Markov Reward Processes

Reading

Rensselaer

- Sutton, Richard S., and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
 - <u>http://www.incompleteideas.net/book/the-book-2nd.html</u>
 Chapter 3
- Puterman, Martin L. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
 Chapters 2, 3, 4
- David Silver lecture on Markov Reward Processes
 - <u>https://www.youtube.com/watch?v=lfHX2hHRMVQ</u>
 - Overall good, but with a bias for MRPs with a terminal state
- MRP/MDP formalization
 - -We'll only talk about MRP in these slides

🕲 Rensselaer

- Markov reward processes (MRPs) are an extension of Markov chains
 - You get a reward after each state transition
 - You can calculate your expected reward over time
- Markov decision processes (MDPs) are an extension of MRPs
 - -Add actions to influence the transition probabilities
 - Model the control problem
- Both models lead to classical recursive equalities known as the Bellman equations

MRP for Workday Example

4

- What is the expected reward in *Teach* after one step? -2 * 0.3 + 0.1 * 0.3 + 0.1 * 0.3 + 5 * 0.1 = -0.04
- Ignoring the probabilities, which path maximizes the reward in the long run?
 - Trick question
 - Over a finite horizon, the path *Teach Pub Teach* …
 brings the highest reward (4.5 every two hops)
 - Over an infinite horizon, any cycle with positive rewards will result in an infinite reward
 - E.g., Make Lecture Slides Office Hour …

• Given two random variables X and Y, the conditional expectation of X given Y is defined as:

$$\mathbb{E}[X|Y = y] = \sum_{x \in \mathcal{X}} x \mathbb{P}[X = x|Y = y]$$

– where \mathcal{X} is the (discrete) set of all values X can take

- For a specific value of Y, what is the distribution of X
 E.g., given that it is raining, what is the distribution of traffic
- Technically, the conditional expectation is a random variable
 Takes on different values for different realizations of Y
- Similarly, for any function *f* :

$$\mathbb{E}[f(X)|Y = y] = \sum_{x \in \mathcal{X}} f(x)\mathbb{P}[X = x|Y = y]$$

MRP Formalization

- An MRP is a 4-tuple (S, P, R, η) where
 - *S* is the set of states (aka the state space)
 - $P: S \times S \rightarrow \mathbb{R}$ is the probabilistic transition function
 - $\mathbb{P}[S_t|S_{t-1}] = P(S_{t-1}, S_t)$
 - $R: S \times S \rightarrow \mathbb{R}$ is the reward function
 - $R(S_{t-1}, S_t)$ is the reward received when following transition from S_{t-1} to S_t
 - Can also derive expected reward from $s: R_e(s) = \mathbb{E}[R_{t+1}|S_t = s]$
 - By convention, the reward associated with some transition is actually received on the next step
 - We use R_t to denote the reward we get at time t
 - The reward is typically determined by which state you land in
 - $\eta: S \to \mathbb{R}$ is the initial state distribution

A MRP Trace/Episode/Run/Trajectory

- Each MRP run is also called a trace/episode in different fields — Could be finite or infinite
- An example finite run:

 $S_0 = Teach, S_1 = Make Lecture Slides, S_2 = Fix Lecture Errors, S_3 = Office Hour$

• Corresponding rewards are:

$$R_1 = 0.1, R_2 = -2, R_3 = 0.1$$

- Total reward is -1.8

In trace notation, the trajectory is:

 $S_0, R_1, S_1, R_2, S_2, R_3, S_3$

• What is the probability of this run:

0.3 * 0.2 * 0.3 = 0.018

Rensselaer

A MRP Trace/Episode/Run/Trajectory

• An example infinite run:

 $S_0 = Teach, S_1 = Pub, S_2 = Teach, S_3 = Pub, \dots$

• Corresponding rewards are:

$$R_1 = 5, R_2 = -0.5, R_3 = 5, \dots$$

- Total reward is infinite
- What is the probability of this trajectory?

0!

- Multiplying infinitely many numbers less than 1

- The reward is typically specified by the user to achieve a conceptual goal
 - E.g., avoid crashes, compute an optimal trajectory
- On the one hand, this works very well since the reward function can be arbitrarily specific and complex
- On the other, it is quite hard because sometimes the reward encourages unexpected behaviors
 - E.g., alternate between *Teach* and *Pub* without making slides
 - E.g., go through walls in (imperfect physics) simulators

- An MRP can produce finite or infinite traces/episodes
 - Both settings are valid (also in the MDP case)
 - Note: book tries to combine them by assuming the system always has a sink goal state (not true for all MRPs/MDPs)
- In both cases, one can look at the total reward per trace
 - In the finite case (with T steps), total reward is:

$$R_1 + R_2 + \dots + R_T$$

- In the infinite case, the total reward is:

$$R_1 + R_2 + \dots = \sum_{t=1}^{\infty} R_t$$

- What is a potential issue in the second case?
 - Total reward can be infinite

• Typically, we consider a **discounted** future reward:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

– Discount factor $\gamma \in (0,1)$

- Why?
 - Future rewards less important than current ones
 - Mathematical convenience: don't want infinite rewards
- Note that sum is finite if R_t is bounded by some M for all t:

$$G_t \le M \sum_{k=0}^{\infty} \gamma^k = \frac{M}{1-\gamma}$$

Value Function

- Intuitively, how *good* is your current state
- In the finite-horizon case, the value function is $v^{t}(s) \coloneqq \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t+1} R_{T} | S_{t} = s]$ $= \mathbb{E}[G_{t} | S_{t} = s]$
- In the infinite-horizon case, it is $v^{t}(s) \coloneqq \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \cdots | S_{t} = s]$ $= \mathbb{E}[G_{t}|S_{t} = s]$
- In both cases, it is the expected discounted reward
- Value function may be **time-dependent**
 - Book omits this important difference
 - Value functions are time-independent for MRPs/MDPs with a terminal state
 - Assuming terminal state doesn't depend on time

• Let
$$T = 2$$

 $v^1(Teach) = \mathbb{E}[R_2|S_1 = Teach]$
 $= -2 * 0.3 + 0.1 * 0.3 + 0.1 * 0.3 + 5 * 0.1 = -0.04$

$$v^{0}(Teach) =$$

$$= \mathbb{E}[R_{1} + \gamma R_{2}|S_{0} = Teach]$$

$$- \text{Note that } \mathbb{E}[R_{1}|S_{0} = Teach] = \mathbb{E}[R_{2}|S_{1} = Teach] = -0.04$$

$$- \text{What about } \mathbb{E}[\gamma R_{2}|S_{0} = Teach]?$$

$$\mathbb{E}[\gamma R_{2}|S_{0} = Teach] =$$

$$= \gamma \sum_{r} r \mathbb{P}[R_{2} = r|S_{0} = Teach]$$

$$= \gamma \sum_{r} r \sum_{s} \mathbb{P}[R_2 = r, S_1 = s | S_0 = Teach]$$

$$\mathbb{E}[\gamma R_2 | S_0 = Teach] =$$

$$= \gamma \sum_r r \sum_s \mathbb{P}[R_2 = r, S_1 = s | S_0 = Teach]$$

$$= \gamma \sum_{r} r \sum_{s} \mathbb{P}[R_{2} = r|S_{1} = s, S_{0} = Teach] \mathbb{P}[S_{1} = s|S_{0} = Teach]$$

$$= \gamma \sum_{r} r \sum_{s} \mathbb{P}[R_{2} = r|S_{1} = s] \mathbb{P}[S_{1} = s|S_{0} = Teach]$$

$$= \gamma \sum_{s} \mathbb{P}[S_{1} = s|S_{0} = Teach] \sum_{r} r \mathbb{P}[R_{2} = r|S_{1} = s]$$

$$= \gamma \sum_{s} \mathbb{P}[S_{1} = s|S_{0} = Teach] \mathbb{E}[R_{2}|S_{1} = s]$$

$$\mathbb{E}[\gamma R_2 | S_0 = Teach] = \gamma \sum_{s} \mathbb{P}[S_1 = s | S_0 = Teach] \mathbb{E}[R_2 | S_1 = s]$$
$$= \gamma \sum_{s} \mathbb{P}[S_1 = s | S_0 = Teach] v^1(s)$$

- We already know $v^1(Teach) = -0.04$
 - But this is not used since $\mathbb{P}[S_1 = Teach|S_0 = Teach] = 0$
 - $v^1(OH) = 3 * 0.2 + 0.1 * 0.4 2 * 0.4 = -0.16$

•
$$v^1(Pub) = -1 * 0.9 - 0.5 * 0.1 = -0.95$$

- $v^1(MLS) = -2 * 0.2 + 0.1 * 0.5 + 3 * 0.3 = 0.55$
- $v^1(FLE) = -2 * 0.5 + 3 * 0.2 + 0.1 * 0.3 = -0.37$
- So finally

$$\mathbb{E}[\gamma R_2 | S_0 = Teach] =$$

= $\gamma(-0.16 * 0.3 - 0.95 * 0.1 + 0.55 * 0.3 - 0.37 * 0.3)$

• Finally,

$$v^{0}(Teach) = \mathbb{E}[R_{1} + \gamma R_{2}|S_{0} = Teach]$$

= -0.04 + γ (-0.089)
- For $\gamma = 0.9, v^{0}(Teach) = -0.1201$

- So, for T = 2, $v^{0}(Teach) < v^{1}(Teach)$
- What about larger *T*?

• We derived a recursive definition of v for the case T = 2:

$$v^{0}(s) = \mathbb{E}[R_{1}|S_{0} = s] + \gamma \sum_{s'} \mathbb{P}[S_{1} = s'|S_{0} = s]v^{1}(s')$$
$$= \mathbb{E}[R_{1} + \gamma v^{1}(S_{1})|S_{0} = s]$$

• This recursion applies for all *t*

$$\psi^{t}(s) = \mathbb{E} \Big[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t+1} R_{T} \big| S_{t} = s \Big] \\= \mathbb{E} \Big[R_{t+1} + \gamma (R_{t+2} + \dots + \gamma^{T-t} R_{T}) \big| S_{t} = s \Big] \\= \mathbb{E} \big[R_{t+1} + \gamma G_{t+1} \big| S_{t} = s \big]$$

Note that

$$\mathbb{E}[G_{t+1}|S_t = s] = \sum_g g \mathbb{P}[G_{t+1} = g|S_t = s]$$

= $\sum_g g \sum_{s'} \mathbb{P}[G_{t+1} = g, S_{t+1} = s'|S_t = s]$

• Where g loops through all (finitely many) values of G_{t+1}

Finite Horizon Bellman Equation, cont'd

- This recursion applies for all t $v^t(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-2} R_T | S_t = s]$ $= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \dots + \gamma^{T-3} R_T) | S_t = s]$ $= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$
- Note that

$$\mathbb{E}[G_{t+1}|S_t = s] = \sum_g g \sum_{s'} \mathbb{P}[G_{t+1} = g, S_{t+1} = s'|S_t = s]$$

$$= \sum_g g \sum_{s'} \mathbb{P}[G_{t+1} = g|S_{t+1} = s', S_t = s] \mathbb{P}[S_{t+1} = s'|S_t = s]$$

$$= \sum_{s'} \mathbb{P}[S_{t+1} = s'|S_t = s] \sum_g g \mathbb{P}[G_{t+1} = g|S_{t+1} = s']$$

$$= \sum_{s'} \mathbb{P}[S_{t+1} = s'|S_t = s] v^{t+1}(s') = \mathbb{E}[v^{t+1}(S_{t+1})|S_t = s]$$

Rensselaer

Finite Horizon Bellman Equation, cont'd

- This recursion applies for all t $v^t(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-2} R_T | S_t = s]$ $= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \dots + \gamma^{T-3} R_T) | S_t = s]$ $= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$
- Note that

$$\mathbb{E}[G_{t+1}|S_t = s] = \mathbb{E}[v^{t+1}(S_{t+1})|S_t = s]$$

• So, the (finite-horizon) Bellman equation is $v^t(s) = \mathbb{E}[R_{t+1} + \gamma v^{t+1}(S_{t+1})|S_t = s]$

- Recall the definition of the value function $v^t(s) \coloneqq \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \cdots | S_t = s]$ $= \mathbb{E}[G_t | S_t = s]$
- Sum (and expectation) is finite when R_t are bounded
- It turns out also that v does not depend on time, i.e., $v^t(s) = v^{t+k}(s)$
 - for any integer k
 - This is only true for stationary MDP/MRP
 - i.e., probabilities don't change over time
 - We will drop the superscript in the infinite-horizon case

- The Bellman equation in the infinite-horizon case is similar $v(s) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1})|S_t = s]$
 - The time t here is implicit
 - Only need it to distinguish the previous from the next state/reward
 - But the function v is the same
 - Proof is quite involved (proof in book is incomplete)
 - The discounted reward G_t no longer takes on finitely many values

- The Bellman equation in the infinite-horizon case is $v(s) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1})|S_t = s]$
- If we expand the expectation, we get:

$$v(s) = R_e(s) + \gamma \sum_{s'} \mathbb{P}[S_{t+1} = s' | S_t = s] v(s')$$
$$= R_e(s) + \gamma \sum_{s'} P(s, s') v(s')$$

• Let *s* be the vector of all states

-E.g., s = [Teach, MLS, FLE, OH, Pub]

• We can write the Bellman equation in matrix form $v(s) = R_e(s) + \gamma P v(s)$

Bellman Equation Matrix Form, cont'd

- We can write the Bellman equation in matrix form $v(s) = R_e(s) + \gamma P v(s)$
- How do we solve for v(s)?
 - Note that

$$(\boldsymbol{I} - \boldsymbol{\gamma}\boldsymbol{P})\boldsymbol{\nu}(\boldsymbol{s}) = R_e(\boldsymbol{s})$$

—i.e.,

$$v(\boldsymbol{s}) = (\boldsymbol{I} - \gamma \boldsymbol{P})^{-1} R_e(\boldsymbol{s})$$

 $- \text{Is } I - \gamma P$ always invertible?

- Yes, because γP has a maximum eigenvalue of $\gamma < 1$
- If eigenvalues of **P** are λ_i , the eigenvalues of $I \gamma P$ are $1 \gamma \lambda_i$
- For any eigenvector v_i of P:

$$(\boldsymbol{I} - \boldsymbol{\gamma} \boldsymbol{P}) \boldsymbol{v}_i = (1 - \boldsymbol{\gamma} \lambda_i) \boldsymbol{v}_i$$

• Recall that

$$\boldsymbol{P} = \begin{bmatrix} 0 & 0.3 & 0.3 & 0.3 & 0.1 \\ 0 & 0 & 0.4 & 0.4 & 0.2 \\ 0 & 0.5 & 0 & 0.2 & 0.3 \\ 0 & 0.3 & 0 & 0.5 & 0.2 \\ 0.1 & 0 & 0 & 0 & 0.9 \end{bmatrix}, R_e(\boldsymbol{s}) = \begin{bmatrix} -0.04 \\ -0.95 \\ 0.55 \\ -0.37 \\ -0.14 \end{bmatrix}$$

• For
$$\gamma = 0.9$$
,
 $(I - \gamma P)^{-1}R_e(s) = [-2.10 - 2.79 - 1.64 - 2.16 - 1.73]^T$

- For $\gamma = 0.5$, $(I - \gamma P)^{-1} R_e(s) = [-0.31 - 1.10 \ 0.16 \ -0.75 \ -0.28]^T$
- Higher γ 's generate lower state values. Why?
 - If you get stuck in Pub or FLE, self-transitions with negative rewards count for more

- Most of RL algorithms are built assuming infinite horizons
 Theory is cleaner
 - Stronger claims (e.g., deterministic policies are sufficient)
- Most RL in practice is used in finite-horizon scenarios —Games, control tasks, protein folding
- What gives?
 - Practitioners are somewhat lucky
 - Either end time is conditioned on reaching a specific state
 - E.g., when we want to reach a goal or win a game
 - Or the same state is rarely visited at different times
 - E.g., when you are driving, you don't usually go in circles

Finite vs Infinite Horizon, cont'd

- Whenever you have a finite horizon, you need to be careful
 - Is it possible to visit the same state multiple times?
 - If so, is the value different?
 - Is it possible to get stuck in some weird behavior
 - E.g., maybe we can't reach the goal in time, so we just stay put in order to not crash
- We'll discuss more when we get to MDPs