Markov Reward Processes




Reading @ Rensselaer

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapter 3

* Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

—Chapters 2,3, 4

e David Silver lecture on Markov Reward Processes
— https://www.youtube.com/watch?v=IfHX2hHRMVQ
— Overall good, but with a bias for MRPs with a terminal state

* MRP/MDP formalization
— We'll only talk about MRP in these slides



http://www.incompleteideas.net/book/the-book-2nd.html
https://www.youtube.com/watch?v=lfHX2hHRMVQ

Overview

® Rensselaer

* Markov reward processes (MRPs) are an extension of Markov
chains

—You get a reward after each state transition
—You can calculate your expected reward over time

* Markov decision processes (MDPs) are an extension of MRPs
— Add actions to influence the transition probabilities
— Model the control problem

* Both models lead to classical recursive equalities known as the
Bellman equations




MRP for Workday Example @) Rensselaer
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Questions ® Rensselaer

 What is the expected reward in Teach after one step?
—2%034+01+x034+01%x034+5=*0.1=-0.04

* Ignoring the probabilities, which path maximizes the reward in
the long run?
— Trick question

— Over a finite horizon, the path Teach — Pub — Teach ...
brings the highest reward (4.5 every two hops)

— Over an infinite horizon, any cycle with positive rewards will
result in an infinite reward
* E.g.,, Make Lecture Slides — Of fice Hour — ---




Probability Aside: Conditional Expectation

* Given two random variables X and Y, the conditional
expectation of X given Y is defined as:

EIX|Y =yl = ) xPIX =x|¥ =]
xeX
—where X is the (discrete) set of all values X can take

* For a specific value of Y, what is the distribution of X
—E.g., given that it is raining, what is the distribution of traffic

* Technically, the conditional expectation is a random variable
— Takes on different values for different realizations of Y

* Similarly, for any function f:

EIfCOIY =yl = ) fCOPIX =x|Y = ]

XEX

® Rensselaer




MRP Formalization @) Rensselaer

* An MRP is a 4-tuple (S, P, R,n) where
e S is the set of states (aka the state space)

* P:S XS = Ris the probabilistic transition function
* P[Stlst—l] = P(St—pst)
e R:S§ XS — Risthe reward function

* R(S;_1,S;) is the reward received when following transition from
Si_1t0 S

* Can also derive expected reward from s: R,(s) = E[R;+1|S; = 5]

* By convention, the reward associated with some transition is
actually received on the next step

* We use R; to denote the reward we get at time ¢

 The reward is typically determined by which state you land in

* 11: S — Ris the initial state distribution




A MRP Trace/Episode/Run/Trajectory @) Rensselaer

Each MRP run is also called a trace/episode in different fields
— Could be finite or infinite

* An example finite run:

So = Teach,S; = Make Lecture Slides,S, = Fix Lecture Errors,
S3 = Office Hour

e Corresponding rewards are:
R1 — 01, RZ — _2, R3 — 01
— Total reward is —1.8

* |n trace notation, the trajectory is:
SO' Rl' Sl' RZ) 52' RS! 53

What is the probability of this run:
0.3x0.2%x0.3=0.018




A MRP Trace/Episode/Run/Trajectory @ Rensselaer

* An example infinite run:
So = Teach,S; = Pub,S, = Teach,S; = Pub, ...

* Corresponding rewards are:
Rl — 5, RZ — _05, R3 — 5,
—Total reward is infinite

 What is the probability of this trajectory?
0!
— Multiplying infinitely many numbers less than 1




Goals and Rewards

® Rensselaer

* The reward is typically specified by the user to achieve a
conceptual goal

—E.g., avoid crashes, compute an optimal trajectory

* On the one hand, this works very well since the reward
function can be arbitrarily specific and complex

* On the other, it is quite hard because sometimes the reward
encourages unexpected behaviors

—E.g., alternate between Teach and Pub without making
slides

—E.g., go through walls in (imperfect physics) simulators




Finite vs Infinite Horizon

® Rensselaer

* An MRP can produce finite or infinite traces/episodes
— Both settings are valid (also in the MDP case)
— Note: book tries to combine them by assuming the system
always has a sink goal state (not true for all MRPs/MDPs)
* In both cases, one can look at the total reward per trace

—In the finite case (with T steps), total reward is:
R1+R2 +"‘+RT
—In the infinite case, the total reward is:

R1 +R2 + - :th
t=1

 What is a potential issue in the second case?
— Total reward can be infinite




Discounted Reward @©@ Rensselaer

» Typically, we consider a discounted future reward:
Gt = Rey1 + YRepz + ¥ Reysz + -

= Riy1 +Y(Reg2 + YReg3 + )
= Riy1 T VGryq

—Discount factor y € (0,1)
* Why?
— Future rewards less important than current ones
— Mathematical convenience: don’t want infinite rewards

* Note that sum is finite if R; is bounded by some M for all t:

, M
GtSM ]/ —_ -
z 1—y
k=0
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Value Function @) Rensselaer

Intuitively, how *good™ is your current state

In the finite-horizon case, the value function is
v'(s) = E[Resq + YReyp + -+ ¥ T 1Ry |S, = 5]
= E[G;|S; = s]

* In the infinite-horizon case, it is
v*(s) = E[R¢4q1 + YRip + - |Sp = 5]
= E[G;|S; = 5]

In both cases, it is the expected discounted reward

Value function may be time-dependent

— Book omits this important difference

 Value functions are time-independent for MRPs/MDPs with a
terminal state

* Assuming terminal state doesn’t depend on time




Value Function Example

® Rensselaer

e letT =2

v1(Teach) = E[R,|S; = Teach]

* But
v?(Teach) =

= E[R; + YR,|Sy = Teach]
—Note that E[R|Sy = Teach] = E[R,|S; = Teach] = —0.04

—What about E[yR,|S, = Teach]?
E|yR,|Sy = Teach] =

= yz rlP[R, = r|S, = Teach]

r
= erZ P|R, =1,5; = s|Sy = Teach]
r S

—2%034+01%x03+0.1%x03+5%0.1=-0.04

14




Value Function Example, cont’d ® Rensselaer

E[yR,|S, = Teach]

—yz ZIP’ R, =1,5; =5|S, = Teach]

= erZ PR, =1|S; = 5,5, = Teach]| P|S; = s|Sy = Teach]
S

= erz P[R, = r|S; = s]P|S; = s|S, = Teach]
r S

= yz P[S; = s|S, = Teach] ZrIP[Rz =7|S; = 5]
S

r
= yz P[S; = s|Sy = Teach]E[R,|S; = 5]
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Value Function Example, cont’d ® Rensselaer

E|yR,|S, = Teach] = yz P|S; = s|Sy = Teach]E[R,|S; = 5]
S

= yz P[S; = s|Sy; = Teach]vi(s)
S

* We already know v!(Teach) = —0.04

— But this is not used since P[S; = Teach|S, = Teach] =0
¢« VI(OH) =3%0.2+0.1%04—2+0.4=—0.16
e p1(Pub) = -1%0.9—-0.5%0.1 =-0.95
e vI(MLS) = —2#0.2+0.1%0.5+3%0.3 = 0.55
« VI(FLE)=—2+05+3%02+0.1+%03=—037

* So finally

E[yR,|Sy, = Teach] =
=y(—0.16 * 0.3 —0.95 % 0.1 + 0.55* 0.3 — 0.37 x 0.3)




Value Function Example, cont’d

® Rensselaer

* Finally,
v9(Teach) = E[R; + YR,|S, = Teach]
— —0.04 + y(—0.089)

—Fory = 0.9,v°(Teach) = —0.1201
e So, forT = 2, v%(Teach) < vl (Teach)
 What about larger T?

17




® Rensselaer

Finite Horizon Bellman Equation

e We derived a recursive definition of v for the case T = 2:
vO(s) = ElRy[So = sl +7 ) PIS; = 5'1So = s]v'(s)
S/
= E[R, + yv1(51)|Sy = 5]

* This recursion applies for all t
v (s) = E[Rpsq + VResz + - +¥T R[S, = 5]
= E[R¢1q1 + Y(Rerz + -+ v R[S, = 5]
= E[R¢41 + ¥Gr41|S: = s]

e Note that

ElGesa|Se = s1= ) gP[Gess = gIS, =)

g
= zgz P[Ger1 = 9, St41 = S'|S¢ = 5]
g st

* Where g loops through all (finitely many) values of G4 18




Finite Horizon Bellman Equation, cont’d @ Rensselaer

* This recursion applies for all £
vi(s) = E[Rey1 + VReyz + -+ ¥ T ?Ry|S; = 5]
= E[Re11 + Y(Rez + -+ ¥ 3Rp)|S, = 5]
= E[Ri11 + ¥ Gi11lS: = 5]

e Note that

E[G¢111Se = s] = Z gz P[Ger1 = g,St41 = S'|S¢ = 5]
g St
= zgz P[Gey1 = g|St+1 =5, St = S]P[Seq = §'|S¢ = 5]
g St
= Z P[S¢+1 = S'|S¢ = 5] ZQP[GtH = 9g|S¢41 = 5']
S/ g

- Z P[S¢41 = s'|Se = s]v**i(s") = E[vt+1(st+1)|st - S]
S/

19




Finite Horizon Bellman Equation, cont’d

® Rensselaer

* This recursion applies for all £

vi(s) = E
= [
= [

 Note that

:_Rt+1 + YRy + 0 + VT_ZRTlst = S]
Rey1 +¥(Repz + -+ YT 3Rp)|S, = s

Rip1 +VGesqlS: = 5]

E[Gr411S: = 5] = [E[Ut+1(5t+1)|5t = S]

* So, the (finite-horizon) Bellman equation is
vi(s) = E[Rt+1 + Vvt+1(5t+1)|5t = S]

20




Infinite-Horizon MRPs @) Rensselaer

e Recall the definition of the value function
v°(s) = E[R¢4q + YRs2 + IS = 5]
= E[thst = 5]

* Sum (and expectation) is finite when R; are bounded

* |t turns out also that v does not depend on time, i.e.,
vt(s) — vt+k(s)
—for any integer k
—This is only true for stationary MDP/MRP

* j.e., probabilities don’t change over time

— We will drop the superscript in the infinite-horizon case




Infinite-horizon Bellman Equation @ Rensselaer

* The Bellman equation in the infinite-horizon case is similar
v(s) = E[Rpyq + yv(Se4)IS: = 5]
—The time t here is implicit
* Only need it to distinguish the previous from the next state/reward

— But the function v is the same
— Proof is quite involved (proof in book is incomplete)

—The discounted reward G; no longer takes on finitely many
values

22




® Rensselaer

Bellman Equation Matrix Form

* The Bellman equation in the infinite-horizon case is
v(s) = E[Rpyq + yv(Se41)IS: = ]

* If we expand the expectation, we get:

v(s) = Re(s) +7 ) P[Spar = 5'IS; = s]v(s")

= Re(s) +7 ) P(5,5)0(s)

* Let s be the vector of all states
—E.g.,s = [Teach, MLS,FLE,OH, Pub]

* We can write the Bellman equation in matrix form
v(s) = R,(s) + yPv(s)




Bellman Equation Matrix Form, cont’d @ Rensselaer

* We can write the Bellman equation in matrix form
v(s) = R,(s) + yPv(s)

* How do we solve for v(s)?

— Note that
(I —yP)v(s) = Re(s)
—i.e.,
v(s) = (I —yP)"'R.(s)
—Is I — y P always invertible?
* Yes, because yP has a maximum eigenvalue of y < 1

* If eigenvalues of P are A;, the eigenvalues of I — yP are 1 — y;

* For any eigenvector v; of P:
(I —yP)v; = (1 —yA)v;

24




Workday Example, Infinite Horizon @®) Rensselaer

* Recall that
0 03 03 03 0.1] (—0.04]
0O 0 04 04 0.2 —0.95
P={0 05 0 0.2 03[,R.(s)=]0.55
0 03 0 05 0.2 —0.37
01 0 0 0 0.9 —0.14-
* Fory = 0.9,
(I—yP) 'R.,(s) =[-2.10 —-2.79 -1.64 -2.16 -1.73]"
* Fory = 0.5,

(I-yP)"'R,(s) =[-031 -1.10 0.16 —0.75 —0.28]"
* Higher y’s generate lower state values. Why?

—If you get stuck in Pub or FLE, self-transitions with negative
rewards count for more




Finite vs Infinite Horizon

* Most of RL algorithms are built assuming infinite horizons
—Theory is cleaner
— Stronger claims (e.g., deterministic policies are sufficient)

* Most RL in practice is used in finite-horizon scenarios
— Games, control tasks, protein folding

* What gives?
— Practitioners are somewhat lucky
—Either end time is conditioned on reaching a specific state

* E.g., when we want to reach a goal or win a game

— Or the same state is rarely visited at different times

* E.g., when you are driving, you don’t usually go in circles

® Rensselaer




Finite vs Infinite Horizon, cont’d @©@ Rensselaer

 Whenever you have a finite horizon, you need to be careful

—Is it possible to visit the same state multiple times?
* |f so, is the value different?

—|s it possible to get stuck in some weird behavior

* E.g., maybe we can’t reach the goal in time, so we just stay put in
order to not crash

* We'll discuss more when we get to MDPs

27
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