
State Estimation Filters

Written Preliminary Exam II Report

Radoslav Ivanov

Department of Computer and Infomation Science
University of Pennsylvania

Abstract

Precise state estimation is crucial for any autonomous system as it
enables the system to provide appropriate control inputs to its actuators.
However, estimation is challenging as it must be able to handle imprecise
system models (often described by complex non-linear functions) as well
as noisy sensor measurements in order to compute the system’s state. In
this work, we explore three approaches to state estimation filtering that
have different theoretical guarantees and estimation accuracies depending
on the system in question (e.g., a linear system with Gaussian noise). We
describe the theoretical foundations of each filter and track its evolution
over time. Finally, the differences and similarities between the filters are
emphasized, and some appropriate applications are discussed.

1 Introduction

State estimation is one of the fundamental problems in the study of autonomous
control systems. Precise state estimation is a necessary condition for effective
control; it allows a system to have accurate knowledge of its current state and,
consequently, to make informed decisions when choosing future control inputs.

At a high level, the state estimation filtering problem is as follows. The
system in question (e.g., an autonomous vehicle) would like to achieve a certain
goal (e.g., reach a destination); to do this, the system needs to know its state
(e.g., position, velocity) in order to apply the necessary control inputs. To com-
pute its state, the system has access to measurements (e.g., GPS and odometry
measurements) of its state; since these measurements can often be faulty, the
system’s goal is to use all of its available information about its sensor models
and about its own dynamics in order to obtain a precise estimate of its state.

In this work, we explore different approaches to state estimation that have
been developed in the literature. We note that the power and complexity of these
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approaches vary greatly depeding on the amount of knowledge about the system.
In particular, if nothing is known about the evolution of the system over time
and the only available information is the relation between the measurements and
the state, then hardly any improvements upon the measurements can be made.
If, on the other hand, more precise system and sensor models are available,
then it is possible to greatly improve the state estimate and to tighten the set
of possible values that the state can take.

Therefore, for any system under consideration, it is necessary that dynamical
and observation models be developed in order for the system to be accurately
analyzed. These models are necessarily abstractions of reality; developing per-
fect models is rarely possible and is also impractical – modeling events that have
a minor effect on the system’s operation may lead to complex functional models
with no major improvement in accuracy; thus, such events are usually included
as noise that may perturb the system’s nominal behavior.

Multiple approaches to state estimation filtering have been explored depend-
ing on the functional form of the dynamical and observation model as well as
on the assumptions about the noise distribution (e.g., probabilistic, bounded).
We describe three classes of algorithms that cover most models and applications
observed in practice today.

The first class of algorithms are Kalman filters. The classical Kalman fil-
ter [21] is the best linear unbiased estimator (BLUE) for linear systems with
Gaussian process and measurement noise. The Kalman filter’s closed-form re-
cursive equations have turned it into arguably the most popular and widely used
estimator, with applications ranging from the aerospace and aircraft industries
to seismology and weather forecasting [13]. In addition to the original algo-
rithm, we briefly mention some popular extensions (i.e., the extended Kalman
filter (EKF) [17] and a Gaussian mixture filter [1]), with an emphasis on a
distributed version of the filter [31].

An alternative estimation algorithm that can be used for non-linear systems
with non-Gaussian noise is the Markov Chain Monte Carlo filter [12], also known
as the particle filter. Particle filters work by simulating the system evolution
multiple times and choosing the state estimate as a weighted average of all sim-
ulations (particles). They have been shown to work well in multiple robotic
applications, notably the simultaneous localization and mapping (SLAM) prob-
lem [28]. In addition, it is possible to combine Kalman and particle filters in
order to leverage the advantages of both approaches in a Rao-Blackwellised
particle filter [10].

Finally, we investigate another approach to perform state estimation in non-
linear systems, namely set membership filtering [26]. In this line of works, the
system is assumed to have bounded process and measurement noise. Thus it
is possible to construct a set containing all possible values of the state at the
current time. Set membership filters have been shown to outperform other non-
linear estimators (e.g., the EKF) in highly non-linear systems with bounded
noise [27].

This paper is organized as follows. In Section 2 we formalize the state
estimation filtering problem, while Section 3 discusses porssible solutions at
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a high level. The following three sections, Section 4, Section 5, and Section 6,
describe each of the three classes of filters explored in this paper, namely Kalman
filters, particle filters and set membership filters, respectively. Finally, Section 7
concludes the work.

2 State Estimation Filtering Problem

The state estimation filtering problem is as follows. Consider a system with
known dynamics of the form

xk+1 = f(xk) + wk, (1)

where xk ∈ Rn is the system state at time k (e.g., position, velocity), wk ∈ Rn is
process noise (as argued above, wk contains unmodeled dynamics, e.g., friction
for automotive systems) and f is a (possibly nonlinear) function describing the
evolution of the state.1

At each point in time k, the system has access to measurements of the form

yk = g(xk) + vk, (2)

where yk ∈ Rp are the available measurements, vk ∈ Rp is measurement noise
(due to sensor imprecisions, e.g., GPS measurements jumping greatly in an
urban environment), and g is a (possibly nonlinear) function mapping the states
to the available measurements.

Problem. Consider the system defined in (1)-(2). Given measurements y1, . . . , yk,
the state estimation filtering problem is to compute an optimal estimate x̂k of
the state xk at time k.

Note that formalizing a notion of optimality depends on the actual system
model that is used. For example, if xk is a random variable, then a possible
definition of optimality is that “x̂k is an unbiased estimator of xk with minimal
variance among all other unbiased estimators of xk.” On the other hand, if xk
is driven by bounded noise, one could develop a set of possible values for xk; in
this case, an optimality criterion may be that this set is the smallest set that is
guaranteed to contain the true state.

Note also that in addition to the filtering problem, i.e., the estimation of
xk, one may also be interested in the smoothing problem, i.e., the estimation
of all states from x1 through xk (e.g., in SLAM when the map is part of the
state, and it is not changing over time) as well as the prediction problem, i.e.,
the estimation of xk+1 and later states (e.g., as in model-predictive control).
While related, these problems require different techniques, hence smoothing
and prediction are not discussed in this paper.

1Note that in most systems xk+1 also depends on the input at time k, uk. To keep
notation simple, uk is not considered in this work; however, all described techniques can be
straightforwardly enhanced to incorporate inputs as well.
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Figure 1: An overview of the state estimation filtering problem state space and
some of the respective filters used in each scenario.

3 General Approach to State Estimation

As noted above, the first consideration when performing state estimation is
the system model’s functional form. There are two aspects of the functional
form that mainly affect the analysis of such systems – 1) is the system model
linear vs. non-linear in the state, and 2) is the noise modeled as a random
variable vs. a non-random bounded variable. Further refinements can be made
as well (e.g., quadratic systems, polynomial systems) but this is the most general
classification of the systems considered in existing literature.

In this section, we explore the state space determined by the above classifi-
cation at a high level; for easy reference, it is also summarized in Figure 1. Note
that in this section we split the models according to their noise assumptions
only; the general concepts discussed below are not affected by the linearity of
the system in question. The following sections will focus on specific algorithms
addressing each aspect of the state space in Figure 1.

3.1 Probabilistic Noise

By far the most popular class of models in the literature are those that assume
that noise is a random variable with a known probability distribution. As argued
in previous works [21], in many practical applications the process noise tends to
have an empirical distribution that is close to Gaussian (e.g., noise voltage in
resistors due to thermal agitation). Multiple other probability distributions have
been considered as well depending on the application (e.g., truncated Gaussian
distributions [35] for turbofan engine health estimation).
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3.1.1 Optimality and Cost Functions

In the probabilistic setting, there are multiple ways to define an optimal es-
timate. One desired property of an estimator is that it be unbiased, i.e., the
estimate eventually converges to the true state. However, this is a limit prop-
erty (i.e., holds as time goes to infinity, similar to the spirit of the law of large
numbers) and it does not provide any guarantees about estimates at any specific
points in time. Thus, the most common requirement of good estimators is that
they minimize some distance between the estimate and the true state at any
point in time.

An example distance function is the absolute value of the difference e = x̂k − xk
between the estimate and the true state, i.e., c(e) = |e|, where for simplicity xk
is assumed to be one-dimensional, though the function can be straightforwardly
extended to arbitrary dimensions. Thus, if an estimator minimizes c for all k,
then the estimate is always equal to the true state. The function c is just one
example of a cost function; more generally, a cost function can be defined as
follows:

Definition (Cost Function). A function fc is said to be a cost function if it
is:

1. Symmetric around 0, i.e., fc(e) = fc(−e).

2. Nondecreasing for positive numbers, i.e., 0 < e1 ≤ e2 =⇒ fc(e1) ≤ fc(e2).

However, a problem arises when directly manipulating a cost function due
to the fact the true state xk is never known, hence the function cannot be
minimized for the true state. Thus, a logical replacement is the expected value
of fc(e), i.e., E[fc(e)], which is well defined because xk is a random variable.
Thus, we can now define an optimal estimator as follows.

Definition (Optimal Estimator). An estimator of xk is optimal with respect
to a cost function fc if its estimate x̂k minimizes the expected cost E[fc(x̂k−xk)]
for all k.

Researchers have considered different choices for fc but the one that has
attracted the most attention, mostly due to cleaner mathematical derivations,
is the quadratic cost function fc(e) = e2. This choice has been used in one of the
classical filters, namely the Wiener filter [39], to derive an optimal estimator for
linear system models (i.e., f and g in (1)-(2) are linear functions) and arbitrary
noise distributions. Somewhat interestingly, the same optimal estimator results
when the noise distribution is Gaussian and the cost function is arbitrary.

In order to maintain consistency with the majority of works in the area, in
this paper we also assume that the cost function is fc(e) = e2 and/or the noise
distribution is Gaussian, both of which lead to the following optimal estimator.

Theorem 1 (Gaussian/Min-Squared-Error Optimal Estimator [21]). If fc(e) = e2

or if the process and sensor noises in (1)-(2) have Gaussian distributions, the
optimal estimate of xk at each k is E[xk | y1, . . . , yk], i.e., the conditional ex-
pectation of xk given all available measurements.
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3.1.2 Bayes Filters

Having fixed the optimal estimator as in Theorem 1, it remains to show how
to compute this filter for different systems. Many covered by Theorem 1 can
be classified as what is referred to as a Bayes filter, i.e., one that uses a prior
estimate and recursively computes the current estimate through a predict and
update stage. Intuitively, the predict stage computes the estimate of the state in
between measurements and the update stage computes the state estimate when
a new measurement arrives. Both classes of probabilistic filters considered in
this paper, i.e., Kalman and particle filters, are Bayes filters.

Bayes filters are appealing because they are recursive, which makes them
easy to understand and, more importantly, to implement in real time. In other
words, each predict stage uses the estimate of the previous update stage and
each update stage uses the estimate of the previous predict stage. To formalize
the filter, we first define the predict and update stage estimates before providing
the actual filter equations.

Note that conditional densities are used in all derivations instead of condi-
tional expectations because densities are somewhat easier to analyze. For any
random variable X, its probability density function (pdf) is a function p such
that

E[X] =

∫ ∞
−∞

xp(x)dx,

i.e., the expected value of X can be directly obtained from its pdf. The density
of E[xk | y1, . . . , yk] (which is a random variable) is referred to as a conditional
density.

Definition (Predicted conditional density). The predicted conditional density
of the Bayes filter is defined as the conditional density of xk given measurements
y1, . . . , yk−1:

pk|k−1(xk) := p(xk | y1, . . . , yk−1). (3)

Definition (Updated conditional density). The updated conditional density of
the Bayes filter (also referred to as a posterior density) is defined as the
conditional density of xk given measurements y1, . . . , yk:

pk|k(xk) := p(xk | y1, . . . , yk). (4)

Note that the reason Bayes filters are recursive and easy to implement is
that the systems in consideration satisfy the Markov property. Intuitively, the
Markov property says that the current state xk is only a function of the previous
state xk−1, regardless of the values of the states and measurements before that.
A similar statement exists for the current measurements.

Definition (Markov Property). In a system satisfying the Markov property,
the current state xk, when conditioned on xk−1, is independent of xp for all
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p < k − 1 and of yq for all q ≤ k:

p(xk | xk−1, x1, . . . , xk−2, y1, . . . , yk) = p(xk | xk−1). (5)

Similarly, the current measurement yk is independent of previous states and
measurements when conditioned on the current state xk:

p(yk | xk, x1, . . . , xk−1, y1, . . . , yk−1) = p(yk | xk). (6)

We are now ready to describe the equations of the general Bayes filter. Note
that the following derivation is borrowed and adapted from [37].

Theorem 2 (Bayes filter). Given a prior density pk−1|k−1, the predicted and
updated densities, respectively, are computed as follows:

pk|k−1(xk) =

∫
pf (xk | xk−1)pk−1|k−1(xk−1)dxk−1

pk|k(xk) = ηkpo(yk | xk)pk|k−1(xk),

where pf is the conditional density of the state xk given xk−1 (as derived from (1)),
po is the conditional density of the measurement yk given xk (as derived from (2))
and ηk =

∫
p(yk | z)pk|k−1(z)dz is a normalization constant that ensures the

posterior integrates to 1.

Remark. This algorithm is initialized by assuming a prior distribution on x0.

Proof. The predicted density is derived as follows:

pk|k−1(xk) = p(xk | y1, . . . , yk−1)

=

∫
p(xk, xk−1 | y1, . . . , yk−1)dxk−1

=

∫
p(xk | xk−1, y1, . . . , yk−1)p(xk−1 | y1, . . . , yk−1)dxk−1

=

∫
pf (xk | xk−1)pk−1|k−1(xk−1)dxk−1.

The second equality is due to the “marginalization” property of the joint dis-
tribution, the third follows from Bayes rule, and the fourth is derived from the
Markov property and the definition of the prior density.

The updated density can be computed as follows:

pk|k(xk) = p(xk | y1, . . . , yk)

=
p(yk | xk, y1, . . . , yk−1)p(xk | y1, . . . , yk−1)

p(yk | y1, . . . , yk−1)

=
po(yk | xk)pk|k−1(xk)∫
po(yk | z)pk|k−1(z)dz

.

The second equality is Bayes rule, and the third is the Markov property, the
definition of the predicted density and the marginalization property in the de-
nominator.
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As can be observed in the above result, each of the two equations is a function
of the previous stage of the filter, thus illustrating its recursive nature. The
derived integrals do not have closed-form solutions for arbitrary systems, yet an
important exception is the linear Gaussian case which leads to the Kalman filter
described in Section 4. Monte-Carlo approximations of these integrals can also
be computed, as is done in the particle filter, which is the topic of Section 5.

3.2 Bounded Noise

Although the probabilistic noise assumption may be reasonable in many sce-
narios, there exist cases where it does not hold or where the noise distribution
has a complicated functional form that is difficult to analyze. In such cases,
researchers attempt to determine a global bound on the noise and try to esti-
mate the state based on this bound. These approaches are referred to as set
membership methods because the bounds result in sets of possible values for
the state.

3.2.1 Optimality

Defining optimality in this setting is also not straightforward as it is not clear
how to compare two state estimates when the true value is unknown. A popular
approach is to say an estimator is optimal if it minimizes the worst-case error
(recall the error is the difference e = x̂k − xk) as compared with some class of
estimators. This class of estimators is obtained by making assumptions about
the system dynamics – if no such assumptions are made, then the worst-case
error can be arbitrarily large since multiple functions could map the available
measurements to the true state. Thus, in set membership filtering, the class
of possible dynamics (hence, the class of possible estimators) is restricted to a
broad, but analytically manageable, set of functions (e.g., continuously differ-
entiable functions of the measurements [26]).

With this notion in mind, we now formalize optimality. Let K be the set of
all possible system models. If we assume that the measurement noise is bounded
by δ (i.e., ‖vk‖ ≤ δ), then the worst-case error ewc(f, y1, . . . , yk) of an estimator
f , given measurements y1, . . . , yk, is defined as:

ewc(f, y1, . . . , yk) = sup
f̂∈K

sup
ỹi∈Bδ(yi)

‖f(y1, . . . , yk)− f̂(ỹ1, . . . , ỹk)‖, (7)

where Bδ(yi) is a ball of radius δ centered at yi, ỹi represent all possible values

of the true state given the received measurements, and f̂ represent all possible
system dynamics. Thus, ewc is indeed a worst-case measure – it is achieved when
both the actual states are far from the measurements and the true dynamics
are very different from f .

Definition (Optimal Estimator (Bounded Noise)). An estimator f is called
optimal with respect to a class of estimators K if it minimizes the worst-case
error ewc as defined in (7).
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Note that this is an intrinsically different definition from the probabilistic
one, where only the expected error is minimized and no guarantees are made
about the worst case. On other hand, estimators satisfying this definition always
have bounded performance but may achieve worse average performance overall.

A popular approach to set membership filtering is discussed in Section 6.
We discuss a possible definition for the set K and show how to find an optimal
estimator in K.

4 Kalman Filters

This section describes the original Kalman filter algorithm and then presents
several important extensions, notably the extended Kalman filter and the Kalman
consensus filter, a distributed version of the algorithm.

4.1 Classical Kalman Filter

As developed in 1960 by Kalman [21], the Kalman filter is a modified version of
the Wiener filter [39]. Whereas the Wiener filter computes the estimate using
transfer functions, the Kalman filter introduces the notion of state and state
transition. The Kalman filter is developed for linear systems, i.e., (1)-(2) now
become

xk+1 = Akxk + wk

yk = Ckxk + vk,
(8)

where Ak and Ck are matrices of appropriate dimensions, possibly changing
over time. The Kalman filter is a mean-squared-error filter, hence it satisfies
the conditions in Theorem 1 and thus computes the conditional expectation of
the state:

E[xk | y1, . . . , yk].

Since the conditional expectation is also the optimal solution in the case when
wk and vk have Gaussian distributions, a Gaussian noise assumption is usually
implied whenever one refers to the Kalman filter (even though this is a just a
special case of the filter). As this has become the norm in the related literature,
in this work we also assume that wk ∼ N (0, Q), vk ∼ N (0, R), and that the
initial condition x0 ∼ N (µ0,Σ0).

Given the system model in (8), the Kalman filter is a set of recursive equa-
tions used to compute the conditional expectation E[xk | y1, . . . , yk]. Due to
its popularity, it has undergone many improvements in presentation and deriva-
tion in order to improve researchers’ understanding. In this paper, we briefly
present the initial approach taken by Kalman before providing the Bayes filter
formulation that we believe is the most intuitive version of the Kalman filter.
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4.1.1 Original Algorithm

In his original paper [21], Kalman notes that E[xk | y1, . . . , yk] is the orthogonal
projection of xk onto the subspace Yk spanned by the vectors y1, . . . , yk. The
idea of his approach is that Yk can be represented as the combination of Yk−1
and Zk, where Zk is the subspace spanned by yk. This separation allows one to
exploit the subspace structure recursively and thus design an efficient filtering
algorithm. While still recursive, this derivation does not have update and predict
stages, hence it is not a commonly used one. We do not include it in this paper
in the interest of space.

4.1.2 Bayes Formulation of the Kalman Filter

The Bayes filter derivation of the Kalman filter is a direct application of The-
orem 2. The main idea of the derivation is that all conditional densities in
Theorem 2 (i.e., pf (xk+1 | xk), po(yk | xk), pk+1|k+1(xk+1), pk+1|k(xk+1)) are
Gaussian pdf’s. This means that the Kalman filter always maintains a Gaus-
sian distribution with parameters that can be computed in closed form.

Theorem 3. Given a linear system as in (8) with Gaussian process and mea-
surement noise, and given that the prior on the state pk|k is a Gaussian dis-
tribution with mean µ and covariance Σ, the predicted and update densities are
computed as follows:

pk+1|k(xk+1) = φ(xk+1;µp,Σp)

pk+1|k+1(xk+1) = φ(xk+1;µu,Σu),

where φ(xk+1;µ,Σ) denotes the probability density function of a Gaussian dis-
tribution with mean µ and covariance Σ, and

µp := Akµ

Σp := AkΣATk +Q

µu := µp +K(yk+1 − Ck+1µ
p)

Σu := (I −KCk+1)Σp

K := ΣpCTk+1(Ck+1ΣpCTk+1 +R)−1.

(9)

Remark. The matrix K is known as the Kalman gain. As is apparent from
the third equation, it is multiplied by the difference between the received mea-
surements and the expected measurements; this difference is referred to as in-
novation. Thus, the Kalman gain, which is a function of the state covariance,
observation matrix and measurement noise, determines the degree to which in-
novations affect the estimate.

Sketch of Proof. The full rigorous proof of the Kalman filter equations is quite
lengthy and technical, so only a sketch is provided in the interest of space.
A more complete proof can be found in [37]. According to the Bayes filter
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equations, the predict step is as follows:

pk+1|k(xk+1) =

∫
pf (xk+1 | xk)pk|k(xk)dxk

=

∫
φ(xk+1;Akxk, Q)φ(xk;µ,Σ)dxk

= φ(xk+1;Akµ,AkΣATk +Q)

= φ(xk+1;µp,Σp),

where the second equality is true because the conditional Gaussian density is
linear and the third is true because the integral of the product of two Gaussian
densities is again a Gaussian density.

The updated density is derived as follows:

pk+1|k+1(xk+1) =
p(yk+1 | xk+1)pk+1|k(xk+1)∫

p(yk+1 | z)pk+1|k(z)dz

=
φ(yk+1;Ck+1xk+1, R)φ(xk+1;µp,Σp)∫

φ(yk+1;Ck+1z,R)φ(z;µp,Σp)dz

= φ(xk+1;µu,Σu),

with µu and Σu defined as above. The second equality is once again due to the
linearity of conditional Gaussian expectations. The third is true because the
product of two Gaussian densities is again a Gaussian density.

Thus, the Kalman filter is reduced to just a few matrix equations that can
be easily implemented and executed in real time for multidimensional systems.
The most computationally (and possibly numerically unstable) calculation is
the matrix inverse when computing the Kalman gain – this has led to the devel-
opment of the Information filter which uses the inverse of the covariance matrix
instead of the actual covariance matrix [37]. The Information filter is useful in
systems where the covariance matrix contains very small values such that its
inverse is close to infinity.

4.1.3 Applications

Linear systems can be found in many branches of engineering; hence the Kalman
filter has become arguably the most popular filter and has been applied in
numerous fields. The filter’s initial intended application was in aerospace [13].
Since then, it has been applied in autonomous navigation (e.g., autopilots in
aircraft [36] and road vehicles [23]), seismology [6], radar tracking [24], etc.

4.2 Distributed Kalman Filter

While the centralized Kalman filter has been applied to multiple systems due
to its theoretical guarantees, in many modern systems a distributed filter is
required. For example, in systems where multiple sensors are spread over a
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large area (e.g., in order to monitor methane emissions in landfills [16]) or where
multiple robots attempt to collaboratively accomplish a task (e.g., estimate
their joint position in a formation [2]), it is often infeasible to transmit all
measurements to a centralized location and then compute the estimates in real
time. In such cases, each node in the system (i.e., robot, sensor) communicates
only with nearby nodes (neighbors) and computes a local estimate of the whole
system’s state; information from distant nodes is eventually received as well,
thus implying that a distributed algorithm might still have good convergence
properties.

There exist several distributed versions of the Kalman filter, depending on
the application and on the communication model. In this paper, we discuss a
popular algorithm called the Kalman Consensus Filter (KCF) [30, 31]. In this
version each node in the system sends its state estimate to all of its neighbors;
once it receives their estimates, it updates its own estimate of the system’s state
in order to incorporate the new information. This is a very general model as
it does not require great communication or computation capabilities from any
node, e.g., it applies to the multi-robot systems described above.

4.2.1 Problem Formulation

Formally, the problem is as follows. Consider a system with linear dynamics as
before:

xk+1 = Akxk + wk. (10)

(11)

The system contains n sensors2 that measure (parts of) the state with linear
observational models:

yik = Cikxk + vik, (12)

where yik is the measurement received by sensor i; similarly Cik and vik are the
observation matrix and measurement noise, respectively, specific to sensor i.
Note that the Cik’s may not measure the entire state, i.e., the system may not
be observable by a single sensor, thus communication is necessary in order for
each node to compute a precise state estimate.

It is assumed that each sensor can communicate only with nearby other
sensors (the definition of “nearby” depends on the application). The system
of sensors is thus formalized as a graph G = (V, E), where each sensor i is a
vertex vi ∈ V, and an edge (vi, vj) ∈ E exists when vi and vj are neighbors, i.e.,
they can communicate. During each round k, every vi transmits its predicted
estimate xik+1|k of the state to all of its neighbors.

The problem addressed by this paper is to develop a filter that is executed at
each sensor so that each sensor computes a precise estimate of the entire state.

2Note that the word “sensors” can be replaced with “robots” or other devices with sensors
that may have their own state, which is also captured in the overall system state.
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(a) Average estimation error. (b) Average disagreement between sensors.

Figure 2: Evaluation of the Kalman Consensus Filter [30].

4.2.2 Approach

The approach took by the author of the KCF is two-fold. First, he suggests
that one way of incorporating a received state estimate from another node is
through a “consensus gain” matrix, similar to the Kalman gain matrix when
a new measurement is received (i.e., matrix K in (9)) [30]. Thus, a consensus
update is implemented in addition to the measurement update. For sensor vi
and each neighbor vj , the consensus update has the form L(xik+1|k−x

j
k+1|k) for

some matrix L, i.e., the update equation in the Kalman filter now becomes:

µu := µp +K(yk+1 − Ck+1µ
p) + L(xik+1|k − x

j
k+1|k).

The author thus investigates the choice of L matrices and derives a form that
leads to estimates that converge as time progresses [30]. The actual expression
for L and its derivation involve Lyapunov functions and are not included here
in the interest of space.

Once the L matrices are fixed, the choice of the Kalman gain matrix K also
needs to be considered because the Kalman filter expression for K no longer pro-
vides any optimality guarantees. Thus, in the extension of the original KCF [31],
the author investigates optimal choices for K. In particular, a value for K is
chosen such that it minimizes the mean squared error of the estimate, as dis-
cussed in Section 3. This is achieved by finding the value of K that minimizes
the trace of the covariance matrix Σ (recall the diagonal elements of Σ are the
individual expected squared errors).

4.2.3 Evaluation

The author evaluated the Kalman Consensus Filter in simulation by creating
a sensor network with randomly located nodes. The system in consideration
consists of two states and evolves according to the following linear model:

xk+1 = Axk + wk,
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where A is a given matrix (the full expression for A can be found in [30] but
is omitted here to avoid confusion and unnecessary notation). The observation
model for each node is:

yik = Cikxk + vik,

where each Cik is either [0 1] or [1 0] so that the system is unobservable by any
single node. Yet, by communicating, the nodes can reach a consensus over time
and estimate the system’s state.

Figure 2 shows the estimation results using the Kalman Consensus Filter;
note that several algorithms were developed in the original paper that were
not described here, yet the overall trends are the same for all algorithms. In
particular, Figure 2a shows that the average estimation error over all nodes
decreases as time goes by. In addition, since consensus is arguably equally
important in a distributed setting as is the average estimation error, the filter is
evaluated by computing the average disagreement between the nodes. As shown
in Figure 2b, the average disagreement decreases over time and is close to 0 for
the best algorithms.

In conclusion, although this filter does not have the optimality guarantees of
the Kalman filter, it is a promising approach to the distributed filtering problem
for linear systems.

4.3 Extensions

Although linear Gaussian systems are abundant, most systems in reality are
non-linear, and they often do not have Gaussian noise. Wrong assumptions
about the system can lead the Kalman filter to diverge and provide estimates
with very high errors. Consequently, multiple extensions have been developed
to deal with various scenarios encountered in practice. We briefly describe two
such extensions in this subsection.

4.3.1 Extended Kalman Filter

The extended Kalman filter (EKF) is an immediate extension of the Kalman
filter for non-linear systems. It works by starting with the non-linear model of
original system, i.e., (1)-(2), and linearizing the system at each point in time.
The idea of the EKF is that if the system is close to linear for small periods of
time, then using its linear approximation will not yield large errors.

The EKF works by computing derivatives of the transition and observation
functions, i.e., f and g in (1)-(2):

Ak =
∂f(xk)

∂xk

∣∣∣∣
x̂k|k

Ck =
∂g(xk)

∂xk

∣∣∣∣
x̂k|k−1

.
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Ak and Ck are then used in same way as in the original linear model in (8).
The EKF is also a widely used algorithm, with applications in robotics and
navigation [37], target tracking [24], etc.

4.3.2 Gaussian Mixture Filter

Another popular extension of the Kalman filter is the Gaussian Mixture (GM)
filter. A GM has a probability density function h that is a linear combination
of Gaussian densities:

h(x) =

M∑
i=1

wiφ(x;µi,Σi),

where wi are positive weights that sum to 1. GM’s have been extensively studied
in the literature [17] due to their linear relationship to Gaussians and also due
to the fact that, given enough elements in the mixture, they can be used to
approximate any distribution with a continuous density.

The GM filter is a straightforward extension of the classical Kalman filter.
Due to their linear nature, GM’s are propagated with a bank of Kalman filters
(one for each element in the mixture), hence the posterior is also a GM, i.e., the
filter has a closed-form solution for GM’s.

5 Particle Filters

While the Kalman filter and its extensions provide a great set of tools for ana-
lyzing linear systems and certain non-linear systems that can be linearly approx-
imated, most systems observed in practice are (highly) non-linear. In addition,
the Gaussian noise assumption is often violated as well. Both of these factors
cause the integrals in the Bayes filter (Theorem 2) to become intractable.

The rapid development of modern computers in the last few decades has
made it possible to approximate the pdf’s in Theorem 2 through simulation.
Known as Monte Carlo methods, such approaches work by creating multiple
simulations (particles) of a system’s operation through time, and then analyzing
these particles (e.g., computing their moments) as a proxy for the unknown true
distribution. The motivation behind this approach is a law-of-large-numbers
argument – as the number of particles gets large, their empirical distribution
gets close to the true distribution.

5.1 Classical Particle Filter

Similar to the Kalman filter, the particle filter has undergone multiple adap-
tations and changes throughout its history; its modern development is often
credited to Gordon [12]. More recent works have generalized it and have shown
its connection to the Bayes filter [10, 37]. The name “particle filter” was first
coined by Del Moral [7] and is now widely used in the robotics community [8].
“Particle filter” is also the preferred name in this paper, though the filter is
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also referred to in the literature as the Markov Chain Monte Carlo filter or the
bootstrap filter [12].

5.1.1 Problem Statement

The particle filter assumes the general non-linear system model with additive
noise:

xk+1 = f(xk) + wk

yk = g(xk) + vk,

where wk and vk are noises with known distribution (not necessarily Gaussian).
The problem addressed by the particle filter is the same recursive filtering prob-
lem as in the Kalman filter.

5.1.2 Approach

Intuitively, the particle filter works by simulating the system’s operation mul-
tiple times, each time drawing a new random number from the process noise’s
distribution. This way, as the number of particles gets large, the empirical
distribution of the particles will approach the true probability distribution of
the posterior. In addition, each particle is assigned a weight that determines
how likely it is to be the true state, given the received measurements. The
weights are updated every time a new measurement is received – the weights
are increased for particles closer to the measurement.

Formally, let Xk = {x[1]k , . . . , x
[M ]
k } denote the set of M particles at time k;

each x
[i]
k has been drawn from pk|k, i.e., the posterior distribution of the state

at time k. Each particle x
[i]
k has a weight wi that represents the probability

that the true state is equal to x
[i]
k based on the empirical particle distribution.

Thus, Xk, together with all weights, represents the empirical distribution at
time k. For instance, if one were to compute an estimate of the state, it is done
as follows:

x̂k =

M∑
i=1

wix
[i]
k . (13)

Other moments can be computed similarly.
The particle filter algorithm is summarized in Algorithm 1. In order to

compute the posterior pk+1|k+1, the particle filter also has predict and update

stages. For each particle x
[i]
k , the prediction step consists of drawing a sample

from p(xk+1 | x[i]k ), which represents the predicted “estimate” of that particle.
Upon receiving a new measurement, each particle’s weight is updated as follows:

w∗i = wip(yk+1 | x[i]k+1), (14)
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Algorithm 1 Particle Filter Algorithm

Input: A set Xk of M particles, a set W of weights, and the new measurement
yk+1.

1: X̄k+1 ← ∅
2: W̄k+1 ← ∅
3: for i = 1 to M do
4: x

[i]
k+1 ← sample(p(xk+1 | x[i]k ))

5: add(x
[i]
k+1, X̄k+1)

6: w∗i ← wip(yk+1 | x[i]k+1)

7: add(w∗i , W̄k+1)
8: end for
9: Xk+1 ← ∅

10: Wk+1 ← ∅
11: for i = 1 to M do
12: draw integer p with probability ∝ w∗p
13: add(x

[p]
k+1,Xk+1)

14: add(w∗p,Wk+1)
15: end for
16: return (Xk+1,Wk+1)

i.e., the updated weight is larger when the latest measurement is more likely

to have come from x
[i]
k+1. Weights are then renormalized so that they sum to 1

again.
Note that an extra step may be required in order to ensure that the particles

have been generated from pk+1|k+1, following the update with yk+1. This is
achieved via resampling – M new particles are sampled with replacement from

the set Xk+1, where each particle x
[i]
k+1 is selected with probability equal to its

weight w∗i .
The theoretical motivation for the particle filter is the law of large numbers

and similar results about distribution convergence (e.g., the Glivenko-Cantelli
theorem). These results say that when a large number of samples are drawn
from a probability distribution, then the empirical distribution approaches the
true distribution. The resampling step ensures that the resampled particles are
drawn from the true posterior distribution and will approximate it given enough
particles.

On the other hand, not many results exist about any finite set of parti-
cles. In general, it is difficult to estimate in advance how many particles are
needed for any specific application. Furthermore, practice shows that the num-
ber of particles needed in order to achieve good estimation grows very quickly
with the state dimension and can lead to particle deprivation problems in high-
dimensional spaces [37]. That is why particle filters have been mostly applied to
systems with a reasonably low number of dimensions, e.g., robotics; applications
are discussed in Section 5.3.
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(a) Exact Bayesian Infer-
ence.

(b) Rao-Blackwellised parti-
cle filter with 50 particles.

(c) Boyen Koller algo-
rithm [4].

Figure 3: Evaluation of the Rao-Blackwellised particle filter on SLAM [9]. The
grid number is shown in the vertical axis, whereas the horizontal axis shows
elapsed time.

5.2 Rao-Blackwellised Particle Filter

An important extension of the particle filter is the so-called Rao-Blackwellised
particle filter [10]. Motivated by the particle deprivation problem described
above, it assumes that the state can be separated into two sets, one that can be
filtered in closed-form (e.g., with a Kalman filter) and one that is estimated with
the classical particle filter. When possible, this separation results in a smaller
number of particles necessary for good estimation since it effectively reduces the
dimensionality of the state estimated by the particle filter.

Formally, the Rao-Blackwellised particle filter works by splitting the state
into two substates, i.e., xk = (x1,k, x2,k). Then, the posterior is expressed by
using Bayes rule:

p(x1,k, x2,k | y1, . . . , yk) = p(x1,k | x2,k, y1, . . . , yk)p(x2,k | y1, . . . , yk). (15)

Thus, if p(x1,k | x2,k, y1, . . . , yk) can be computed in closed-form (e.g., if x1,k can
take at most finitely many values), then only the second part, p(x2,k | y1, . . . , yk),
needs to be computed using the particle filter.

Similar convergence properties exist for the Rao-Blackwellised particle filter
as for the classical particle filter. While the same caveat applies about any finite
number of particles, the gains in the number of particles can be significant (i.e.,
orders of magnitude fewer particles) when the state is divided appropriately [10].
The next subsection discusses one successful application of this filter.

5.2.1 Evaluation

The Rao-Blackwellised particle filter has been applied successfully to the SLAM
problem, where the separation of the state into a map and the robot’s location
seems natural [14]. In the original application [9], a robot moves in a two-
dimensional grid environment with 8 cells. Each cell has a value of 1 or 0
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depending on whether it contains an obstacle or not, respectively. The robot
gets a measurement of its location plus a (possibly wrong) measurement of the
value of each cell; the robot’s goal is to estimate both its location and the map’s
obstacles.

The Rao-Blackwellised particle filter can be applied to this problem because
it is assumed that cell value measurements are conditionally independent given
the robot’s location. In particular, by assuming that the probability of a fixed
cell ci being 1 or 0 is independent of the probability of any other cell cj being 1
or 0, conditioned on the measurements and on the robot’s position, it is possible
to compute the first probability in (15) in closed-form. Thus only the robot’s
location is estimated using particles.

Using this state separation, the filter needs only 50 particles to achieve good
estimation accuracy. The results are shown in Figure 3. It shows the robot’s
belief at each time step as it moves through the grid. The figure shows that
the Rao-Blackwellised particle filter with only 50 particles (Figure 3b) performs
almost as well as exact Bayesian inference (Figure 3a), whereas the Boyen Koller
algorithm [4] (Figure 3c) performs much worse and gets confused at a few steps.3

Therefore, the Rao-Blackwellised particle filter is a great approach for solv-
ing non-linear estimation problems with a clear separation of the state into
substates.

5.3 Applications

The particle filter has been applied in multiple areas, though by far the most
dominant is robotics. Mainly applied to SLAM, it has been used in applica-
tions with both ground [8] and aerial [15] vehicles. Furthermore, it has been
used in target tracking [22], hydrologic data assimilation [29], acoustic source
localization [38] and others.

6 Set Membership Filters

As mentioned above, particle filters are useful in many non-linear system sce-
narios, yet they do not achieve very good performance in high-dimensional
states. While Kalman filter extensions for non-linear systems do not suffer
from the curse of dimensionality, they underperform when the analyzed systems
are highly non-linear, thus leading to linearizations around wrong points and
high estimation errors. As another alternative to filtering in non-linear systems,
set membership methods have been proposed.

At a high level, set membership filtering works by propagating a set of all
possible values for the true state. Such a set is usually achieved by assuming that
both process and measurement noise are bounded. In this paper, we describe
one of the most popular set membership approaches in the literature [27].

3The Boyen Koller algorithm is an inference algorithm for dynamic Bayesian networks. It
is used for comparison in the original Rao-Blackwellised particle filter paper [9].
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6.1 Problem Formulation

In this problem space, we assume a non-linear system with a non-linear obser-
vational model of the form:

xk+1 = f(xk) + wk

yk = g(xk) + vk,

where the only difference from the probabilistic model is that no assumptions
are made about the noise distribution, except that it is bounded, i.e., ‖wk‖ ≤ α,
‖vk‖ ≤ δ for some positive α and δ.

As discussed in Section 3, we assume that system dynamics f is bounded in
some way and hence belongs to the class of functions K (finding a suitable such
set is also part of the problem solution); this allows one to be able to reason
about all possible dynamics. The problem is to develop a filter h that minimizes
the worst-case error as defined in Section 3:

ewc(h, y1, . . . , yk) = sup
ĥ∈K

sup
ỹi∈Bδ(yi)

‖h(y1, . . . , yk)− ĥ(ỹ1, . . . , ỹk)‖. (16)

6.2 Approach

In this section we describe the approach taken by Milanese et al. [26, 27]. Rather
than developing a recursive filter similar to the ones shown in the previous two
sections, they employ a regression approach, i.e., they investigate the function
fx mapping all past measurements to the current state. The motivation for this
approach is the following Theorem (modified and adapted to the notation of
this paper):

Theorem 4 ([27]). Assume that vk = 0 and wk = 0 for all k. If the system is
observable, then there exists a function fx such that

xk = fx(ϕk)

ϕk = [y1, . . . , yk].

Remark. In the interest of space, the notion of observability is not introduced
in this paper because it does not affect the analysis. In addition, every unobserv-
able system can be reduced to an observable system, so we assume all systems
considered in this work are observable.

What Theorem 4 suggests is that if the system operates nominally and no
noise is observed, then the current state can be expressed as a function fx of all
available measurements. Thus, when we consider the available noisy measure-
ments, we have the following relation between the states and the measurements:

yk = fx(ϕk) + dk,

where dk is a disturbance term that accounts for the difference between nominal
behavior and the noise. Similar to vk and wk, dk is also bounded, i.e., ‖dk‖ < ε
for all k.
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Thus, one way of evaluating the accuracy of any estimator would be to
compare it with fx. However, fx is not known in general, and no information
can be obtained about it unless further assumptions are made. In particular, the
authors assume that fx is continuously differentiable with a bounded derivative,
i.e.,

fx ∈ K := {f ∈ C1 | ‖f ′(φk)‖ ≤ γ},

where C1 is the class of all continuously differentiable functions. Thus, in order
to quantify the accuracy of an estimator, one only needs to compare it with
other functions in the set K. Note that the set of possible estimators is further
restricted by the available data; in particular, any estimator must not have
empirical error more than ε. The set of feasible estimators F is then restricted
as follows:

F = {f ∈ K | ‖yk − f(ϕk)‖ ≤ ε}.

Thus, given the assumptions about fx, F represents the smallest set of functions
in K that have not been invalidated by the data.

Having defined F , it is now possible to define the worst-case error for any
estimator h:

ewc(h, y1, . . . , yk) = sup
ĥ∈F

sup
ỹi∈Bδ(yi)

‖h(y1, . . . , yk)− ĥ(ỹ1, . . . , ỹk)‖,

where Bδ(yi) accounts for the fact that each measurement is at most δ away
from the true state (i.e., measurement noise is bounded by δ as mentioned in the
problem formulation). Given this error, the problem is now to find an optimal
estimator that minimizes it.

The first step in finding such an estimator is to find tight upper and lower
bounds given any set of measurements. The authors show that the following
two functions are in fact tight upper and lower bounds on the estimate:

f̄(ỹ) = min
k=1,...,M

(yk + ε+ γ‖ỹ − yk‖)

f(ỹ) = max
k=1,...,M

(yk − ε− γ‖ỹ − yk‖),

where M is a any fixed number of steps and yk are the received measurements
as before. Note that ỹ is just a function input, i.e., the above two functions are
defined for all possible “measurements” regardless if they are actually possible
given the system in consideration. The intuition behind f̄ is that at any given
step k, the true state cannot be farther than the received measurement plus
the measurement error; the last term also incorporates process noise; since this
relation is true for any k, by taking the minimum over all k, we obtain a tight
upper bound. A similar intuition exists for f .

Theorem 5 ([26]). The functions f̄ and f are optimal bounds, i.e., the interval

[f, f̄ ] is the smallest interval guaranteed to contain the optimal estimate.
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Given these two functions, we are now ready to develop the optimal estima-
tor.

Theorem 6 ([27]). The function fc = 1/2[f̄+f ] is an almost optimal estimator,
i.e.,

ewc(fc, y1, . . . , yk) ≤ (1/2)[f̄(yk)− f(yk)] + γδ.

Remark. The term “almost optimal” is precisely defined by Milanese et al. [27].
It is a relaxed, yet useful, definition of optimality that is easier to achieve by
certain algorithms. We omit the definition in the interest of space.

In summary, the set membership approach works by constructing the func-
tions f̄ and f from existing data, and then using them to perform estimation
given future measurements. Several parameters need to be selected in order
for these functions to be well defined, namely the bounds on the process and
measurement noise, as well as the bounds on the error and on the derivative of
the true regression function fx.

6.3 Evaluation

To illustrate the advantages of the set membership filter, the authors evaluated
it on a highly non-linear system, namely the Lorenz chaotic system:

x1,k+1 = (1− τσ)x1,k + τσx2,k

x2,k+1 = (1− τ)x2,k − τx1,kx3,k + τρx1,k

x3,k+1 = x3,k + τx1,kx2,k − τβx3,k
y1,k = x1,k

y2,k = x2,kx3,k,

where τ = 0.01, σ = 10, ρ = 28, β = 2.6667. This system has both non-linear
dynamics and a non-linear observation model, thus making it difficult to analyze
using a Kalman filter. The goal for the filter is to compute an estimate of
x2,kx3,k.

To evaluate the performance of the set membership filter, it is compared with
an extended Kalman filter. The estimation results are shown in Figure 4. As can
be seen in the Figure, the set membership estimates are much less susceptible
to the non-linearities in the system; on the other hand, the extended Kalman
filter suffers greatly due to linearizing around the wrong point and not capturing
some of the sharp changes in dynamics.

Thus, when initialized properly and with correct parameters, the set mem-
bership approach can be a powerful method for performing state estimation.

6.4 Other Approaches

Other approaches to set membership filtering exist in the literature as well, de-
pending on how the process/measurement noise is bounded. In particular, if
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Figure 4: Evaluation of the set membership filter on the Lorenz system. Dashed
(black): true signal; dot-dashed (red): extended Kalman filter estimate; contin-
uous (blue): set membership filter estimate.

energy constraints on the noise are assumed (i.e., ellipsoids), it is possible to de-
rive a recursive filter that has a similar form to the classical Kalman filter [3, 34].
In a more recent approach, researchers have explored the norm-bounded uncer-
tainty problem and have applied convex optimization techniques in order to
obtain an optimal estimate [11, 40]. Finally, recursive schemes for constructing
ellipsoidal sets described by sum quadratic constraints have been developed [33].

Another important subfield of set membership methods is sensor fusion [25].
In this domain, the system in consideration is assumed to have multiple sensors
measuring the same variable. By fusing all measurements, the system is made
robust to sensor failures or attacks. Sensors are assumed to provide a bounded
set of values; these sets are intervals in the one-dimensional case [18, 20, 25] and
can be generalized to different shapes in multidimensional cases (e.g., hyper-
rectangles [5] or polyhedra [19]) depending on the problem. These sets are then
combined in order to produce a minimal set that is guaranteed to contain the
true value (e.g., by assuming that at least some number of measurements contain
the true value). Sensor fusion has been successfully applied in fault/attack
detection problems [18, 25] as well as in robust state estimation [32].

7 Discussion and Conclusion

This paper presented three classes of state estimation filtering techniques that
cover a wide variety of applications observed in practice. These techniques
were developed with different assumptions and applications in mind; hence,
providing a fair comparison is not straightforward. In this section, we provide
general observations and comments; however, specific applications may be found
in support of either of these methods.

First, we note that if the system in consideration is linear, then a Kalman
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filter is most likely the best approach. Even if the noise is not Gaussian (or
if even if it is hard to identify any probability distribution), the Kalman filter
still has strong theoretical guarantees. In addition, its numerous successful
applications over the years have cofirmed its place as the most popular filtering
algorithm.

If the system’s model is non-linear, however, then the choice of filter is made
more difficult. The extended Kalman filter (EKF) is also a popular choice in
this case; it is especially powerful in systems that are mildly non-linear, e.g., a
differential drive ground vehicle. However, in highly non-linear systems (e.g.,
quadrotors), the EKF may diverge due to linearizing around a wrong estimate.
Furthermore, the EKF is computationally expensive in high-dimensional spaces
as inverting matrices with more than a dozen states may be too slow on a
microprocessor.

In cases where the EKF performs poorly, the next logical choice is the par-
ticle filter. Particle filters have been shown to outperform the EKF in highly
non-linear systems, both in terms of accuracy and computational cost. An-
other appealing property of particle filters is that their accuracy can always
be enhanced given more particles; thus, the advancement of modern comput-
ers is yet another argument in favor of the particle filter. On the other hand,
particle filters suffer from the curse of dimensionality and perform poorly in
high-dimensional spaces. In particular, the number of required particles grows
very quickly with the dimensionality of the state, thus making it prohibitive to
perform accurate estimation in high-dimensional spaces.

Finally, if neither of the above approaches leads to acceptable results, a set
membership approach should be considered. As shown in Section 6, such an
approach can greatly outperform an EKF in highly non-linear systems. The
challenge with set membership approaches is that multiple parameters must
be selected in order for the algorithm to perform well. The selected bounds
greatly affect the filter’s performance – if too small values are chosen, then the
filter might diverge; if too large values are selected, then the estimates might be
biased.

In conclusion, which method is selected depends first and foremost on the
system model and on the process and measurement noise. A choice must be
made between a very precise, but difficult to analyze, model and a model that
is simple, but not very descriptive of the true system behavior. Once a model is
determined and the noise is established accordingly, then a filtering technique
can be selected based on the above observations.
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