vs € S,vt € [1,T]

* A policy ™ is optimal if there exists no better policy than t*

* The state-value function corresponding to ™ is denoted by v, :
v,(s) = max v, (s)
VA

—Similarly for g,

* For (finite) MDPs, v, has a unique solution
— We will discuss several approaches to find v,

27




Example ®) Rensselaer
* Robot has 4 actions: up, down, left,right AN B;
* Each action results in a deterministic cell change +m] B’

— No change if agent tries to leave environment

— All actions from A lead to A’ and all actions

from B lead to B’

Get a reward of 10 from A, 5 from B, -1 if you hit a wall, and O
otherwise

— Reward discount is 0.9

What is the optimal policy from each cell?
—What are corresponding value functions?

28




® Rensselaer

Example, cont’d

* Loop between A and A’ takes 5 moves for a reward of 10

* Loop between B and B’ takes 3 moves for a reward of 5
— Looping between A and A’ is more efficient

—The value of A is then
v(A) =10 + 0.9° %10 + 0919 « 10 + ---

_00 s\e 100
_;10(0.9) =195 = 244

 How do we compute the values for all states?
(I — VP)_lR(S) 22.0{24.4122.019.4/17.5

— What is the dimension of P? 19.8(22.0[19.8/17.8[16.0 Lt |Jd|—|

e 25 % 2C 17.8/19.8/17.8/16.014.4 | S R O

— We'll look at other methods next orgieougiag Lt IS

time 14.4{16.0{14.4/13.0{11.7 [ SR P A
Uy Tx .




Example, cont’d @) Rensselaer

* Loop between A and A’ takes 5 moves for a reward of 10

* Loop between B and B’ takes 3 moves for a reward of 5
— Looping between A and A’ is more efficient

—The value of B is then
v(B)—5+O93*5+O96*5+---

2 5(0.93)" = — 93 = 1845
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