
Chapter 30

Solutions to Quizes & Exercises

Do the quizzes and exercises by yourself. When you get stuck, take a peak here.

Chapter 0

Numbers and Sets.

1. 252 = 2× 2× 3× 3× 7.
2. minimum is 3.
3. union = {1, 3, 7, 8, 9, 10, 19}; intersection = {3, 10}.
4. Yes, there must be a minimum element and the minimum is at most 18.
5. 5 (integer, rational, real); 3

4
(rational, real); π (real).

6. 3k, 3k + 3.
7. (i) In base 3, 33 + 2× 32 + 31 + 2 ∗ 30 = 50. (ii) In base 4, 43 + 2× 42 + 41 + 4 ∗ 40 = 102.
Logarithms and Exponentials.

1. ln(12) = ln(2× 2× 3) = ln(2) + ln(2) + ln(3) ≈ 2.484.
2. 220 = (210)2 ≈ 10002 = 106.
3. ln(1× 2× 3× · · · × 10) = (ln 1 + ln 2 + ln 3 + · · ·+ ln 10).
4. How are 2a/2b = 2a−b. 20 = 1.
5. By definition of log10, 100 = 10log10 100. Taking log2 of both sides, log2 100 = log2(10

log10 100) = log10 100× log2 10.
More generally, x = βlogβ x; taking logα of both sides, logα x = logβ x× logα β.

Sums and Products.

1. (a) 1+ · · ·+1000 = 1
2
×1000×1001 = 500, 500. (b) 1+ · · ·+n = 1

2
n(n+1). (c) 1+ 1

7
+ 1

72
+ 1

73
+ · · · = 1

1− 1
7

= 7
6
.

2. 5! = 20; n! = n× (n− 1)× (n− 2)× · · · × 2× 1; 0! = 1.
3.
∑1000

i=1 i =
∑1000

k=1 k = 1
2
× 1000× 1001 = 500, 500.

∑1000
k=1 i = 1000× i.

∑

|i−1|≤5 i =
∑6

i=−4 i = 11.

4. 1 + 2 + 3 + · · ·+ k =
∑k

i=1 i =
1
2
k(k + 1).

∑n
k=1 k = 1

2
n(n+ 1).

5.
∑k

i=1 ln(i) = ln(k!);
∏k

i=1 i = k!.

Algebra.

1. (1 + 2)2 = 32 = 9. Also, (1 + 2)2 = 12 + 2× 1× 2 + 22 = 9.
2. (a+ b)2 = a2 + 2ab+ b2; (a+ b)3 = a3 + 3a2b+ 3ab2 + b3; (a+ b)4 6=a4 + 4a3b+ 4a2b2 + 4ab3 + b4.
3. x2 − 5x− 6 = (x− 6)(x+ 1) = 0, therefore the roots are x = 6 and x = −1
4. To get solutions to e2x − 5ex − 6 = 0, set y = ex; then y2 − 5y − 6 = 0 and (from the previous problem) y = ex = 6

or y = ex = −1. So, x = ln 6 or x = iπ where i =
√
−1. Other solutions are obtained by adding 2kπi, k ∈ Z.

5. x+ y = 2 and 2x+ 3y = 7 implies x = −1 and y = 3.
6. 3x+11

x2−x−6
= 4

x−3
− 1

x+2
and 3x+11

x2+6x+9
= 3

x+3
+ 2

(x+3)2
.

Calculus.

1. 1 + 2 + 22 + 23 + 24 + · · · diverges
1 + 1

2
+ ( 1

2
)2 + ( 1

2
)3 + ( 1

2
)4 + · · · converges to 2

1− 1 + 1− 1 + 1− 1 + 1− 1 + · · · diverges
1 + 1

2
+ 1

3
+ 1

4
+ · · · diverges

1− 1
2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · · converges to approx. 0.6931
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2. Derivatives: 3x2; 2e2x; 2x ln 2; −1/x2; −2/x3; 1/x; 1/x ln 2; 1/x.
3. Integrals: x4/4; e2x/2; 2x/ ln 2; ln |x|; −1/x.

4. Limits as x→ 0: ex−1
sin(2x)

x→0−→ 1
2
; ex−1

1+x

x→0−→ 0; ex−1
sin(x2)

x→0−→ ∞; ex−1
x+x2

x→0−→ 1; ex−1
e2x−1

x→0−→ 1
2
.

5. Limits as x→∞: ex−1
e2x−1

x→∞−→ 0; ex−1
x3+2ex

x→∞−→ 1
2
; ex

xx

x→∞−→ 0.

6. f(x) = 1
2+sin(x)

= 1
3
+ 1

18
(x− π

2
)2 + 1

216
(x− π

2
)4 + 1

6480
(x− π

2
)6 + · · · .

7. Using the substitution u = arctan(x), du = dx/(1 + x2) and so
∫ T

0
dx 1

1+x2 = arctan(T ).

8. For f(t) =
∫ t

0
dx sin(1 + x2ex), d

dt
f(t) = sin(1 + t2et).

Pop Quiz 0.1. A powerful tactic when a problem looks hard is to make it easier. Suppose the letters lined up
vertically. That’s trivial. Now morph this simple problem into the one we want.

Easier problem Modify: move A Modify: move C Solution.

C

B

A

ABC

C

B

A

ABC

C

B

A

ABC

C

B

A

ABC

Do not underestimate the power of simplification, the technique of making a problem easier: tinker. It helps to
understand a problem, build confidence (by solving something) and can pinpoint the difficulty in the harder problem.

Chapter 1

Pop Quiz 1.1. The red square is safe. The final infection is on the right.

Exercise 1.2. Six infections won’t infect the whole grid; seven is the minimum.

Exercise 1.3. (1995 Russian Mathematics Olympiad) The title serves as a hint. Tinker! No matter what heavy lifting
you do when you end in the start configuration the total payment is 0. In such problems, it can help to find something
that does not change, an invariant. Suppose a box has n stones. The revenue the box can generate by repeatedly
removing coins is (n − 1) + (n − 2) + · · · + 2 + 1. Yes, there is a cost related to which box the coins will go, but for
the moment we look only at the revenue. We won’t need to compute this sum. We only need to observe that it is a
function R(n), which depends only on n. If a stone leaves a box with n stones, the potential revenue drops by n − 1.
Similarly, if a stone enters a box with n stones, its potential revenue increases by n. Let the boxes contain a, b and c.
Let us compute the change in potential revenue if you move a stone from a to b.

R(a) +R(b) +R(c)→ R(a)− (a− 1) +R(b) + b+R(c) = R(a) +R(b) +R(c) + b− a+ 1.

The payment for this move is a − 1 − b, which exactly offsets the change in the total revenue. We often use ∆ to
indicate change. Let R1, R2, R3 be the revenue potential of the three boxes, and W your wealth. Then, in any move,

∆(R1 +R2 +R3 +W ) = 0

The start and end configuration are the same, so R1 +R2 +R3 is unchanged. Hence your wealth must stay 0.

Chapter 2

Pop Quiz 2.1. O = {n | n = 2k − 1; k ∈ N}
Exercise 2.2. True because {pigs that fly} is empty, hence it is a subset of {things which are green with purple spots}.

Pop Quiz 2.3. M ∩ V = {a, i}; M ∪ V = {m, a, e, i, k, l, o, u}. With U = {a, b, . . . , z}, M = {b, c, . . . , h, j, n, o, . . . , z}.
Exercise 2.4. (a) Drawings look different. (b) Friendships are the same, so it can be the same network.

Pop Quiz 2.5. A graph. The people on the grid are linked if they are neighbors. The ebola spreads along links.

Exercise 2.6.(a) {−1,−2, . . .} = {n | n = −k; k ∈ N} (b) {1, 1
2
, 1
3
, . . .} = {r | r = 1

n
; n ∈ N}

Chapter 3

Pop Quiz 3.1.
(a) Tough to verify. Ask A for a soul mate and check if B, . . . , F have that same soul mate. If not, ask A for another

and repeat. Either A runs out of soul mates, or you verify the claim. (Assumes A has a finitely many soul mates.)
(b) Every American has their own dream, or there’s one “American dream” for everyone (house, 2 cars, 3 kids,. . . ).
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Exercise 3.2. (a) f. (b) Don’t know yet. (c) Who is Kilam? (d) t.

Exercise 3.3. p ∧ r: It is raining and it is cloudy (f; it can be cloudy without rain).
p→ q: If it is raining then Kilam has his umbrella (t; Kilam is a smart guy).
p→ r: If it is raining then it is cloudy (t; you need clouds for rain).
q → r: If Kilam has his umbrella then it is cloudy (t; why does Kilam have an umbrella?).
q → p: If Kilam has his umbrella then it is raining (f as it could just be cloudy).
r → p: If it is cloudy then it is raining (f it can be cloudy without rain).

Exercise 3.4.
(a) t; (i) Yes, it is cloudy. (ii) No, it is clear.
(b) f; (i) We don’t know if it is raining.
(c) t; (i) Yes. (ii) Don’t know; you could just be smart. (iii) Don’t know. (iv) No.
(d) t; (i) Yes. (ii) Don’t know; you could just be wandering. (iii) Not hungry; not thirsty.

Pop Quiz 3.5. In C++, ‖ is or, and && is and. To show that both codes execute the instructions for the same x, y
values, define the propositions p : x > 0, q : y > 1 and r : x < y.
The left code tests p ∨ (q ∧ r) before executing the instructions, and the right tests
p ∨ q. We show their truth-tables (right). The highlighted row 3 is a problem. The
truth values are different. Let’s examine closer: p is f, x ≤ 0; q is t, y > 1; and, r is
f, x ≥ y. This row in the truth-table is impossible: x ≤ 0 and y > 1 implies x < y, so
r is t. To compare compound propositions, you only need to consider all the possible
truth values of the basic propositions. If the basic propositions are independent all 8
possibilities are relevant: p ∨ (q ∧ r) is not equivalent to p ∨ q in general. In our case,
p, q, r being f,t,f is not possible: our basic propositions are not independent because
the truth value of r is constrained by the truth values of p and q.

p q r p ∨ (q ∧ r) (p ∨ q)

1. f f f f f

2. f f t f f

3. f t f f t

4. f t t t t

5. t f f t t

6. t f t t t

7. t t f t t

8. t t t t t

For all possible truth values of p, q, r, the compound propositions match, so the two snipets perform identical compu-
tations. The right snipet is simpler, uses fewer operations and requires fewer gates (important in some applications).

Exercise 3.6. ¬p→ q
eqv≡ ¬q → p

eqv≡ p ∨ q ¬(p ∨ q)
eqv≡ ¬p ∧ ¬q

(q ∧ ¬r)→ ¬p eqv≡ (¬p ∨ ¬q) ∨ r
eqv≡ (p ∧ q)→ r p ∨ (q ∨ r)

eqv≡ ¬r → (p ∨ q)

Pop Quiz 3.7. (a) n ∈ N. (b) A predicate cannot be t or f. (c) “4 is a perfect square.” (d) P (4) and P (9) are t.

Exercise 3.8.
(a) P (x) = “x has grey hair”. P (Kilam).
(b) P (x) = “Map x can be colored with 4 colors with adjacent countries having different colors”. ∀x : P (x).
(c) P (n) = “Integer n is a sum of two primes.”. ∀n ∈ E : P (n) (E is set of even natural numbers).
(d) P (x) = “x has blue eyes and blond hair”. ¬∃x : P (x). Another way to formulate the statement with predicates is:

P (x) = “x has blue eyes;” Q(x) = “x has blonde hair.” ¬∃x : P (x) ∧Q(x).

Exercise 3.9.
(∃a : G(a)) ∧ (∃a : H(a)): someone has blue eyes and someone has blonde hair.
(∃b : G(b))∧ (∃c : H(c)): someone has blue eyes and someone has blonde hair. A quantified statement does not change
when you change the name of a (variable) parameter.
(∃a : G(a)) ∧ H(c): “someone has blue eyes and c has blond hair.” (A predicate, not a statement.) To make it a
statement, specify a value for c.

Exercise 3.10.
(a) (i) ∀a : (∀b : P (a, b)): Every person a has every person b as soul mate.

∀b : (∀a : P (a, b)): Every person b is soul mate to every person a. (Both are equivalent)

(ii) ∃a : (∃b : P (a, b)): Some person has a soul mate.
∃b : (∃a : P (a, b)): Some person is soul mate to someone. (Both are equivalent)

(b) They are valid predicates. In English: Q(a) = ∃b : P (a, b) = “Some person is soul mate to a”
R(b) = ∀a : P (a, b) = “All people have b as soul mate”

Rewriting using Q and R, (3.2) is ∃b : (∀a : P (a, b)) = ∃b : R(b), and (3.3) is ∀a : (∃b : P (a, b)) = ∀a : Q(a)

Exercise 3.10. Add a requirement that two people satisfying the soul mate condition must be equal,

∀a : ((∃b : P (a, b)) ∧ (∀x, y : P (a, x) ∧ P (a, y)→ x = y))

.
Exercise 3.12. Easier to disprove (a): find a single n for which 22

n

+ 1 is not prime. To disprove (b), show that for
every choice of (a, b, c), a3 + b3 6= c3. Disproving a “there exists” is typically harder than disproving a “for all”.
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Similarly proving “for all” is harder than proving “there exists”. This is because ¬∃x : P (x)
eqv≡ ∀x : ¬P (x). So, showing

“there exists” is false means showing a “for all” is true. Similarly ¬∀x : P (x)
eqv≡ ∃x : ¬P (x).

Chapter 4

Pop Quiz 4.1.
(a) p : n is greater than 2 and even q : n is the sum of two primes
(b) p : x and y are rational q : x+ y is rational
(c) p : ax2 + bx+ c = 0 and a 6= 0 q : x = (−b+

√
b2 − 4ac)/2a or x = (−b−

√
b2 − 4ac)/2a

Exercise 4.2.
(a) Proof. We use a direct proof.

1: Assume that a is divisible by b and b is divisible by c.
2: This means there are integers k, ℓ for which a = kb and b = ℓc.
3: Then, a = kb = kℓc = mc, where m = kℓ.
4: Since m = kℓ is an integer, a is divisible by c, as was to be shown.

(b) A proof does not have to be written in algorithmic steps.
Proof. Let x and y be arbitrary real numbers. First observe that ±x ≤ |x| and ±y ≤ |y|. There are two cases:
(i) x+ y ≥ 0, in which case |x+ y| = x+ y ≤ |x|+ |y| (because x ≤ |x| and y ≤ |y|). (ii) x+ y < 0, in which case
|x+ y| = −(x+ y) = −x− y ≤ |x|+ |y| (because −x ≤ |x| and −y ≤ |y|). In both cases |x+ y| ≤ |x|+ |y|.

(c) Proof. Consider any four consecutive integers x, x + 1, x + 2, x + 3. One of these four must be divisible by 4,
and so equals 4k. Among the remaining numbers, two are consecutive so one is divisible by 2 and so equals 2ℓ.
Therefore the product of all four numbers is 4k × 2ℓ× (integer), a multiple of 8.

The proof is subtle. We ask the reader to prove by cases. Let r be the remainder when x is divided by 4, x = 4k+r
where r ∈ {0, 1, 2, 3}. Show that in each of the four cases for r, the product is divisible by 8. For example, if
x = 4k the product is 4k(4k + 1)(4k + 2)(4k + 3) = 8k(4k + 1)(2k + 1)(4k + 3).

Pop Quiz 4.3. You need to find one n∗ ∈ D for which Q(n∗) is f. Equivalent to disproving: if n ∈ D, then Q(n).

Exercise 4.4.
(a) The two truth-tables are identical. The only way p → q is f is with p t and q f. The only case ¬q → ¬p is f is

with ¬q t and ¬p f, i.e. with p t and q f.
(b) (i) if the grass is not wet, then it did not rain last night.

(ii) if you do not stay at home, then the mall is not crowded.
(c) (i) Contrapositive if x ≤ 10 and y ≤ 10, then one of x, y is not positive or xy ≤ 100.

Proof. (By contrposition) Suppose x ≤ 10 and y ≤ 10 (the consequent is false). There are two cases.
Case 1: One of x, y is not positive in which case the antecendent p is f.
Case 2: Both x, y are positive, so 0 < x, y ≤ 10. In this case xy ≤ 10× 10 = 100 and the antecedent p is f.

(ii) Contrapositive: if
√
r is rational then r is rational.

Proof. (By contraposition) Suppose
√
r is rational (the consequent is false). Then

√
r = a/b for integer a

and natural number b. This means r = a2/b2 which is rational because a2 is an integer and b2 is a natural
number. Hence the antecedent is false.

Pop Quiz 4.5. The truth-tables are the same: p↔ q
eqv≡ (p→ q) ∧ (q → p) (logically equivalent).

Exercise 4.6.

(a) (Do not intersect, but not parallel according to the valid definition.)
(b) (a) Two line segments (in 3-dimensions) are parallel if and only if they both lie in the same plane and when both

are extended to infinity in both directions, there is no point of intersection.
(b) A triangle is isosceles if and only if at least two sides have the same length.

Exercise 4.7.
(a) To get a contradiction, suppose there are m,n ∈ Z with 21m+9n = 3(7m+3n) = 1. 3 divides the LHS, therefore

3 divides 1. FISHY! This contradiction proves the claim.
(b) Suppose x, y > 0 and x + y < 2

√
xy. Both sides of the inequality are positive. Squaring, (x + y)2 < 4xy, or

x2 + 2xy + y2 < 4xy, or x2 − 2y + y2 < 0 or (x− y)2 < 0. This is FISHY because the square of a real numnber
cannot be negative. This contradiction proves the claim.

(c) Suppose that m and n are both odd, m = 2k + 1 and n = 2ℓ + 1. m2 + n2 = 4k2 + 4k + 1 + 4ℓ2 + 4ℓ + 1. Since
m2 + n2 is divisible by 4, m2 + n2 = 4s, therefore 4s = 4(k2 + k + ℓ2 + ℓ) + 2, or 4(s − k2 − k − ℓ2 − ℓ) = 2 or
2(s− k2 − k − ℓ2 − ℓ) = 1. This means 1 is divisible by 2, FISHY. This contradiction proves the claim.
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Exercise 4.8.
(a) Direct proof because the result clearly follows from the assumption that x is real.
(b) Contraposition, for if n is even (not odd), then it is easy to show by algebra that n2 is odd.
(c) Direct proof because by simple algebra if n is odd one can square and show n2 is even.
(d) Show an example of a number that is not a square and prove it.
(e) Direct proof because, by simple algebra, a product of two ratios is a ratio.
(f) Direct proof. By simple algebra one can show that a product of two odd numbers is odd.
(g) Contradiction. This gives something to start with by assuming

√
6 = p/q. Now find any contradiction.

(h) When the path is unclear try contradiction, because it gives you something to work with.
Proof. Let x1, . . . , xn be arbitrary numbers and let µ = (x1+· · ·+xn)/n be the average, so that x1+· · ·+xn = nµ.
Now assume that every xi < µ (to obtain a contradiction). Then x1 + · · · + xn < µ + · · · + µ = nµ. This is a
contradiction. Therefore, not every xi < µ, so at least one number is as large (or larger) than the average µ.
Commit this important fact to memory. Some number is as large as the average. What larger than the average?

Pop Quiz 4.9. We prove x ∈ A ∩ B → x ∈ C by direct proof. Assume x ∈ A ∩ B. Then x ∈ A and x ∈ B, so x is
even and x = 9k. If k is odd, then x is the product of two odd numbers which is odd. Therefore, k is even (to make x
even). So, k = 2n, which means x = 18n = 6 · (3n), a multiple of 6. Therefore, x ∈ C, which concludes the proof.

Exercise 4.10.
(a) (A ∩B) ∪ (A ∩ C) = A ∩ (B ∪ C):

A C

B

A C

B

A ∩B A ∩ C

−→
union

A C

B

A ∩ (B ∪ C)
(A ∩B) ∪ (A ∩ C)

←−
intersect

A C

B

A C

B

A B ∪ C

Suppose x ∈ (A ∩ B) ∪ (A ∩ C). Then either x ∈ A and x ∈ B or x ∈ A and x ∈ C. In both cases, x ∈ A and
x ∈ B ∪ C so x ∈ A ∩ (B ∪ C). Now suppose x ∈ A ∩ (B ∪ C). Then x ∈ A and either x ∈ B or x ∈ C. If x ∈ B,
then x ∈ (A∩B) and so x ∈ (A∩B)∪ (A∩C). Similarly, if x ∈ C, then x ∈ (A∩C) and so x ∈ (A∩B)∪ (A∩C).

(b) A ∪B = A ∩B:

A B A B

A B

−→
union

A B

A ∪B, A ∩B

←−
intersect

complement
A B A B

A B

Suppose x ∈ A ∪ B This means x ∈ A or x ∈ B. x ∈ A→ x 6∈ A→ x 6∈ A ∩ B → x ∈ A ∩B; x ∈ B → x 6∈ B →
x 6∈ A ∩B → x ∈ A ∩B. In both cases, x ∈ A ∩B.

Now, suppose x ∈ A ∩B, that is x 6∈ A ∩ B. So either x 6∈ A or x 6∈ B. x 6∈ A → x ∈ A → x ∈ A ∪ B;
x 6∈ B → x ∈ B → x ∈ A ∪B. In both cases, x ∈ A ∪B.

Exercise 4.11. We must prove a set equality, which is an if and only if.

First, suppose x ∈ f−1(C ∪ D). Then, f(x) = C ∪ D. If f(x) ∈ C, then x ∈ f−1(C); otherwise f(x) ∈ D and
x ∈ f−1(D). In either case, x ∈ f−1(C) ∪ f−1(D).

Second, suppose x ∈ f−1(C) ∪ f−1(D). If x ∈ f−1(C), then f(x) ∈ C → f(x) ∈ C ∪D, which means x ∈ f−1(C ∪D).
Otherwise x ∈ f−1(D) and f(x) ∈ D → f(x) ∈ C ∪D which means x ∈ f−1(C ∪D). In either case, x ∈ f−1(C ∪D).

We have proved x ∈ f−1(C ∪D)↔ x ∈ f−1(C) ∪ f−1(D), which proves the set equality.

Chapter 5

Pop Quiz 5.1. Yes. When could a boy have entered the line? If the first boy is at position k > 1, then at k − 1 is a
girl. But behind that girl must be a girl, not a boy.

Exercise 5.2.
(a) S(n) is a sum of integers so it is an integer, call it k.
(b) By the high-school geometric sum formula: 1 + 4 + 42 + · · ·+ 4n−1 = (4n − 1)/(4− 1) = (4n − 1)/3.
(c) Therefore k = (4n − 1)/3, or 4n − 1 = 3k. That is, 4n − 1 is divisible by 3.

Exercise 5.3. (a) n ≥ 2 (b) n ≥ 0 (c) n = 0, 1 (d) n ≥ 1 (e) n ≥ 1

Exercise 5.4.
(a) Define the claim P (n) :

∑n−1
i=1 a+ id = na+ 1

2
n(n− 1)d.
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1: [Base case] P (1) claims that a = a, which is clearly t.

2: [Induction step] We show P (n)→ P (n+ 1) for all n ≥ 1, using a direct proof.
Assume (induction hypothesis) P (n) is t:

∑n−1
i=1 a+ id = na+ 1

2
n(n− 1)d.

Show P (n+ 1) is t:
∑n

i=1 a+ id = (n+ 1)a+ 1
2
(n+ 1)(n)d.

We compute the sum
∑n

i=1 a+ id as follows:
n∑

i=1

a+ id = a+ nd+
n−1∑∑∑

i=1

a+ id

ih
= a+ nd+ na+ 1

2
n(n− 1)d

= (n+ 1)a+ 1
2
(n(n− 1) + 2n)d = (n+ 1)a+ 1

2
(n+ 1)nd

(IH stands for “by the induction hypothesis”). We have shown P (n+ 1) is t, as needed.

3: By induction, P (n) is t ∀n ≥ 1.

(b) Define the claim P (n) :
∑n−1

i=1 ari = a(rn − 1)/(r − 1).

1: [Base case] P (1) claims that a = a, which is clearly t.

2: [Induction step] We show P (n)→ P (n+ 1) for all n ≥ 1, using a direct proof.
Assume (induction hypothesis) P (n) is t:

∑n−1
i=1 ari = a(rn − 1)/(r − 1).

Show P (n+ 1) is t:
∑n

i=1 ar
i = a(rn+1 − 1)/(r − 1).

We compute the sum
∑n

i=1 ar
i as follows:

n∑

i=1

ari = arn + nd+
n−1∑∑∑

i=1

ari ih
= arn + a(rn

−1)
r−1

= a(rn+1−rn+rn−1)
r−1

= a(rn+1 − 1)/(r − 1).

We have shown that P (n+ 1) is t, as needed.

3: By induction, P (n) is t ∀n ≥ 1.

(c) Define the claim P (n) : n ≤ 2n.

1: [Base case] P (1) claims that 1 ≤ 21, which is clearly t.

2: [Induction step] We show P (n)→ P (n+ 1) for all n ≥ 1, using a direct proof.
Assume (induction hypothesis) P (n) is t: n ≤ 2n.
Show P (n+ 1) is t: n+ 1 ≤ 2n+1.

n+ 1
ih

≤ 2n + 1 ≤ 2n + 2n = 2n+1.

We have shown that P (n+ 1) is t, as needed.

3: By induction, P (n) is t ∀n ≥ 1.

(d) Define the claim P (n) : 5n − 1 is divisible by 4.

1: [Base case] P (1) claims that 5− 1, is divisible by 4, which is clearly t.

2: [Induction step] We show P (n)→ P (n+ 1) for all n ≥ 1, using a direct proof.
Assume (induction hypothesis) P (n) is t: 5n − 1 is divisible by 4, so 5n − 1 = 4k.
Show P (n+ 1) is t: 5n+1 − 1 is divisible by 4.

5n+1 − 1 = 5 · 5n − 1
ih
= 5 · (4k + 1)− 1 = 20k + 4 = 4(5k + 1).

Therefore 5n+1 − 1 is divisible by 4, and we have shown that P (n+ 1) is t.

3: By induction, P (n) is t ∀n ≥ 1.

(e) Define the claim P (n) :
∑n

i=1 i · i! = (n+ 1)!− 1.

1: [Base case] P (1) claims that 1 = 2!− 1, which is clearly t.

2: [Induction step] We show P (n)→ P (n+ 1) for all n ≥ 1, using a direct proof.
Assume (induction hypothesis) P (n) is t:

∑n
i=1 i · i! = (n+ 1)!− 1.

Show P (n+ 1) is t:
∑n+1

i=1 i · i! = (n+ 2)!− 1. We compute
∑n+1

i=1 i · i! as follows:
n+1∑

i=1

i · i! = (n+ 1)(n+ 1)! +
n∑∑∑

i=1

i · i!

ih
= (n+ 1)(n+ 1)! + (n+ 1)!− 1
= (n+ 1)!(n+ 1 + 1)− 1 = (n+ 2)!− 1.

We have shown that P (n+ 1) is t, as needed.

3: By induction, P (n) is t ∀n ≥ 1.

Pop Quiz 5.5. The claim is readily verified by substituting a0, a1, a2, a3 into the four equations.

Exercise 5.6.
(a) Tinker. Compute S(n) for small n: n 1 2 3 4 5 6 7 8 9 10 · · ·

S(n) 1 4 9 16 25 36 49 64 81 100 · · ·

sol – 6
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A reasonable guess is S(n) = n2. The proof by induction follows the standard template. For the base case,
S(1) = 1 = 12. Suppose S(n) = n2 and consider

S(n+ 1) = S(n) + 2n+ 1
ih
=n2 + 2n+ 1 = (n+ 1)2.

(ih stands for “by the induction hypothesis”). By induction, S(n) = n2 for all n ≥ 1.
(b) As usual, first tinker with small n: n 1 2 3 4 5 6 · · ·

S(n) 1 9 36 100 225 441 · · ·
∑n

i=1 i 1 3 6 10 15 21 · · ·
A reasonable guess is S(n) = (

∑n
i=1 i)

2. The proof by induction follows the standard template. For the base case,
S(1) = 1 = 12. Suppose S(n) = (

∑n
i=1 i)

2 and consider

S(n+ 1) = S(n) + (n+ 1)3
ih
=
( n∑

i=1

i
)2

+ (n+ 1)3 = 1
4
n2(n+ 1)2 + (n+ 1)3,

where the last step follows from the formula
∑n

i=1 i =
1
2
n(n+ 1). Therefore,

S(n) = 1
4
(n+ 1)2(n2 + 4(n+ 1)) = 1

4
(n+ 1)2(n+ 2)2.

The last expression is (
∑n+1

i=1 i)2. By induction, S(n) = (
∑n

i=1 i)
2 for all n ≥ 1.

Pop Quiz 5.7. (a) n ≥ 3 (b) n = 3, 4 (c) n ≥ 1

Exercise 5.8.The base cases n = 1 and n = 2 are demonstrated in the exercise. Assume the
2n× 2n grid missing the top-left square can be L-tiled. We show a 2n+1× 2n+1 grid missing
its top-left square. We divided the grid into four 2n × 2n grids and placed an L-tile to cover
three of the center-squares as shown in the figure. Each 2n × 2n sub-grid is now missing a
corner-square, which can be treated as the top-left square by rotating your view. By the
induction hypothesis, each sub-grid can be L-tiled independently. So, the 2n+1 × 2n+1 grid
missing the top-left square can be L-tiled, proving the claim for n + 1. By induction, the
claim holds for all n ≥ 1.

2n2n

2n

2n

Exercise 5.9.
(i) Define C = {x + z0 | x ∈ B}. Then C contains only natural numbers, and is non-empty because B is non-empty.

By well-ordering C has a minimum element c∗ = b∗ + z0 where b∗ ∈ B. Consider any b ∈ B. Then c = b+ z0 ∈ C
and therefore c∗ ≤ c, i.e. b∗ + z0 ≤ b+ z0 or b∗ ≤ b. This proves that b∗ is a minimum element of B.

(ii) (a) Let n∗ be the smallest counter-example; n∗ ≥ 2 (P (1) is t). Therefore
∑n∗−1

i=0 a+ id 6= n∗a+ 1
2
n∗(n∗ − 1)d;

and, because n∗ is the smallest counter-example,
∑n∗−2

i=0 a+ id = (n∗ − 1)a+ 1
2
(n∗ − 1)(n∗ − 2)d. But,

n∗−1∑

i=0

a+ id = a+ (n∗ − 1)d+
n∗−2∑

i=0

a+ id

= a+ (n∗ − 1)d+ (n∗ − 1)a+ 1
2
(n∗ − 1)(n∗ − 2)d

= n∗a+ 1
2
n∗(n∗ − 1)d,

which contradicts n∗ being a counter-example. So, there is no counter-example.
(b) Let n∗ be the smallest counter-example; n∗ ≥ 2 (P (1) is t). Therefore

∑n∗−1
i=0 ari 6= a(rn∗ − 1)/(r− 1); and,

n∗ − 1 ≥ 1 is not a counter-example, so
∑n∗−2

i=0 ari = a(rn∗−1 − 1)/(r − 1). But,
n∗−1∑

i=0

ari = arn∗−1 +
n∗−2∑

i=0

ari = arn∗−1 +
a(rn∗−1 − 1)

r − 1
=

a(rn∗ − 1)

r − 1
,

which contradicts n∗ being a counter-example. So, there is no counter-example.
(c) Let n∗ be the smallest counter-example: n∗ ≥ 2 (P (1) is t) and n∗ > 2n∗ . Also, n∗ − 1 is not a counter-

example (n∗ is the smallest counter-example), so n∗ − 1 ≤ 2n∗−1. But,

n∗ = n∗ − 1 + 1 ≤ 2n∗−1 + 1 ≤ 2n∗−1 + 2n∗−1 = 2n∗ ,

which contradicts n∗ being a counter-example. So, there is no counter-example.
(d) Let n∗ be the smallest counter-example: n∗ ≥ 2 (P (1) is t) and 5n∗ − 1 is not divisible by 4. Also, n∗ − 1 is

not a counter-example (n∗ is the smallest), so 5n∗−1 − 1 = 4k. But,

5n∗ − 1 = 5 · 5n∗−1 − 1 = 5(4k + 1)− 1 = 4(5k + 1),

so 4 divides 5n∗ − 1 contradicting n∗ being a counter-example. So, n∗ does not exist.
(e) Let n∗ be the smallest counter-example; n∗ ≥ 2 (P (1) is t). Therefore

∑n∗
i=1 i.i! 6= (n∗ + 1)!− 1. Since n∗ is

the smallest counter-example,
∑n∗−1

i=1 i ∗ i! = n∗!− 1. But,
n∗∑

i=1

i.i! = n∗n∗! +
n∗−1∑

i=1

i ∗ i! = n∗n∗! + n∗!− 1 = (n∗ + 1)!− 1,

which contradicts n∗ being a counter-example. So, there is no counter-example.
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Exercise 5.10. Suppose P (1) is t; and, P (n) → P (n + 1) is t for n ≥ 1. We show P (n) is t for all n ≥ 1. Assume
P (n) is f for some n, and let n∗ be the smallest counter-example; n∗ ≥ 2 because P (1) is t. Therefore n∗ − 1 is not a
counter-example (n∗ is the smallest), so P (n∗− 1) is t. But, P (n∗− 1)→ P (n∗), since n∗− 1 ≥ 1 and since P (n∗− 1)
is t, it implies that P (n∗) is t. This contradicts n∗ being a counter example, so P (n) is t for all n ≥ 1.

Chapter 6

Pop Quiz 6.1. Assume 2
√
n+ 1√

n+1
> 2
√
n+ 1. Multiply by

√
n+ 1 and rearrange to 2

√
n(n+ 1) > 2n + 1. Both

sides are positive, so squaring gives 4n2 + 4n > 4n2 + 4n+ 1, or 0 > 1, a contradiction. So, 2
√
n+ 1√

n+1
≥ 2
√
n+ 1.

Exercise 6.2.
(a) Define the claim P (n) : n3 < 2n. Let us consider the induction step, so assume that P (n) is t and consider

(n + 1)3 = n3 + 3n2 + 3n + 1 < 2n + 3n2 + 3n + 1. P (n + 1) will follow if 3n2 + 3n + 1 < 2n, so define
Q(n) : 3n2 + 3n + 1 < 2n. Let us consider the induction step for Q: assume Q(n), i.e. 3n2 + 3n + 1 < 2n and
consider Q(n+1). 3(n+1)2+3(n+1)+1 = 3n2+3n+1+6n+6 < 2n+6n+6. Q(n+1) will be t if 6n+6 < 2n.
Let us define the claim R(n) : 6n+ 6 < 2n. Let us prove the stronger claim P (n) ∧Q(n) ∧R(n) for n ≥ 10.

For the base case, the reader can verify that P (10), Q(10), R(10) are all t. For the induction step, assume
P (n)∧Q(n)∧R(n) for n ≥ 10, so n3 < 2n∧3n2+3n+1 < 2n∧6n+6 < 2n. We prove P (n+1)∧Q(n+1)∧R(n+1).

n+ 13 = n3 + 3n2 + 3n+ 1
ih
< 2n + 2n = 2n+1

3(n+ 1)2 + 3(n+ 1) + 1 = 3n2 + 3n+ 1 + 6n+ 6
ih
< 2n + 2n = 2n+1

6(n+ 1) + 6 = 6n+ 6 + 1
ih
< 2n + 6 < 2n + 2n = 2n+1.

The 1st equation uses P (n) for n3 and Q(n) for 3n2+3n+1. The 2nd equation uses Q(n) for 3n2+3n+1 and R(n)
for 6n+6. The 3rd equation uses R(n) for 6n+6 and 6 < 2n when n ≥ 10. Therefore P (n+1)∧Q(n+1)∧R(n+1)
is t. By induction P (n) ∧Q(n) ∧R(n) is t for n ≥ 10.

(b) Without strengthening the claim, in the induction step for n2 ≤ 2n, we have

(n+ 1)2 = n2 + 2n+ 1 ≤ n2 + 2n+ n = n2 + 3n ≤ n2 + n · n = 2n2.

The first inequality is because 1 ≤ n and the second because 3 ≤ n. The rest of the induction step continues as
before. The induction step works as long as n ≥ 3. However, the base case only works for n = 4.

In the induction step for n3 ≤ 2n, we have

(n+ 1)3 = n3 + 3n2 + 3n+ 1 ≤ n3 + 3n2 + 4n ≤ n3 + 4n2 ≤ n3 + n3 = 2n3.

The first inequality is because 1 ≤ n, hence 3n+1 ≤ 4n; the second is because 4 ≤ n, hence 3n+4n ≤ 3n2+n2 = 4n2;
the third is because 4 ≤ n, hence 4n2 ≤= n · n2 = n3. The rest of the induction step continues as before. The
induction step works as long as n ≥ 4. However, the base case only works for n = 10.

In the text, we strengthened the claim even though the original claim is provable with a little creativity for
pedagogical reasons, to highlight this peculiarity with induction that proving stronger things can be easier. But
we are not highilighting for highlighting’s sake. In many cases (e.g. next problem) the original claim cannot be
proved by induction and the only way to go is by strengthening the claim.

(c) The base case, n = 1, is easy to check. For the induction step, assume 1 + 1
22

+ · · ·+ 1
n2 ≤ 2 and consider n+ 1:

1 + 1
22

+ · · ·+ 1
n2 + 1

(n+1)2
≤ 2 + 1

(n+1)2
.

But now what? The RHS is greater than 2 and the induction step fails with no possibility of ressurection. Let us
instead prove the stronger claim 1 + 1

22
+ 1

32
+ · · ·+ 1

n2 ≤ 2− 1
n
. Again, the base case for n = 1 is easy to check.

For the induction step, assume 1 + 1
22

+ 1
32

+ · · ·+ 1
n2 ≤ 2− 1

n
and consider n+ 1:

1 + 1
22

+ · · ·+ 1
n2 + 1

(n+1)2
≤ 2− 1

n
+ 1

(n+1)2
= 2− 1

n+1
+ 1

n+1
− 1

n
+ 1

(n+1)2
= 2− 1

n+1
− 1

n(n+1)2
.

(Verify the last step using algebra.) The last expression is clearly less than 2− 1
n+1

, proving the induction step.

Pop Quiz 6.3. No because each subgrid has 4n squares, which is not a multiple of 3 (the number of squares in an
L-tile). This is so because we know that 4n − 1 is divisible by 3, so 4n can’t be.

Exercise 6.4. We prove a stronger claim by induction, P (n) : the 2n × 2n grid can be L-tiled for any missing square.
The base case is the 2×2 square. For the induction step, assume P (n), so the 2n×2n grid can be L-tiled for any missing
square. For P (n+ 1), consider the 2n+1 × 2n+1 grid with any square missing. Divide the grid into its 4 sub-squares as
in the text. Place an L-tile in the center overlapping with the 3 sub-grids that are empty. You now have four 2n × 2n

sub-grids, each with a square missing somewhere; three of them have a corner square missing and one has a square
missing in some arbitrary position. By the induction hypothesis, each sub-grids can be independently L-tiled, which is
an L-tiling of the whole 2n+1 × 2n+1 grid, proving P (n+ 1). By induction, P (n) is true for n ≥ 1.
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Pop Quiz 6.5.
(a)

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) · · ·

(b) There are three sets of arrows: black (starts at 1); gray (starts at 2); and, light gray (starts at 3). To touch every
n with a chain of implications from a base case, we need the three boxed bases cases P (1), P (2), P (3).

Exercise 6.6.
(a) (i)

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) · · ·
A chain starts at every odd n (we have shown the chains starting at 1, 3, 5).
(ii) There is no in-arrow into odd n, so you need infinitely many base cases 1, 3, 5, 7, 9, 11, . . ..

(b) (i)

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) · · ·
Now, there is an incoming arrow to every n from

⌊
n/2

⌋
.

(ii) Since there is an incoming arrow to every n, you only need the base case P (1).

Exercise 6.7.
(a) 21 = 21 + 22 + 24.
(b) Define P (n) : n is a sum of distinct powers of 2. The base case is P (1) and 1 = 20. We use strong induction.

Assume P (1), . . . , P (n), and consider P (n+ 1). There are two cases.

Case 1: Even n. Since P (n) is t, n =
∑

i≥1 ai2
i, where ai = 0, 1. Hence, n+1 = 20 +

∑

i≥1 ai2
i proving P (n+1).

Case 2: Odd n, so n + 1 is even, and 1 ≤ 1
2
(n + 1) ≤ n. Since P ( 1

2
(n + 1)) is t, 1

2
(n + 1) =

∑

i≥1 ai2
i, where

ai = 0, 1. Therefore n+ 1 =
∑

i≥1 ai2
i+1, proving P (n+ 1).

In both cases, we proved P (n+ 1), and so, by induction, P (n) is t for n ≥ 1.
(c) Define P (n) : n =

∑∞
i=1 aii!, where ai ∈ {0, 1, . . . , i}. The base case is P (1) and 1 = 1!. We use strong induction.

Assume P (1), . . . , P (n), and consider P (n+ 1).

Let n =
∑

i≥1 aii!. Let k be the first index for which ak < k, so n =
∑k−1

i=1 ii! + akk! +
∑

i≥k+1 aii!. We claim that
n+ 1 = (ak + 1)k! +

∑

i≥k+1 aii!, which proves P (n+ 1). To see this, there are two cases.

Case 1: k = 1, in which case the summation
∑k−1

i=1 i is empty (i.e. zero) and a1 = 0 (because a1 < 1), therefore we
are just adding 1 to n, which clearly gives n+ 1.

Case 2: k ≥ 2. By Exercise 5.4(e), n = k!− 1 + akk! +
∑

i≥k+1 aii! = (ak + 1)k!− 1 +
∑

i≥k+1 aii!.

Adding 1 to both sides, n+ 1 = (ak + 1)k! +
∑

i≥k+1 aii!, proving P (n+ 1). By induction P (n) is t for n ≥ 1.

Exercise 6.8.
(a) Define P (n) : the greedy algorithm uses the fewest coins for n. The base case P (1) is clearly t, since greedy uses

one 1¢ coin, the best possible. We use strong induction, so assume P (1), . . . , P (n) and consider P (n+ 1).

Let n + 1 ≥ 25. Suppose that the optimal way to obtain n + 1 does not contain a quarter. It cannot contain 3
or more dimes, as you can replace 3 dimes with a quarter and a nickel and do better. We leave it to the reader
to show in a similar way that it cannot contain 2 dimes, 1 dime or zero dimes, which is impossible. Therefore,
optimal must contain a quarter; and then some number of coins for n+ 1− 25. Greedy uses a quarter and by the
induction hypothesis, the optimal number of coins for n+ 1− 25, which means greedy is optimal for n+ 1.

Suppose 10 ≤ n+ 1 < 25. A similar reasoning shows there must be at least one dime, hence greedy is optimal. (If
there is no dime, there aren’t 2 nickels, or 1 nickel and at least 5 pennies, or no nickel and at least 10 pennies.)

Suppose 5 ≤ n + 1 < 10. Using similar reasoning, there must be a nickel and greedy is therefore optimal. Lastly,
Greedy is clearly optimal for n+ 1 < 5.

Thus greedy is optimal for n+ 1, and hence by induction, greedy is optimal for all n ≥ 1.
(b) Consider denominations {1¢,4¢,5¢}. To make 8¢, greedy uses {5¢,1¢,1¢,1¢}, but you only need two coins, {4¢,4¢}.

Pop Quiz 6.9.No. Only P (1), P (5) are t. You need base cases P (1), P (2), P (3), P (4). Then, P (1) → P (5); P (1) ∧
P (2)→ P (6); P (1) ∧ P (2) ∧ P (3)→ P (7); P (1) ∧ P (2) ∧ P (3) ∧ P (4)→ P (8); P (1) ∧ · · · ∧ P (5)→ P (9); . . .

Chapter 7

Pop Quiz 7.1.f(3) cannot be computed. f(3) = f(2) + 5 = f(1) + 3 + 5 = f(0) + 1 + 3 + 5 = . . . . Since we don’t
know any of f(2), f(1), f(0), f(−1), . . . , we cannot compute f(3).

Exercise 7.2. (a) f(−1) = f(0) = 0; f(1) = f(0)+1 = 1; f(2) = f(1)+3 = 4; f(3) = f(2)+5 = 9; (b) f(n) = n2.

sol – 9



30. Solutions to Quizes & Exercises

Exercise 7.3. (a) and (b) are well defined. In (c), the recursive part uses a larger value farther from a base case. In
(d) you cannot compute f(1).

Exercise 7.4. P (0), P (1) are true since f(0), f(1) are given. Assume P (n), so f(n) can be computed. Then f(n+2) =
f(n) + 2, proving P (n+ 2). Hence, P (n)→ P (n+ 2). By leaping induction, P (n) is t for n ≥ 0.

Exercise 7.5.
(a) f(n) = 2n. (Base case) f(0) = 0. (Induction step) Assume f(n) = 2n; then, f(n+ 1) = 2 + f(n) = 2(n+ 1).
(b) f(n) = 0. (Base case) f(0) = 0. (Induction step) Assume f(n) = 0; then, f(n+ 1) = 2f(n) = 2× 0 = 0.
(c) f(n) = 2n. (Base case) f(0) = 1. (Induction step) Assume f(n) = 2n; then, f(n+ 1) = 2f(n) = 2× 2n = 2n+1.

Exercise 7.6. First we unfold the recursions in (a), (b), (c); (d) is complicated.

(a) f(n) = f(n− 1) + log2 n

f(n− 1) = f(n− 2) + log2(n− 1)

f(n− 2) = f(n− 3) + log2(n− 2)
...

f(3) = f(2) + log2 3

f(2) = ✯ 0

f(1) + log2 2

+ f(n) = log2 2 + · · ·+ log2 n

= log2 n!

(b) f(n) = 2f(n− 1)

f(n− 1) = 2f(n− 2)

f(n− 2) = 2f(n− 3)
...

f(3) = 2f(2)

f(2) = 2 ✯ 1

f(1)

× f(n) = 2× · · · × 2

= 2n−1

(c) f(n) = nf(n− 1)

f(n− 1) = (n− 1)f(n− 2)

f(n− 2) = (n− 2)f(n− 3)
...

f(2) = 2f(1)

f(1) = 1 ✯ 1

f(0)

× f(n) = 1× 2× · · · × n

= n!

In (a), the cancelations occur when you equate the sum of the LHS terms to that of the RHS terms. In (b) and (c),
the cancelations occur when you equate the products. Here are the proofs.
(a) f(n) = log2 n!. (Base case) f(1) = 0 = log2 1!. (Induction step) Assume f(n) = log2 n!; then, f(n + 1) =

f(n) + log2(n+ 1) = log2 n! + log2(n+ 1) = log2(n+ 1)!.
(b) f(n) = 2n−1. (Base case) f(1) = 1 = 20 = 21−1. (Induction step) Assume f(n) = 2n−1; then, f(n+ 1) = 2f(n) =

2× 2n−1 = 2n = 2n+1−1.
(c) f(n) = n!. (Base case) f(0) = 1 = 0!. (Induction step) Assume f(n) = n!; then, f(n + 1) = (n + 1)f(n) =

(n+ 1)× n! = (n+ 1)!.
(d) It is possible to unfold the recursion, but one must be careful.

f(n) = f(n− 1)2

f(n− 1)2 = (f(n− 2)2)2

(f(n− 2)2)2 = ((f(n− 3)2)2)2

...

((f(2)2)...)2 = (((f(1)2)2)...)2

+ f(n) = (((f(1)2)2)...)2

= (((22)2)...)2

The cancelations are after you sum on the LHS and
RHS. So, f(n) is 2 squared n − 1 times. When you
square, you multiply the exponent by 2, so

f(n) = 21×2×2×···×2 = 22
n−1

.

Computing the formula was a little complicated, but the
proof by induction after you have the formula is standard.

(Base case) f(1) = 2 = 21 = 22
0

= 22
1−1

.

(Induction step) Assume f(n) = 22
n−1

. Then,

f(n+ 1) = f(n)2

= 22
n−1

× 22
n−1

= 22×2n−1

= 22
n

= 22
n+1−1

.

There’s an easier analysis of this recursion.

Transforming a recursion. We seize the chance to show a powerful trick for analyzing recursions: transform f(n) to
a function g(n) that’s easier to analyze. The recursion for f(n) transforms to one for g(n). We use the transformation

g(n) = log2 f(n).

Note: g(1) = log2 f(1) = 1. Taking logs of both sides of the recursion for f(n) gives

log2 f(n) = log2 f(n− 1)2 = 2 log2 f(n− 1).

We get a recursion for g(n) by replacing log2 f with g, g(n) = 2g(n − 1). We analyzed this recursion in part (b),

g(n) = 2n−1 and f(n) = 2g(n) = 22
n−1

.

Exercise 7.7. T1 = 1 = F (2) and T2 = 2 = F3, so the base cases are true. We use strong induction. Suppose
T1 = F2, . . . , Tn = Fn+1 for n ≥ 2. By the recursion, Tn+1 = Tn + Tn−1 = Fn+1 + Fn (by the induction hypothesis).
But by the Fibonacci recursion, Fn+1 + Fn = Fn+2, hence Tn+1 = Fn+2. By induction, Tn = Fn+1 for n ≥ 1.

Exercise 7.8. Two base cases because Fn+1 needs Fn and Fn−1. The induction starts at n = 12. To prove Fn ≤ 2n

with base cases F1 = 1 ≤ 21 and F2 = 2 ≤ 22, assume (induction hypothesis) F1 ≤ 21, . . . , Fn ≤ 2n for n ≥ 2. Then,
Fn+1 = Fn + Fn−1 ≤ 2n + 2n−1 ≤ 2n + 2n = 2n+1, so Fn+1 ≤ 2n+1. By induction, Fn ≤ 2n for n ≥ 1.
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Exercise 7.9. We use induction. The base case is Big(0)=1 which is 20. Suppose Big(n) = 2n. Since n + 1 > 0,
Big(n+1) = 2 · Big(n) = 2 · 2n = 2n+1. By induction, Big(n) = 2n for n ≥ 1.

Exercise 7.10. Guess Tn = 3n + 2. Now for the proof by induction. The base case is T0 = 2 = 3 × 0 + 2. Suppose
Tn = 3n+ 2. Then, Tn+1 = Tn + 3 = 3n+ 2 + 3 = 3(n+ 1) + 2. By induction, Tn = 3n+ 2 for n ≥ 1.

Pop Quiz 7.11. (a) Yes (b) Yes (c) No ( 3
2
→ 5

2
) (d) Yes (e) No (1 is not in the set)

Exercise 7.12. Remember that in all cases, by default, nothing else is in the set.

(a) (i) 1 1 ∈ S.

2 x ∈ S → 3x ∈ S.

(ii) 1 1 ∈ S.

2 x ∈ S → x2 ∈ S.

(b) 1 ε, 0, 1 ∈ S.

2 x ∈ S → 0x0 ∈ S;
1x1 ∈ S.

(c) 1 ε ∈ S.

2 x, y ∈ S → [x]y ∈ S.

Pop Quiz 7.13.

ε
T1 = ε

T2 = ε

T1 =

T2 =

T1 =

T2 =

T1 =

T2 =

Exercise 7.14.

(a) Every RFBT is an RBT. This is because the basis case for the RFBT is an RBT; and, the constructor rules are
the same. However, every RBT is not an RFBT. is an RBT, but not an RFBT.

(b) There are no RFBTs with 6 vertices (only an odd # of vertices is possible). 5 node RFBT:

Chapter 8

Pop Quiz 8.1. ε
x=ε,y=ε−→ [ ]

x=ε,y=[ ]−→ [ ][ ]
x=[ ][ ],y=[ ]−→ [[ ][ ]][ ]

Exercise 8.2. The proof is by structural induction.
1: Clearly ε is matched (base case).
2: For the induction step, there is only one constructor rule. Suppose x and y are matched. Then xy is matched and

so every prefix in [xy has at least one more “[” than “]”. Inserting “]” anywhere in [xy can add at most one to “]” ’s
in some prefixes. Therefore, every prefix in [x]y has at least as many “[” than “]” and so [x]y is matched.

3: By structural induction, every string in M is matched.

Since ][ is not matched, ][ 6∈ M.

Exercise 8.3.
(a) Suppose s is balanced and matched. We use “CS-notation” for the bits of s, s = s[0]s[1]s[2] · · · . s[i] is the ith bit.

For prefix s[0] · · · s[i], define the excess function f(i) to be the number of “ [ ” minus the number of “ ] ”. Since s is
matched, f(i) ≥ 0; s must begin with “ [ ” so f(0) = 1 and s is balanced so f(n) = 0 (length(s) = n+1). Let i∗ be
the first prefix which is balanced, so f(i∗) = 0 and i∗ ≤ n and s[i∗] = “ ] ”. We have decomposed s as

s = [x]y,

where x = s[1] · · · s[i∗−1] and y = s[i∗+1] · · · s[n] (x or y could be empty). We show that x and y are balanced and
matched. Since s[0] · · · s[i∗] is balanced (f(i∗) = 0), x is balanced. And since s and x are balanced, y is balanced.
We now show that x and y are matched. Suppose y is not matched: some prefix α of y with more “ ] ”. Then
[x]α is a prefix of s with more “ ] ”, because [x] is balanced. This contradicts s being matched, hence y is matched.
Suppose x is not matched. So, some prefix β of x has more “ ] ”; β 6= x because x is balanced. Consider [β which is
a prefix of s. f([β) ≥ 0 because s is matched and β has more “ ] ”, so β has exactly one more “ ] ” than “ [ ”, which
means that f([β) = 0. But this contradicts s[0] · · · s[i∗] being the first prefix that is balanced.

(b) Suppose s is a balanced and matched string that is not inM.

(i) By well-ordering, choose s to be the balanced and matched string of minimum length that is not inM.
(ii) By (a), s = [x]y where x, y are both balanced and matched.
(iii) x and y are at least 2 characters shorter than s.
(iv) s has minimum length among balanced matched strings not inM. x, y are both balanced and matched, but

shorter than s. Thus x, y ∈M. By the constructor rule, s = [x]y ∈M, which contradicts s 6∈ M.

Exercise 8.4.
(a) Ns = N.
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(b) Structural induction with Ns is exactly strong induction:

1. (Basis) Show property P holds for 1, i.e. P (1) is t.
2. (Structural Induction) Assume P (1), . . . , P (n) and prove P (n+1), i.e. show P (1)∧P (2)∧· · ·∧P (n)→ P (n+1)

Exercise 8.5.
(a) x •y = 0101110; y •x = 1100101. The order in which you do the two concatenations does not matter, (x •y) •z =

x • (y •z) = x •y •z = 010111010110.
(b) (x •y)r = 0111010; (x •y •z)r = 011010111010.
(c) Let n = |y|. We prove that (x •y)r = yr •xr by strong induction on n = |y|. If n = 0 (y = ε), there is nothing to

prove (base case). Suppose the claim holds up to n ≥ 0, that is (x •y)r = yr •xr whenever |y| ≤ n. Now consider
any y with |y| = n+ 1 and write y = y[n]b where b is a single bit and y[n] is the prefix of length n. Then

(x •y)r = ((x •y[n]) •b)
r ih
= b • (x •y[n])

r ih
= b •yr

[n] •x
r ih
= (y[n] •b)

r •xr = yr •xr.

First we apply ih to b, then to y[n] and then to b again (all of which have length at most n).
(d) The base case, n = 2, is in (c). Assume the claim holds for n ≥ 2 and consider n+ 1:

(x1 •x2 • · · · •xn •xn+1)
r = ((x1 •x2 • · · · •xn) •xn+1)

r

ih
= xr

n+1 • (x1 •x2 • · · · •xn)
r

ih
= xr

n+1 •x
r
n •x

r
n−1 • · · · •xr

1.

Pop Quiz 8.6. ε→ 11→ 0110→ 001100. A length 6 palindrome is xxr for with |x| = 3. There are 8 strings of length
3, hence 8 palindromes of length 6. In general, there are 2⌈n/2 ⌉ palindromes of length n.

Exercise 8.7.
(a) We give the formal proof with numbered steps for easy reference.

1: The 3 base cases ε, 0, 1 are palindromes. (Strings of length at most 1 are palindromes.)
2: For the structural induction step, suppose we start with a palindrome x = xr. We must show that each

constructor rule produces a new palindrome. Using Exercise 8.5, (0 •x •0)r = 0r •xr •0r = 0 •x •0 and similarly,
(1 •x •1)r = 1r •xr •1r = 1 •x •1 (because x = xr). Therefore both constructor rules produce palindromes.

3: By structural induction, every member of P is a palindrome.

(b) Consider s, the shortest palindrome not in P. If s starts with 0, it ends in 0, so s = 0 •x •0. Further, x must be
a palindrome for s to be one. Now, x is shorter than s, so since s is the shortest palindrome not in P, it must be
that x ∈ P. But then the constructor rule gives that s = 0 •x •0 ∈ P, a contradiction. A similar contradiction
arises if s = 1 •x •1. Therefore, there is no shortest palindrome not in P, i.e. every palindrome is in P.

Exercise 8.8.
(a) We give the formal proof with numbered steps for easy reference.

1: The base case is 1 which clearly evaluates to 1 which is odd.
2: Structural induction: We consider each constructor rule separately. For rule 1, suppose x ∈ Aodd and x is odd.

The constructor rule produces (x+1+1) and value((x+1+1)) = value(x)+2, which is odd because value(x)
is odd. For rule 2, suppose x, y ∈ Aodd and x, y are odd. The constructor rule produces (x× y) whose value is
value(x)× value(y), which is odd because the product of two odd numbers is odd.

3: By structural induction, the value of every member of Aodd is odd.

(b) (1 + 1 + 1 + 1 + 1)

Pop Quiz 8.9. The number of links is 15. The number of vertices is 15. For any RBT, the number of links must be
one less than the number of vertices. So this tree cannot be an RBT.

Exercise 8.10.
(a) First size. By the recursion, size = 1 + size(left-subtree) + size(right-subtree) = 1 + 2 · size(left-subtree). The last

equality is because both child-subtrees are identical. Applying the same logic to the left-child,

size = 1 + 2(1 + 2 · size(left-left-child)) = 1 + 2 + 4 · size(left-left-child)
= 1 + 2 + 4 + 8 · size(left-left-left-child)
= 1 + 2 + 4 + 8 + 16 · size(left-left-left-left-child

︸ ︷︷ ︸

ε

) = 1 + 2 + 4 + 8 + 16 · 0 = 15.

Similarly, we can recursively obtain the height,

height = 1 + 1 + 1 + 1 + 1 · height(left-left-left-left-child
︸ ︷︷ ︸

ε

) = 1 + 1 + 1 + 1− 1 = 3.

(b) size(T ) is just the number of vertices in the tree.
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(c) Define, for an RBT T , the property P (T ) : size(T ) ≤ 2height(T )+1 − 1. P (ε) is t because 0 = 2−1+1 − 1. Now
suppose that, for RBTs T1 and T2, P (T1) and P (T2) are t. That is,

size(T1) ≤ 2height(T1)+1 − 1

size(T2) ≤ 2height(T2)+1 − 1
← induction hypothesis

By the recursive definitions of size and height,

height(T ) = 1 +max(height(T1), height(T2))
size(T ) = 1 + size(T1) + size(T2)

By the induction hypothesis,

size(T ) ≤ 1 + 2height(T1)+1 − 1 + 2height(T2)+1 − 1

= 2height(T1)+1 + 2height(T2)+1 − 1

≤ 2max(height(T1),height(T2))+1 + 2max(height(T1),height(T2))+1 − 1

= 2max(height(T1),height(T2))+2 − 1

= 2height(T )+1 − 1.

So, P (T ) is t and the constructor preserves property P . By structural iniduction, P is t for every RBT.

Chapter 9

Pop Quiz 9.1. (a) 1+1+1=3. (b) 1+2+3=6. (c) f(i) = 3 gives 3 + 3 + 3 = 9. (d) f(1) = 1; f(2) = 2; f(3) = 3 gives
1 + 2 + 3 = 6.

Pop Quiz 9.2. T4(n) = 5 +
∑n

i=1 10 = 5 + 10 ·∑n
i=1 1. The last sum is n, so T4(n) = 5 + 10n.

Exercise 9.3.We use several common sums together with the constant and addition rules:

S(n) =
n∑

i=1

(1 + 2i+ 2i+2) =
n∑

i=1

1 +
n∑

i=1

2i+
n∑

i=1

2i+2 (addition rule)

=
n∑

i=1

1 + 2
n∑

i=1

i+ 4
n∑

i=1

2i (constant rule)

= n+ 2× 1
2
n(n+ 1) + 4× (2n+1 − 1− 1) (common sums)

= 2n+3 + n2 + n− 8 (simplify)

Exercise 9.4.

(a) T1(n) = 2 +
n∑

i=1

[

2 +
n∑

j=i

(

5 +
j∑

k=i

2
)]

= 2 +
n∑

i=1

[

2 +
n∑

j=i

5 +
n∑

j=i

j∑

k=i

2
]

(addition rule)

= 2 +
n∑

i=1

2 +
n∑

i=1

n∑

j=i

5 +
n∑

i=1

n∑

j=i

j∑

k=i

2 (addition rule)

= 2 + 2
n∑

i=1

1 + 5
n∑

i=1

n∑

j=i

1 + 2
n∑

i=1

n∑

j=i

j∑

k=i

1 (constant rule on all three nested sums)

(b)
∑j

k=i 1 = j + 1− i. This is a common sum.

(c)
∑n

j=i(j+1− i) = 1+ 2+ · · ·+(n+1− i) =
∑n+1−i

ℓ=1 ℓ = 1
2
(n+1− i)(n+2− i). (The last step is a common sum.)

(d) To compute
∑n

i=1(n+ 1− i)(n+ 2− i), we observe that as i goes from 1 up to n, n+ 1− i goes from n down to
1. Letting ℓ = n+ 1− i, our sum can equivalently be written

n∑

ℓ=1

(ℓ)(ℓ+ 1) =
n∑

ℓ=1

ℓ2 +
n∑

ℓ=1

ℓ. (We used the addition rule to get the last expression.)

(e) We use the nested sum rule to compute
∑n

i=1

∑n
j=i

∑j
k=i 1,

n∑

i=1

n∑

j=i

j∑

k=i

1 =
n∑

i=1

n∑

j=i

(j + 1− i) (nested sum rule and (b))

= 1
2

n∑

i=1

(n+ 1− i)(n+ 2− i) (nested sum rule and (c))

= 1
2

n∑

i=1

i2 + 1
2

n∑

i=1

i (using (d))

= 1
12
n(n+ 1)(2n+ 1) + 1

4
n(n+ 1) (common sums)
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For complex sums like this, always tinker and see if your formula works for small n. You can program a function
to compute the sum and test it against your formula. We did exactly that to verify our formula.

n 1 2 3 4 5 6 7
n∑

i=1

n∑

j=i

j∑

k=i

1 1 4 10 20 35 56 84

1

12
n(n+ 1)(2n+ 1) +

1

4
n(n+ 1) 1 4 10 20 35 56 84

Pop Quiz 9.5. The formulas at the top of page 117 give T1 ∈ Θ(n3); T2 ∈ Θ(n2); T3 ∈ Θ(n log n); T4 ∈ Θ(n). Thus,
(a) T1 is in Ω(n log n), ω(n log n),Ω(n2), ω(n2), O(n3),Θ(n3),Ω(n3).
(b) T2 is in Ω(n log n), ω(n log n), O(n2),Θ(n2),Ω(n2), O(n3), o(n3).
(c) T3 is in O(n log n),Θ(n log n),Ω(n log n), O(n2), o(n2), O(n3), o(n3).
(d) T4 is in O(n log n), o(n log n), O(n2), o(n2), O(n3), o(n3).

Exercise 9.6.
(a) f + f = 2f ∈ Θ(f) because 2 is a constant. Similarly f + f + f = 3f ∈ Θ(f). With n terms, f + f + · · · + f =

nf ∈ Θ(nf) (you cannot ignore the n because it is not a constant).
(b) lim(c · f)/f → c = constant so c · f ∈ Θ(f).
(c) (i) Follows from the calculus fact that for any ǫ, k > 0, limn→∞ logk n/nǫ = 0.

(ii) Follows from nk/nǫ logn = nk−ǫ logn → 0.
(iii) nk/2ǫn = 2k log2 n−ǫn → 0.
(iv) Follows from log nk = k log n so log nk/ log n→ k = constant.

(d) (i) Follows from (1 +
√
n)/n = 1/n+ 1/

√
n→ 0.

(ii) Follows from ( 1
n
+ 5

n2 )/
1
n
= 1 + 5/n→ 1 = constant.

(iii) We must prove upper and lower bounds. The upper bound follows from:

log n! = log n+ log(n− 1) + · · ·+ log 1 ≤ log n+ log n+ · · ·+ log n = n log n.

For the lower bound, observe that log(2n)! = log(2n)(2n− 1)(2n− 2)(2n− 3) · · · 2 · 1, hence

log(2n)! ≤ log(2n)2(2(n− 1))2 · · · 22 = 2 log n! + 2n log 2.

(We get this bound by grouping in pairs, for example 2n(2n− 1) ≤ (2n)2.) Also,

log(2n)! = log(2n) + log(2n− 1) + · · ·+ log(n+ 1) + log n!
≥ log(2n) + log(2n− 1) + · · ·+ log(n+ 1) ≥ n log n.

Combining the two bounds, 2 log n! + 2n log 2 ≥ n log n, or,

log n! ≥ 1
2
n log n− n log 2 = 1

4
n log n+ 1

4
n(log n− 4 log 2).

We conclude that log n! ≥ 1
4
n log n which is true from the inequality above for n ≥ 24 because log n− 4 log 2 ≥ 0

and it can be verified for n = 1, . . . , 15 explicitly.
(e) f = akn

k + g where g has only lower order terms, at most k such terms. Let the largest coefficient in g be A.
Then |g| ≤ k|A|nk−1. We have that f/nk = ak + g/nk and |g/nk| ≤ |A|knk−1/nk = |A|k/n. Since |A| and k are
constants, |g/nk| → 0 and we have that f/nk → ak = constant. This proves f ∈ Θ(nk).

(f) Yes, f is polynomial. The highest power “appearing” is n which has order 1. From the previous problem you might
think f ∈ Θ(n). Wrong. The notation is deceiving because there are many terms and the term of order n does not
appear just once as in a traditional polynomial. For example n/2 appears somewhere in the middle, which is also of
order 1. There are n/2 terms that are at least n/2, so f ≥ n2/4. In fact, we know that f(n) = 1

2
n(n+1) ∈ Θ(n2).

To clarify (i), we emphasize that in a polynomial, each term of a particular order appears at most once.
(g) Suppose n2 ∈ O(n), i.e. n2 ≤ Cn for a constant C (by taking

⌈
C
⌉
, we may assume C is an integer). Let n = 2C;

then, 4C2 ≤ 2C2 or 4 ≤ 2, a contradiction. Therefore n2 6∈ O(n).
(h) Since f ∈ Θ(r) and g ∈ Θ(s), there are positive constants c, C and d,D for which

c · r ≤ f ≤ C · r and d · s ≤ g ≤ D · s.

(i) Adding the left hand sides and similarly the right hand sides gives cr + ds ≤ f + g ≤ Cr + Ds. Since
cr + ds ≥ min(c, d)(r + s) and Cr +Ds ≤ max(C,D)(r + s), we have that

min(c, d)(r + s) ≤ f + g ≤ max(C,D)(r + s) → f + g ∈ Θ(r + s).

(ii) Instead of adding, if we multiply, we get cd · (rs) ≤ fg ≤ CD · (rs), or that fg ∈ Θ(rs).

(i) (i) No. Consider f = 2n and g = n, then f ∈ Θ(g). But 2f/2g − 22n/2n = 2n →∞.
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(ii) Yes. We have that c · g ≤ f ≤ C · g. Everything is positive and log is increasing so take log of both sides to
get log g + log c ≤ log f ≤ log g + logC. That is log f ∈ Θ(log g).

O-notation blurs small diffenences (constants). Exponentiation blows up those differences, so one must be careful.
Logarithms further reduce differences and so are safe with O-notation.

(j) (a) f ∈ Θ(g) → f ∈ O(g) is t because Θ(·) requires upper and lower bounds but O(·) requires only the upper
bound: Θ(g) ⊂ O(g). (b) The converse, f ∈ O(g) 6→ f ∈ Θ(g) is f. For a counter-example, consider f = n and
g = n2. (c) Yes: c · g ≤ f ≤ C · g implies 1

C
· f ≤ g ≤ 1

c
· f .

(k) Suppose f ∈ O(n), then f ≤ Cn ≤ Cn2. That is f ∈ O(n2), which means O(n) ⊂ O(n2). It is a proper subset
because n2 6∈ O(n) but n2 ∈ O(n2). Θ(n) 6⊂ Θ(n2) because n ∈ Θ(n) but n 6∈ Θ(n2).

(l) We can use the definitions based on the limits or the more formal definitions based on bounds.

(i) f/h = (f/g) · (g/h); since both terms on the RHS converge to a constant because f ∈ Θ(g) and g ∈ Θ(h),
f/h→ constant, i.e. f ∈ Θ(h).

(ii) f/h = (f/g) · (g/h)→ 0 (both terms on the RHS converge to 0), i.e. f ∈ o(h).
(iii) f ≤ C · g and g ≤ C′ · h implies f ≤ C · (C′ · h) = CC′ · h, i.e. f ∈ O(h).
(iv) f/h = (f/g) · (g/h)→∞ (both terms on the RHS converge to ∞), i.e. f ∈ ω(h).
(v) f ≥ C · g and g ≥ C′ · h implies f ≥ C · (C′ · h) = CC′ · h, i.e. f ∈ Ω(h).

(m) For positive numbers x, y, We use the identity: max(x, y) ≤ x+ y ≤ 2max(x, y). Suppose r ∈ O(f + g). Then,

r ≤ C(f + g) ≤ 2Cmax(f, g),

i.e., r ∈ O(max(f, g)) and O(f + g) ⊆ O(max(f, g)). Suppose r ∈ O(max(f, g)). Then,

r ≤ Cmax(f, g) ≤ C(f + g),

i.e., r ∈ O(f + g) and O(max(f, g)) ⊆ O(f + g). O(f + g) ⊆ O(max(f, g)) and O(max(f, g)) ⊆ O(f + g) implies
O(f + g) = O(max(f, g)).
Similarly, suppose r ∈ Θ(f + g). Then,

cmax(f, g) ≤ c(f + g) ≤ r ≤ C(f + g) ≤ 2Cmax(f, g),

i.e., r ∈ Θ(max(f, g)) and Θ(f + g) ⊆ Θ(max(f, g)). Suppose r ∈ Θ(max(f, g)). Then,
1
2
c(f + g) ≤ cmax(f, g) ≤ r ≤ Cmax(f, g) ≤ C(f + g),

i.e., r ∈ Θ(f + g) and Θ(max(f, g)) ⊆ Θ(f + g). Θ(f + g) ⊆ Θ(max(f, g)) and Θ(max(f, g)) ⊆ Θ(f + g) implies
Θ(f + g) = Θ(max(f, g)).

(n) We have that c · g ≤ f ≤ C · g. Summing: c ·∑i g(i) ≤
∑

i f(i) ≤ C ·∑i g(i), which means
∑

i f(i) ∈ Θ(
∑

i g(i)).
(o) We prefer T1 because its running time is asymptotically faster.
(p) We don’t know because T2 could be n (we prefer T2) or n3 (we prefer T1) – both cases are in O(n3). When possible,

give runtimes using Θ-notation, O(·) is ambiguous. (If T1 = 10 and T2 ≤ 20, which is better?)
(q) Similar to (t). T2 could be n or n2.5. (If T1 = 10 and T2 < 20, which is better?)
(r) T1 is asymptotically better than T2 (T1 is “equal to” n2 versus T2 is “greater than” n2) so we definitely prefer T1.
(s) T1 is no worse than T2 (T1 “equals” n2 versus T2 is “at least” n2). We prefer T1, though T2 could be as good.
(t) T2 could be n or n3, both are in Ω(n). Like O(·), Ω(·) is ambiguous. Whenever possible, give a Θ-analysis.
(u) T2 is asymptotically better? Theoretically, T2 is a better run time but see (z).
(v) Asymptotically T2 is better: for n → ∞, T2 < T1. But, T2 does not win until n > 10800. That is a large input,

unlikely to occur in practice – most estimates for the number of atoms in the Universe are less than 10100.

Pop Quiz 9.7. We have that
∑n

i=1 i = n(n+ 1)/2 and
∑n

i=0 2
i = 2n+1 − 1. Therefore

(i)
∑n2

i=1 i = n2(n2 + 1)/2 ∈ Θ(n4). (ii)
∑2n

i=1 i = 2n(2n + 1)/2 ∈ Θ(22n). (iii)
∑2n

i=0 2
i = 22n+1 − 1 ∈ Θ(22n).

Exercise 9.8.
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Exercise 9.9. In all cases, let S(n) denote the sum.
(a) Since (1 + i)2 is increasing,

∫ n

0
dx (1 + x)2 ≤ S(n) ≤

∫ n+1

1
dx (1 + x)2. Computing the integrals,

1
3
(n+ 1)3 ≤ S(n) ≤ 1

3
((n+ 2)3 − 1).

Since the lower and upper bounds are in Θ(n3), S(n) ∈ Θ(n3).
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(b) Since 2i is increasing,
∫ n

0
dx 2x ≤ S(n) ≤

∫ n+1

1
dx 2x. Computing the integrals,

1
ln 2

(2n − 1) ≤ S(n) ≤ 1
ln 2

(2n+1 − 2).

Since the lower and upper bounds are in Θ(2n), S(n) ∈ Θ(2n).
(c) Since i2i is increasing,

∫ n

0
dx x2x ≤ S(n) ≤

∫ n+1

1
dx x2x. Computing the integrals,

1
ln 2

n2n − 1
ln2 2

2n + 1
ln2 2

≤ S(n) ≤ 1
ln 2

(n+ 1)2n+1 − 1
ln2 2

2n+1 − 2
ln 2

+ 2
ln2 2

.

Since the lower and upper bounds are in Θ(n2n), S(n) ∈ Θ(n2n).
(d) Since (1 + i2)−1 is decreasing,

∫ n+1

1
dx (1 + x2)−1 ≤ S(n) ≤

∫ n

0
dx (1 + x2)−1. Computing the integrals,

arctan(n+ 1)− π
4
≤ S(n) ≤ arctan(n).

Since the lower and upper bounds are in Θ(1), S(n) ∈ Θ(1).
(e) Since i/(1 + i2) is decreasing,

∫ n+1

1
dx x/(1 + x2) ≤ S(n) ≤

∫ n

0
dx x/(1 + x2). Computing the integrals,

1
2
ln 1

2
(1 + (1 + n)2) ≤ S(n) ≤ 1

2
ln(1 + n2).

Since the lower and upper bounds are in Θ(log n), S(n) ∈ Θ(log n).

(f) Since i2i
2

is increasing,
∫ n

0
dx x2x

2 ≤ S(n) ≤
∫ n+1

1
dx x2x

2

. Computing the integrals,
1

2 ln 2
(2n

2 − 1) ≤ S(n) ≤ 1
2 ln 2

(2(n+1)2 − 2).

The lower bound is in Θ(2n
2

) and the upper bound is in Θ(2n
2+2n), which are asymptotically different, 2n

2 ∈
o(2n

2+2n). We cannot immediately get the Θ-behavior for S(n). The integration bounds are too loose.

A simpler analysis gives tighter bounds. The largest term in the sum is n2n
2

and there are n terms, so

n2n
2 ≤ S(n) ≤ n22n

2

.

The lower bound is asymptotically tight because S(n− 1) ≤ (n− 1)22(n−1)2 , so S(n) = S(n− 1)+n2n
2

, therefore

S(n) ≤ n2n
2

+ (n− 1)22(n−1)2 = n2n
2
(

1 + 2 (n−1)2

n
2−2n

)

≤ n2n
2

(1 + 2n2−2n) ≤ 3
2
n2n

2

,

(because x2−x ≤ 1
2

for x ≥ 0). Therefore, S(n) ∈ Θ(n2n
2

), because n2n
2 ≤ S(n) ≤ 3

2
n2n

2

.

Exercise 9.10.
(a) This is just the sum written out.
(b) Multiply the expression in (a) by 2 on both sides.
(c) Subtract (a) from (b): 2S(n)− S(n) = −21 − 22 − 23 − · · · − 2n + n2n+1 = n2n+1 −∑n

i=1 2
i.

(d) Use (c) with
∑n

i=1 2
i = 2(2n − 1), S(n) = n2n+1 − 2(2n − 1) = (n− 1)2n+1 + 2.

Exercise 9.11. The red areas are larger than the green because (lnx)′′ = −1/x2 < 0
(the slope of lnx decreases). Computing the integral replaces each red region in the
rectangle with the corresponding green region, therefore we get a lower bound:

∫ n+1/2

3/2
dx lnx ≤

n∑

i=2

ln i = lnn!.

Evaluating the integral on the left, we get
(
n+ 1

2

)
ln
(
n+ 1

2

)
−
(
n+ 1

2

)
− 3

2
ln 3

2
+ 3

2
≤ lnn!.

Exponentiate both sides to get

n! ≥
(
n+ 1

2

)(n+ 1
2 ) e−ne

(
2
3

)3/2
= nne−n√ne

(
2
3

)3/2
(

n+ 1
2

n

)n+1/2

.
1 2 3 4 5 6

Lastly, using the approximation (1 + 1
x
)x ≈ e,

(
n+ 1

2
n

)n+ 1
2
=
[(
1 + 1

2n

)2n
](n+ 1

2
)/2n

≈ e
1
2
+ 1

4n =
√
e · e1/4n.

And since e1/4n = 1 +Θ(1/4n), we get the desired approximation n! ≈ nne−n√n(2e/3)3/2.

Chapter 10

Pop Quiz 10.1. 27 = 3 × 7 + 6 (r = 6). By setting q = 3, 2, 1, 0,−1, . . . we get r = 6, 13, 20, 27, . . .. The smallest
positive remainder is 6. Generally, to get the smallest remainder, set q =

⌊
n/d

⌋
and r = n− qd = n−

⌊
n/d

⌋
· d.

Exercise 10.2. The proofs all use the fact that d|n if and only if n = dk for k ∈ Z.
(a) 0 = 0 · d (q = 0), so d|0.
(b) Suppose d|m and d′|n, so m = qd and n = q′d′. Then mn = (qq′)dd′. That is dd′|mn (quotient = qq′).
(c) Suppose d|m and m|n, so m = qd and n = q′m. Then, n = q′qd so d|n (quotient = q′q).
(d) Suppose d|n and d|m, so n = qd and m = q′d. Then n+m = (q + q′)d. That is d|n+m (quotient = q + q′).
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(e) Suppose d|n, so n = qd. For x ∈ N, xn = qxd, so xd|xn (quotient = q).
(f) Suppose d|m + n and d|m, so m + n = qd and m = q′d. Then, n = qd − n = qd − q′d = (q − q′)d. That is d|n

(quotient = q − q′).
Exercise 10.3.
(a) Let P (n) = n is divisible by a prime. P (2) is t because 2 is a prime. Suppose P (2), . . . , P (n) are all t. We show

that P (n + 1) is t. If n + 1 is prime, then n + 1 is divisible by the prime n + 1. Otherwise, n + 1 is composite:
n + 1 = kℓ, where 2 ≤ ℓ ≤ n. By the induction hypothesis, ℓ is divisible by a prime, so ℓ = qp where p is prime.
Therefore n+1 = kqp which shows that n+1 is also divisible by the prime p. By induction, P (n) is t for all n ≥ 2.

(b) Suppose there are finitely many primes. Then, there is a largest prime p. Consider p! + 1, which has a remainder
of 1 when divided by 2, 3, . . . , p. By part (a), p! + 1 must be divisible by a prime. This prime must therefore be
larger than p contradicting p being the largest prime. Therefore there are infinitely many primes.

Pop Quiz 10.4. gcd(n, 0) = n because n|0 and n|n. gcd(0, 0) is not defined (not both integers can be zero).
gcd(n, n) = n because n|n. gcd(n, 1) = 1 because the largest divisor of 1 is 1.

gcd(n, p) =

{

1 if p does not divide n;
p if p does divides n.

(Because the only divisors of p are 1 and p.)

Exercise 10.5.
gcd(34, 55)

= gcd(21, 34) 21 = 55− 34
= gcd(13, 21) 13 = 34− 21 = 34− (55− 34) = 2 · 34− 55
= gcd(8, 13) 8 = 21− 13 = (55− 34)− (2 · 34− 55) = 2 · 55− 3 · 34
= gcd(5, 8) 5 = 13− 8 = (2 · 34− 55)− (2 · 55− 3 · 34) = 5 · 34− 3 · 55
= gcd(3, 5) 3 = 8− 5 = (2 · 55− 3 · 34)− (5 · 34− 3 · 55) = 5 · 55− 8 · 55
= gcd(2, 3) 2 = 5− 3 = (5 · 34− 3 · 55)− (5 · 55− 8 · 55) = 13 · 34− 8 · 55
= gcd(1, 2) 1 = 3− 2 = (5 · 55− 8 · 55)− (13 · 34− 8 · 55) = 13 · 55− 21 · 34
= gcd(0, 1)
= 1

Each remainder is a linear combination of the original two numbers. Finally, gcd(34, 55) = 1 = 55× 13+34× (−21).
Exercise 10.6. 6x+15y = 3·(2x+5y). Setting x = −2k, y = k gives 3k, all the positive multiples of 3. gcd(6, 15) = 3.

Exercise 10.7.
(a) Suppose d|mn. By Bezout, there are x, y for which gcd(m, d) = mx+ dy. Multiply both sides by n to get

gcd(m, d) · n = xmn+ ynd.

d divides mn, so d divides both terms on the RHS. Therefore d must divide the LHS.
(b) We are given that gcd(d, d′) = 1 = dx+ d′y (Bezout’s identity). Multiply both sides by n to get

n = xdn+ yd′n.

Since d|n, n = αd; since d′|n, n = α′d′. Rewriting the equation above,

n = xα′dd′ + yαdd′ = (xα′ + yα)dd′,

which means dd′|n as was to be shown.
(c) Let D = gcd(m, ℓ) and D′ = gcd(n, ℓ). By Bezout’s identity, D = mx+ ℓy and D′ = nx′ + ℓy′. Multiplying,

DD′ = (mx+ ℓy)(nx′ + ℓy′) = mn(xx′) + ℓ(ynx′ +mxy′ + ℓyy′). (∗)
Since DD′ > 0, the RHS is a positive linear combination of mn and ℓ. The smallest positive linear combination of
mn and ℓ is gcd(mn, ℓ), so gcd(mn, ℓ) ≤ DD′.
To show the reverse, that DD′ ≤ gcd(mn, ℓ), it suffices to show that DD′ divides mn and ℓ because then it can’t
exceed the greatest common divisor. By Exercise 10.2(b), DD′|mn. We show that DD′|ℓ using part (a) of this
exercise. For part (a) to apply, we must show that gcd(D,D′) = 1. Note that gcd(D,D′)|m because gcd(D,D′)|D
and D|m; similarly, gcd(D,D′)|n. So, gcd(D,D′) is a common divisor of m and n, hence

gcd(D,D′) ≤ gcd(m,n) = 1.

Thus, gcd(D,D′) = 1. By part (a), since D|ℓ and D′|ℓ (why?), it follows that DD′|ℓ. Thus DD′ is a common
divisor of mn and ℓ and hence DD′ ≤ gcd(mn, ℓ).
Since gcd(mn, ℓ) ≤ DD′ and DD′ ≤ gcd(mn, ℓ), it follows that gcd(mn, ℓ) = DD′.
[Note: It is essential that gcd(m,n) = 1 (consider m = n = ℓ = 5).]

(d) Using the same notation in (b), we are to show that gcd(mn, ℓ) = 1 if and only if D = 1 and D′ = 1.
First, suppose D = 1 and D′ = 1. In (b), (∗) showed that gcd(mn, ℓ) ≤ DD′ = 1, which proves gcd(mn, ℓ) = 1.
Now, suppose gcd(mn, ℓ) = 1. Any divisor of m and ℓ is also a divisor of mn and ℓ so gcd(m, ℓ) ≤ gcd(mn, ℓ) = 1.
Similarly, gcd(n, ℓ) ≤ gcd(mn, ℓ) = 1. We conclude that gcd(m, ℓ) = gcd(n, ℓ) = 1.
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(e) Let D = gcd(gcd(ℓ,m), n) and D′ = gcd(ℓ, gcd(m,n)). Since D| gcd(ℓ,m), d|ℓ and d|m; also D|n. Since D|m and
D|n, by GCD fact (ii) on page 132, D| gcd(m,n). Thus, D is a common divisor of ℓ and gcd(m,n), and D ≤ D′.

A similar argument proves reversed inequality D′ ≤ D: D′ divides ℓ, m and n; this means D′| gcd(ℓ,m) and hence
D′ is a common divisor of gcd(ℓ,m) and n. It follows that D′ ≤ D. Therefore, D = D′.

Exercise 10.8.
(a) By Bezout, we know gcd(m,n) = mx+ny = m(x+αn)+n(y−αm). By taking α as large as we wish, we can get

Bezout coefficients so that the coefficient of m is positive. Now consider the smallest non-negative coefficient x,
so gcd(m,n) = mx + ny and there is no smaller non-negative Bezout coefficient x. We claim 0 ≤ x < n, because
otherwise x− n and y +m are Bezout coefficients and x− n is non-negative and smaller than x (a contradiction).

(b) Suppose gcd(m,n) = mx+ ny = mx′ + ny′, where 0 ≤ x < x′ < n. Then m(x′ − x) = n(y − y′) and n divides the
RHS, so n|m(x′ − x). Since gcd(m,n) = 1, it means n|(x′ − x) which is impossible because 0 < x′ − x < n. This
contradiction proves that x′ does not exist.

For the counter example, consider m = 2, n = 4. Then gcd(m,n) = 2 = 2 · 1 + 4 · 0 = 2 · 3− 4 · 1.
Exercise 10.9. We use induction on n. The base case is n = 2: if p|q1q2, then, by Euclid’s Lemma, p = q1 or p = q2.
For the induction, assume that for any n primes, if p|q1 · · · q2 then p equals one of the qi. Consider any n+1 such that
p|q1 · · · qnqn+1. That is p|(q1 · · · qn)qn+1. By Euclid’s Lemma, either p|qn+1 or p|q1 · · · qn. In the former case, because
qn+1 is prime, p = qn+1; in the latter case, by the induction hypothesis p equals one of the qi. In either case p equals
one of the n+ 1 primes q1, . . . , qn+1, proving the claim for n+ 1. The claim follows by induction for n ≥ 2.

Pop Quiz 10.10. This is the Fundamental Theorem of Arithmetic in disguise. Every n ≥ 2 is a product of primes,
n = p1p2 · · · pn: a1 is the number of times 2 appears; a2 is the number of times 3 appears; and so on. The ai must be
unique because if not, then n is a product of primes in two different ways, which cannot be.

Exercise 10.11. (a) False. 83 is prime, so if 83|38× 37× · · · 1, then 83 divides one of the terms in the product, which
can’t be as all the terms are smaller than 83. (b) True. p2 − 1 = (p− 1)(p+ 1). Since p is prime, both p− 1 and p+ 1
are even, and one is divisible by 4. So p2− 1 = 8k. Also, 3 divides p2− 1 because 3 divides one of the three consecutive
numbers p− 1, p, p+ 1, and it’s not p because p is prime. Hence 3|8k and so 3|k,that is k = 3ℓ and p2 − 1 = 24ℓ.

Exercise 10.12. We must show gcd(kM1, kM2) = k. The only divisors of kM1 are 1, k and M1, since k and M1 are
different primes. Similarly, the only divisors of kM2 are 1, k and M2. The largest common divisor is k.

Exercise 10.13. We have: a ≡ b (mod d) and r ≡ s (mod d). That is,

a− b = k1d and r − s = k2d.

(a) ar − bs = (b+ k1d)(s+ k2d)− bs = (k1s+ k2b+ k1k2d)d . So, d|ar − bs, i.e. ar ≡ bs (mod d).
(b) (a+ r)− (b+ s) = b+ k1d+ s+ k2d− b− s = (k1 + k2)d . So, d|(a+ r)− (b+ s), i.e. a+ r ≡ b+ s (mod d).
(c) We use (a) and induction. When n = 1, we are given that a ≡ b (mod d). Suppose an ≡ bn (mod d). Applying

(a) with r = an and s = bn, we get an+1 ≡ bn+1 (mod d). By induction, an ≡ bn (mod d) for n ≥ 1.

Pop Quiz 10.14.
(a) (mod 3): Oserve that 52 ≡ 1. Therefore by Exercise 10.12(c), 52n ≡ 12n. Note 12n = 1. So, 52014 ≡ 1. Multiplying

both sides by 5 (Exercise 10.12(a)), 52015 ≡ 5 ≡ 2. The remainder is 2.
(b) (mod 5): 52015 is divisible by 5 so the remainder is 0.
(c) (mod 7): 53 ≡ −1, so 52013 = (53)671 ≡ (−1)671 ≡ −1. Hence, 52015 ≡ −25 ≡ 3. The remainder is 3.
(d) (mod 9): 53 ≡ −1, so 52013 =≡ −1. Hence, 52015 ≡ −25 ≡ 2. The remainder is 2.
(e) (mod 11): 55 ≡ 1, so 52015 = (55)403 ≡ (1)403 ≡ 1. The remainder is 1.

Exercise 10.15.
(a) x = 15−1 (mod 6) which does not exist because gcd(15, 6) = 3 > 1. Alternatively, 15x− 1 = 6k → 15x− 6k = 1,

a contradiction (LHS is divisible by 3, not the RHS). Hence x does not exist.
(b) x = 15−1 (mod 7), so x = 1. To get all solutions we can add any integer multiple of 7, so x = 1 + 7k, k ∈ Z.
(c) 15x − 6 = 27k ↔ 5x − 2 = 9k so 5x ≡ 2 (mod 9). Note, 5−1 ≡ 2 (mod 9) because 2 · 5 ≡ 1 (mod 9). We need

5x ≡ 2→ 5−1 · 5x ≡ 5−1 · 2→ x ≡ 4 (mod 9), because 5−1 · 5 ≡ 1. Adding multiples of 9 gives x = 4 + 9k, k ∈ Z.

Exercise 10.16.
(a) (i) If k = 0 then 0p = 0 and 0− 0 = 0 is divisible by p. If k = p then pp − p = p(pp−1 − 1) is divisible by p.

(ii) If i ∈ {1, . . . , p − 1}, then gcd(p, i) = 1. If p|ik then by Exercise 10.7(a), p|k, that is k is a multiple of p, a
contradiction. So, p does not divide ik and ik is not a multiple of p.

(iii) Immediate from Theorem 10.9 on page 135, because gcd(k, p) = 1.
(iv) Since ik is not a multiple of p, by part (ii), αi 6= 0. Thus, αi ∈ {1, 2, . . . , p− 1}.

Suppose i, j ∈ {1, . . . , p− 1}. We show, by contradiction, that if i 6= j then αi 6= αj . Suppose αi 6= αj . Then
ik = qip+ αi and jk = qjp+ αi. Subtracting, ik − jk = (qi − qj)p. That is, ik ≡ jk (mod p). By (iii), i ≡ j

sol – 18



30. Solutions to Quizes & Exercises

(mod p). Since i, j ∈ {1, 2, . . . , p− 1}, this means i = j, a contradiction. Thus, αi 6= αj . Since no two αi are
equal, α1, α2, . . . , αp−1 is a permutation of 1, 2, . . . , p− 1, which means

∏p−1
i=1 αi = (p− 1)!.

(v) Since ik ≡ αi (mod p), by repeaded use of Exercise 10.12,
∏p−1

i=1 ki ≡
∏p−1

i=1 αi (mod p).
∏p−1

i=1 ki = kp−1(p−
1)! and by (iv),

∏p−1
i=1 αi = (p− 1)!, therefore

kp−1(p− 1)! ≡ (p− 1)! (mod p). (∗)
If p divides (p− 1)!, by Euclid’s Lemma on page 133, p divides some term in the product. Since every term
in the product is less than p, that is not possible, so p does not divide (p− 1)!. The only other divisor of p is
1, so gcd(p, (p− 1)!) = 1. Use Theorem 10.9 on page 135, to cancel (p− 1)! from both sides of (∗) to get

kp−1 ≡ 1 (mod p).

Multiplying both sides by k, since k ≡ k (mod p), gives Fermat’s Little Theorem.
(b) If p divides k, no multiplicative inverse exists as gcd(k, p) = p > 1. If p doesn’t divide k, kp−1 ≡ 1 (mod p). Let

k−1 ≡ kp−2 (mod p). Then k · k−1 ≡ kp−1 ≡ 1 (mod p). That is, kp−2 is the multiplicative inverse of k.
(c) (i) We find x, y such that 8x+ 19y = 1 using the remainders in Euclid’s GCD-algorithm:

gcd(8, 19) = gcd(3, 8) rem(19, 8) = 3 = −8 · 2 + 19

= gcd(2, 3) rem(8, 3) = 2 = 8− 3 · 2
= 8− (−8 · 2 + 19) · 2
= 8 · 5− 19 · 2.

= gcd(1, 2) = 1 rem(3, 2) = 1 = 3− 2
= −8 · 2 + 19− (8 · 5− 19 · 2)
= 8 · (−7) + 19 · 3.

Therefore x = −7 and 8−1 = rem(−7, 19) = 12. Indeed, 8× 12 ≡ 1 (mod 19) because 8× 12− 1 = 19× 5.

(ii) 8−1 ≡ 817 (mod 19). We observe that 83 ≡ −1 (mod 19). Therefore,
815 ≡ (−1)5 ≡ −1 (mod 19).

Finally, 817 ≡ −64 ≡ 12 (mod 19), so 8−1 = 12 (for modulus 19).
Exercise 10.17. Mp−2M∗ ≡ Mp−1k (mod p). Assuming M is not a multiple of p, by Fermat’s Little Theorem,
Mp−1 ≡ 1 (mod p). Multiplying both sides by k gives Mp−1k ≡ k (mod p), that is,

Mp−2M∗ ≡Mp−1k ≡ k (mod p).

So Charlie obtains k by computing rem(Mp−2M∗, p).

Exercise 10.18. Alice encrypts to M∗ ≡M225 (mod 391) and Bob decrypts with M97
∗ (mod 391). E.g., for M = 2,

27 ≡ 128→ 214 ≡ 1282 ≡ 353→ 228 ≡ 3532 ≡ 271→ 256 ≡ 2712 ≡ 324→ 2112 ≡ 3242 ≡ 188,

and finally we have 2225 ≡ 2 · 1882 ≡ 308 (mod 391). Bob decrypts as follows:
3083 ≡ 246→ 3086 ≡ 2462 ≡ 302→ 30812 ≡ 3022 ≡ 101→ 30824 ≡ 1012 ≡ 35→ 30848 ≡ 352 ≡ 52,

and finally we have 30897 ≡ 308 · 522 ≡ 2 (mod 391). Here is the table of results for M = 2, . . . , 10,

M 2 3 4 5 6 7 8 9 10
M∗ 308 105 242 158 278 109 246 77 180

Bob’s decryption 2 3 4 5 6 7 8 9 10
(Bob always recovers M .)

Exercise 10.19. Let n = pq; M∗ ≡ Me (mod n). We decode using Md
∗ ≡ Med (mod n), and must show Med ≡ M

(mod n) (i.e. we recover the correct message for any M).
(a) Since ed ≡ 1 (mod (p− 1)(q − 1)), ed− 1 is divisible by (p− 1)(q − 1), or ed− 1 = k(p− 1)(q − 1) for k ∈ Z.
(b) (i) By (a) ed− 1 = k(p− 1)(q − 1), so Med−1 = Mk(p−1)(q−1).

(ii) By Fermat’s Little Theorem, Mp−1 ≡ 1 (mod p) (because p does not divide M). This means Mp−1− 1 = αp
for an integer α, or that M = 1 + αp. Therefore,

Med−1 = Mk(p−1)(q−1) = (Mp−1)k(q−1) = (1 + αp)k(q−1).

(iii) By the Binomial Theorem,

(1 + αp)k(q−1) = 1 +

k(q−1)
∑

i=1

(k(q − 1)

i

)

αipi = 1 + p

k(q−1)
∑

i=1

(k(q − 1)

i

)

αipi−1

︸ ︷︷ ︸

β

.

We could also use ar − 1 = (a− b)(1 + a+ a2 + · · ·+ ar−1) with a = 1 + αp:

(1 + αp)k(q−1) − 1 = p (α+ α(1 + αp) + α(1 + αp)2 + · · ·+ α(1 + αp)k(q−1)−1)
︸ ︷︷ ︸

β

.

Either way, β is a sum of integers, hence an integer. We have proved: Med−1 = (1 + αp)k(q−1) = 1 + βp.
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(iv) From (iii), Med−1 − 1 = βp, that is p|Med−1 − 1.
(c) By (b), either p divides M or if not then it must divide Med−1− 1. That is p must divide their product Med−M .

Everything is symmetric with respect to p and q and so using exactly the same reasoning, q|Med −M .
(d) Since gcd(p, q) = 1 and both p|Med −M and q|Med −M , Exercise 10.7(b) on page 132 gives pq|Med −M .
(e) From (d), by definition, Med ≡M (mod pq). Bob can decode by computing rem(Md

∗ , pq).

Chapter 11

Pop Quiz 11.1.
(a) V = {1, 2, 3, 4, 5, 6}; E = {(1, 2), (2, 3), (3, 4), (1, 4)};
(b) V = {a, b, c, d, 1, 6}; E = {(a, b), (b, c), (c, 1), (a, 1)};
(c) V = {i, j, k, ℓ,m, n}; E = {(i,m), (j, ℓ), (j,m), (j, n), (k,m), (k, n)};
(d) V = {i, j, k, ℓ,m, n}; E = {(i, ℓ), (i, j), (j,m), (ℓ,m), (j, k), (m,n)};
Exercise 11.2. Isomorphic graphs: {I, II}
(a) Relabeling doesn’t change the number of vertices. Similarly, the edge end points are relabelled, but their number

is unchanged.
(b) In the relabeling, suppose vertex v is repabeled to ℓ(v). Then every edge in the graph (v, w) becomes (ℓ(v), ℓ(w))

and deg(v) becomes deg(ℓ(v)). Every vertex w which contributes to deg(v) is relabeled to a vertex ℓ(w) which
contributes to the degree of ℓ(v). Therefore, the degree of each vertex does not change.

(c) Suppose v1v2 · · · vk is a path. Every edge (vi, vi+1) is in the graph since v1v2 · · · vk is a path. After relabeling, the
edge (ℓ(vi), ℓ(vi+1)) is in the relabeled graph. Hence ℓ(v1)ℓ(v2) · · · ℓ(vk) is a path in the relabeled graph.

(d) Every path is preserved as a relabeled path. This includes shortest paths and shortest path lengths.

Exercise 11.3. There were some trick questions in this exercise.
(a) An isomorphism preserves all paths (see Exercise 11.2). In the first graph, there is a path

between every pair of vertices, but not so in the second, so the graphs cannot be isomorphic.

(b) Trick question. All graphs with the degree sequence [3,3,2,1,1] are isomorphic. To see this label the vertices
A,B,C,D,E (highest to lowest degree). A has 3 neighbors. Either B is one of these neighbors or
not. If not, then since B also has degree 3, A and B are neighbors of C,D,E. This is not possible
since C,D,E have respective degrees 2, 1, 1. Therefore B is a neighbor of A. The situation is
illustrated on the right. (Since there are two degree 1 vertices, at least one (E) is a neighbor of A.)

A

B

E

Since E cannot have any more neighbors, and B must have two more neighbors, it must be that
B is connected to the other two vertices, completing the picture as shown on the right. There is
no other way to construct a graph with this degree sequence. (Not all degree sequences can be
realized by different, non-isomorphic, graphs. Another classic example is [n− 1, 1, 1, . . . , 1].)

A

B

C D

E

(c) Trick question. No graph has these degrees because the sum of the degrees is 13 (more later).

Pop Quiz 11.4. This graph cannot exist because there are an odd number of odd-degree vertices.

Exercise 11.5.
(a) If every degree is positive, 2m =

∑

i δi ≥ n, so m ≥ n/2. Example:

(b) Equivalently, we compute the maximum number of edges a graph with a degree 0 vertex can have. Let v be the
degree 0 vertex and n the number of vertices. Every vertex other than v can have an edge to every vertex other
than v, so ever vertex other than v has degree n − 1. The number of edges is 1

2
(n − 1)(n − 2) (half the sum

of the degrees). This is the maximum number of edges for a graph with a degree 0 vertex. So, if a graph has
1 + 1

2
(n− 1)(n− 2) edges, it cannot have a degree 0 vertex.

(c) The sum of the degrees is 5× 3 = 15. There are no such graphs, since the sum of the degrees must be even. You
could also argue that such a graph would have 5 vertices of odd degree, which violates Corollary 11.3.

Exercise 11.6.
(a) The dotted edge creates a cycle, and a tree is connected with no cycles.
(b) Steps 1–5 are not connected. After step 6, any new edge would create a cycle.
(c) This is an important result so we give two different proofs.

Theorem 30.1. A graph with fewer than n− 1 edges is not connected.

Proof. We prove the claim by induction on n. The base case is n = 2 in which case the graph with 0 edges is
clearly not connected. Consider any graph with n+ 1 vertices and fewer than n edges. Every vertex cannot have
degree at least 2 (the sum of the degrees would be at least 2(n+ 1) implying at least n+ 1 edges), so some vertex
v has degree less than 2. If deg(v) = 0 then the graph is disconnected as was to be shown.
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We show the situation with deg(v) = 1 on the right. The shaded region is the rest of the
graph, other than v, and there is an edge e from v to one node in the shaded region. Remove v
and e from the graph. The shaded graph that remains has n vertices and fewer than n− 1 edges
(we removed one vertex and edge). By the induction hypothesis, this residual (shaded) graph is
not connected: two vertices (illustrated by x and y) are not connected by any path. Adding back

v x

y
e

v and e cannot create a path between x and y, so x and y remain disconnected in the original graph. Thus, any
graph with n+ 1 vertices and fewer than n edges is not connected, so the theorem follows by induction.
We now give a proof of a more general result from which Theorem 30.1 follows. A component in a graph is a
“maximal” set of vertices that is connected. The component of a vertex v is all the vertices connected to v,

C(v) = {u | u is connected to v by a path}.
Any vertex in a component can be used to define that component, that is if u ∈ C(v) then C(u) = C(v): any vertex
in C(v) is connected to u by going first from u to v and then to the vertex, hence C(v) ⊆ C(u); similarly any vertex
in C(u) is connected to v by going first from v to u and then to the vertex, hence C(u) ⊆ C(v).

1 component 2 components 6 components
A connected graph has one component. A graph with n isolated vertices (no edges) has n components. Adding an
edge between two vertices in the same component, does not change the components. Adding an edge between two
vertices in different components merges those two components, decreasing the number of components by 1.

Lemma 30.2. Adding an edge can decrease the number of components by at most 1.

We use this lemma to prove our general result:

Theorem 30.3. A graph with n vertices and e edges has at least n− e components.

Proof. Start with the n isolated vertices, (n components) and add the edges one by one, each time decreasing
the number of components by at most one. So the number of components decreases by at most e, leaving at least
n − e components. The formal proof is by induction on e, the number of edges. In the induction step start with
e+ 1 edges and remove an edge. By the induction hypothesis there are at least n+ 1− e components. Add back
the edge and apply Lemma 30.2 to conclude there are at least n− e components.
Theorem 30.3 implies Theorem 30.1 because if e < n − 1, then number of components > n − (n − 1) = 1. This
means the number of components is at least 2 and the graph is disconnected.

(d) Suppose the graph has n+ k edges, where k ≥ 0. We first prove the case that the graph has a single component.
This means that for any set of vertices there is at least one edge from a vertex in the set to a vertex not in the set
(otherwise that set of vertices is disconnected from the rest of the graph).

Let us build a connected component by adding one vertex at a time. Start at any vertex v1. There must be an
edge from v1 to a second vertex v2. So we have build the set v1, v2. After we have built the set v1, v2, . . . , vi, there
must be an edge from a vertex in our set to an i+ 1th vertex vi+1. Continue this process until we have built the
set containing all the nodes v1, . . . , vn using n − 1 edges. By construction, this set of vertices is connected using
only the n− 1 edges – this set of n− 1 edges is called a spanning tree.

There is at least one more edge in the graph, say (vi, vj), since the graph has at least n edges. Before adding the
edge (vi, vj), there was a path from vi to vj in the spanning tree. The edge (vi, vj) plus this path is a cycle.

The formal proof is by strong induction. In the induction step, take any graph with n vertices and n + k edges.
Remove an edge e. If the graph stays connected, replacing e creates a cycle. If the graph gets disconnected then
one of the components has as many edges as vertices and contains a cycle. Replacing e won’t remove that cycle.

Now consider a graph with more than one component. Suppose the graph has ℓ components with n1, n2, . . . , nℓ

vertices in each component, and e1, e2, . . . , eℓ edges in each component: n1+n2+· · ·+nℓ = n and e1+e2+· · ·+eℓ = e.
We claim that for some i∗, ei∗ ≥ ni∗ because if not, then ei < ni for every i and

e = e1 + e2 + · · ·+ eℓ < n1 + n2 + · · ·+ nℓ = n,

which cannot be since e ≥ n. There must therefore be a cycle in the i∗th component and hence in the graph.
(e) Since this is an “if and only if”, there are two parts to the proof.

1. Suppose tree G is connected and has n vertices. By (d), if G has fewer than n− 1 edges, it is not connected. If
G has n or more edges, then by (e) it has a cycle and is not a tree. Hence G has n− 1 vertices.

2. Suppose G is connected with n nodes and n − 1 edges. We show G is a tree, i.e. there are no cycles. Suppose
G has a cycle. Remove an edge on this cycle. Every vertex remains connected with every other vertex, hence the
graph remains connected but has n− 2 edges. This contradicts (d). Hence G has no cycles.
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Exercise 11.7.
(a) Pyramid Cube Octahedron

V 4 8 6

E 6 12 12

F 4 6 8

F + V − E 2 2 2
(b) For the pyramid, project the apex onto the base. Similarly for the cube, after moving out the base vertices.

For the octahedron, project the upper apex down to the base plane and place the lower apex outside the base.

(To get the more symmetric looking graph
(right) project an upper triangular face
into the opposite lower triangular face.)

(c) The faces become regions (polygons). One of the faces becomes the external (unbounded) region.
(d) There is only one external face, so F = 1. For a tree, we know from Exercise 11.6 that E = V − 1. Therefore,

F + V − E = 1 + V − (V − 1) = 2.

(e) Consider a connected graph that is not a tree (i.e. has cycles).

(i) Look at what happens when you remove one edge from a cycle.

There are two cases: the edge is between two internal faces (left) and the internal faces merge into one internal
face; the edge is between an internal face and the external face (right) and the external face merges with the
internal face to make a larger external face. In either case, the number of faces F decreases by 1. We removed
one edge but the number of vertices remained the same. So,

∆E = −1; ∆F = −1; and ∆V = 0.

Paths not using the removed edge are unaffected. Paths using the removed edge can go the other way around
the cycle (instead of using the edge). Thus, if there was a path between two vertices, there still is.

Removing an edge from a cycle does not affect connectivity

(ii) Removing an edge from a cycle decreases E and F by the same amount, so the total change will be the same,
∆E = ∆F . The vertices are unchanged so ∆V = 0.

(iii) When you remove the last edge, the graph is connected. Therefore it is a tree. In this process, F → F +∆F ,
E → E+∆E and V → V +∆V . For a tree, we proved in (d) that (faces)+ (vertices)− (edges) = 2, therefore

F +∆F + V +∆V − (E +∆E) = 2,

where F , V and E are for the original graph with cycles. Since ∆V = 0 and ∆F = ∆E, F + V − E = 2.

(f) When you traverse around every face,
∑

f E(f) edges are traversed. Every edge is traversed twice: Edges on
internal faces belongs to two faces and so are traversed once for each face; Edges on the external face that are not
on an internal face are also traversed twice, back and forth. Since every edge is traversed twice,

∑

f E(f) = 2E.
(g) Internal faces are bounded by 3 or more edges, so E(f) ≥ 3. If V ≥ 3, the external face has at least 3 vertices and

hence E(external face) ≥ 3. Therefore 2E =
∑

f E(f) ≥ 3F . That is F ≤ 2
3
E. Using Euler’s Characteristic,

E = F + V − 2 ≤ 2
3
E + V − 2 → 1

3
E ≤ V − 2 → E ≤ 3V − 6

In any planar graph with at least 3 vertices, E ≤ 3V − 6.

In a planar graph, #edges ∝ #vertices. In K5 3V − 6 = 9; yet, E = 10 which is greater, so K5 cannot be planar.
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(h) If there are no 3-cycles, then E(f) ≥ 4 for every internal face f , because traversing around an internal face creates
a cycle. The external face contains at least 3 vertices in which case going around the external face traverses at
least 4 edges, so again E(f) ≥ 4. Therefore, 2E =

∑

f E(f) ≥ 4F and, using Euler’s Characteristic,

E = F + V − 2 ≤ 1
2
E + V − 2 → 1

2
E ≤ V − 2 → E ≤ 2V − 4

Any simple graph has no 2-cycles. In K3,3 there are no 3-cycles because any path of odd length takes you from
one side to the other. In K3,3, V = 6, so 2V − 4 = 8, but E = 9 which is larger, so K3,3 cannot be planar.

Exercise 11.8. Vertices in Euler’s multi-graph are regions of Königsberg and edges are the bridges that connect two
regions. Euler’s problem is to start at a vertex, and follow a path of edges, ending at another vertex. The requirement
is that every edge must be traversed exactly once. Other than the start and end vertex, every other vertex, if entered
using some (untraversed) edge must be exited using a different (untraversed) edge, which means these vertices must
have an even degree. Every vertex in Euler’s graph has an odd degree, so Euler’s problem is not solvable.

A path which uses every edge is called an Euler tour. If the path-endpoints are the same, it is an Euler cycle.

Theorem 30.4. A connected graph has an Euler cycle if and only if every vertex has even degree. A connected graph
has an Euler tour from u to v if and only if the degrees of u and v are odd and every other vertex has even degree.

There are two parts to an if and only if proof. Try induction for the “hard part”.

Exercise 11.9. We highlight the fastest path in blue, which takes 11ms. The fastest path is
counterintuitive because it doesn’t always move “toward” the destination. When you take
a course in algorithms you will learn how to systematically compute shortest paths when
the edge weights are non-negative. The idea is to compute the shortest paths to all vertices
simultaneously, starting with the closest vertex, then the next closest and so on. The
technique is called dynamic programming and the algorithm is Dijkstra’s algorithm.
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Pop Quiz 11.10.

(a) V = {v1, v2, v3, v4, v5, v6, v7} and E =







(v1→v2), (v3→v1), (v3→v2), (v2→v4),
(v2→v5), (v3→v4), (v5→v4), (v6→v7),
(v2→v1), (v4→v2), (v6→v2)






.

(b) The graph is not (strongly) connected (there is no path from v7 to any other node).
Exercise 11.11.
(a) m, z, d are top-dogs.
(b) Let t be a vertex with maximum out-degree (in case of ties, pick any one). We prove that t is a top-dog, i.e. t

dominates every any other node u (either t beats u or t beats a vertex that beats u). Suppose, to the contrary, t
does not dominate some vertex v. That is, v beats t and also beats everyone who t beats. Then out-deg(v) is at
least 1 + out-deg(t), which contradicts t having maximum out-degree. Therefore such a v does not exist.

(c) Let v1→ v2 but vi→ v1 for i > 2. So, v1 wins one match. Let v2→ vi for i > 2. So, v2
beats everyone but v1. By construction, v1 is a top-dog, having beaten just one vertex. Pick
v2, . . . , vn to all have out-degree at least 2, e.g. v3→v4→· · ·→vn→v3 (all other match results
can be arbitrary). This means v1 won the fewest possible matches and yet is a top-dog.

v1v2

v3

v4 v5

v6

Chapter 12

Exercise 12.1.
(a) Let |E| be the total number of partners for men, which is the total number of partners for women have since every

partnership is between a man and a woman. Let M be the number of men and F the number of women. Then,

average partners per man =
|E|
M

=
|E|
F

F

M
= average partners per woman× F

M
.

Since F/M = 50.8/49.2 ≈ 1.0325, average per man = average per woman× 1.0325. 3.25% more for men.
(b) Let |E| be the number of heterosexual relationships, em be the number of same-sex relationships among males,

and ef the number of same-sex relationships among females. We have em + ef is 1% of all relationships,
em + ef

|E|+ em + ef
= 0.01 → em + ef =

0.01

0.99
× |E|.

The total number of partners is |E|+ 2em for men and |E|+ 2ef for women. So,

average partners per male =
|E|+ 2em

M
average partners per female =

|E|+ 2ef
F

.

Taking the ratio,
average partners per male

average partners per female
=
|E|+ 2em
|E|+ 2ef

× F

M
.
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The two extremes are when em = 0 and when ef = 0. When em = 0, ef = |E| × 0.01
0.99

and

average partners per male
average partners per female

=
|E|

|E|+ 2|E| × 0.01
0.99

× F

M
≈ 1.012.

When ef = 0, em = |E| × 0.01
0.99

and

average partners per male
average partners per female

=
|E|+ 2|E| × 0.01

0.99

|E| × F

M
≈ 1.0534.

On average, men have 1.2%− 5.3% more partners, depending on how the same sex relationships are distributed.

Pop Quiz 12.2. (T1, R1), (T2, R3)(T3, R4), (T4, R5).

Exercise 12.3. For |L| = 1 (base case), pick any edge. Assume the theorem for |L| ≤ n. Consider |L| = n+ 1.
(a) Case 1. Some proper left-subset X, with 1 ≤ |X| < n + 1, has |X| = |N(X)|. The graph has

two parts: X and its neighborhood N(X), and the rest of the graph. (X,N(X)) satisfies Hall’s
condition so by the induction hypothesis X has a matching into N(X). For any left-subset Y
outside X, its neighborhood may overlap with N(X) (gray edges). Let N̄(Y ) be that part of
N(Y ) not overlaping with N(X). From the matching condition,

|N(X)|+ |N̄(Y )| = |N(X ∪ Y )|
∗
≥ |X ∪ Y | = |X|+ |Y |.

∗ is because the full graph satisfies the matching condition. Since |N(X)| = |X|, we have
|N̄(Y )| ≥ |Y | satisfying the matching condition. By the induction hypothesis, the left-vertices
outside X can be matched to the right-vertices outside N(X). This gives a full left-matching.

X N(X)

Y

N̄(Y )

(b) Case 2. Every proper left-subset X, has |X| < |N(X)|. Match the first left-vertex to any
neighbor. In the remaining graph with n left-vertices, consider any left-subset Y and its
neighborhood N̄(Y ) in the remaining graph. Then the matching condition holds for Y ,

|N̄(Y )| ≥ |N(Y )| − 1 ≥ |Y |.
By the induction hypothesis, the remaining graph has left-matching, hence the full graph

does.

Y

N̄(Y )

In both cases, there is a left-matching which covers the n+1 left-vertices, which proves the Hall’s theorem by induction.

Exercise 12.4. In the induction step, you might match and remove some left and right-vertices. Let us examine
the residual graph. The degrees of some right-vertices decrease, but the maximum right-vertex degree could stay the
same. If a removed a right-vertex was linked to remaining left-vertices, the degree of those left-vertices will decrease.
This means that the minimum left-vertex degree could decrease and drop below the maximum right-vertex degree.
Therefore, we may not be able to apply the induction hypothesis to the residual graph, and the proof by induction
falters.

Hall’s theorem implies Corollary 12.2 on page 164. Hall’s theorem is stronger, yet easier to prove by induction because
we assume more in P (n) which offsets having to prove more in P (n+ 1).

Exercise 12.5. A matching is stable if there is no pair of matches that is volatile.

X Y Z

1. A A B
2. B C A
3. C B C

A B C

1. Z Y Z
2. Y X X
3. X Z Y

The match A–Z is “stable” because Z is A’s top choice so A will not wish to break her current match.
The only possible volatile pair is (X,Y ) and (B,C). Since X prefers B to C, this is not a volatile pair.
Since there are no volatile pairs of matches, the matching is stable.

X

Y

Z

A

B

C

We show a second matching. Again, Z is A’s top choice, so the only possible volatile pair is (X,Y ) and
(B,C). Since B prefers Y to X, this is not a volatile pair. The matching is stable and A still gets her
top choice. B prefers Y to X and C prefers X to Y so the girls prefer this second matching.

X

Y

Z

A

B

C

The boys prefer the first matching: Z is indifferent but X and Y are better off.

Exercise 12.6.
(a) If a woman w has more than one suitor, she chooses her favorite and the other suitors (at least one) cross w

from their list. When there is at most one man under every woman’s balcony, we have a stalemate. For every
non-stalemate round (at least one woman has more than one suitor), a man crosses a woman from a list. There
are a total of n2 women on all the lists (each woman appears once on each list). Therefore there cannot be more
than n2 non-stalemate rounds of dating because there will be no more women left to cross out.
Conclusion: After at most n2 rounds of dating, each woman has at most one suitor.
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(b) If a woman w ever gets wooed, those suitors had w on the top of their current list. She picks her favorite who
comes back (w remain on the top of that favorite’s list). By induction, she will always have a suitor.

(c) According to the ritual, m woos as long as there are uncrossed women on his list. Since m is not married at the
end, m has been rejected by every woman, which means that he has wooed every woman, including w.

If there is an unmarried man m at the end of the ritual, then there is an unmarried woman w who was wooed
at sometime by m. By part (b), from that point on, w will always have a suitor and so must end up married, a
contradiction. Therefore, every man is married at the end of the ritual (and therefore so too is every woman).

(d) Suppose w is at the ith position on m’s list.

(a) If m never wooed w then m could not have been rejected by all the top i−1 candidates on m’s list. Therefore
m was ultimately accepted by one of these top i−1 candidates and ended up married to that better candidate:
m prefers his current partner to w.

(b) If m did woo w, but is not married to w, then w rejected m for someone better, m′. From this point on,
in the dating ritual, w will continue to accept only candidates who are at least as good as m′ because m′

will return to w unless someone better comes along and w rejects m′. Therefore, w will end up married to
someone at least as good (in her view) as m′, who she prefers to m: w prefers her current partner to m.

That the marriages are stable is now immediate from (i) and (ii). Consider any pair of married couples (m,w) and
(m′, w′). If m′ had wooed w then w prefers m to m′ and would not wish to switch to m′. If m′ had not wooed w
then m′ prefers his current partner w′ to w. Hence, the pair of married couples is not volatile.

Pop Quiz 12.7. The dating ends after two rounds.
Dating Round 1: A B C

1. Z Y Z
2. Y X X
3. X Z Y

X Y Z

B A, C

Dating Round 2: A B C

1. Z Y Z
2. Y X X
3. X Z Y

X Y Z

C B A

Pop Quiz 12.8.
(a) R1, R2, R3 are a “clique”: every pair has an edge. Therefore every vertex in this group must be colored a different

color otherwise an edge will connect two vertices of the same color. Thus, we need at least 3 colors.

If a graph contains a clique of size k then at least k colors are required.

(b) You need one color, and n suffice (color each vertex a different color). So 1 ≤ χ(G) ≤ n. The graph with n isoloted
vertices needs can be colored with one color and Kn, the complete graph on n vertices, requires n colors.

Exercise 12.9. The graph is an example of a leveled graph in which the nodes can be partitioned into levels ℓ =
1, 2, 3, 4, . . . and edges only exist between vertices in adjacent levels. In this case you can alternate colors between
levels and get a valid 2-coloring. We show how to represent the graph as a leveled graph which immediately gives a
2-coloring. To order the vertices so that Greedy gives a 2-coloring, simply order the vertices by levels.

Original graph G Leveled view of G

v2

v5

v3

v6

v4

v1

Vertex ordering for Greedy

Exercise 12.10. Certainly if V ≤ 6, then 6 colors are enough by coloring each vertex a different color. Therefore, we
only need to consider V > 6 in which case E ≤ 3V − 6.
(a) Suppose every node-degree is at least 6, then the sum of the node-degrees is at least 6V , so

2E = sum of node-degrees ≥ 6V.

We conclude that E ≥ 3V > 3V − 6, which contradicts E ≤ 3V − 6. So, at least 1 vertex has degree of 5 or less.
(b) Start with a planar drawing of a graph and remove a vertex and its edges. The remaining edges do not cross in

the drawing that remains (since initially they did not cross). Therefore the remaining graph is planar.
(c) We use induction on V , the number of vertices in the graph. If V ≤ 6 then the claim is trivially true. Suppose the

claim is true for any planar graph of V vertices and consider any planar graph with V + 1 vertices. By (a), there
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is a node with degree at most 5. Remove this vertex and its edges. By (b) the remaining graph is planar and has
V vertices, so by the induction hypothesis this remaining graph is 6-colorable. Now add back the removed vertex,
keeping the colors of the vertices obtained from the 6-coloring of the smaller graph. Among the 6 colors, there
must be at least one free color for the node we added back because that vertex has at most 5 neighbors. Therefore,
our graph with V + 1 vertices is 6-colorable. By induction, every planar graph is 6-colorable.

(Every planar graph is 5-colorable. The same basic induction works, but you must be more careful in the induction
step. The 4-color theorem says that every planar graph is 4-colorable, and that is hard to prove.)

Chapter 13

Exercise 13.1. We use induction on r. For r = 1, there is nothing to prove. Suppose the product rule holds for
sequences of length r and consider sequences of length r + 1. Fix a prefix X1 · · ·Xr to one of the possible choices of
x1 · · ·xr. By assumption, there are Nr+1 choices for xr+1 for this prefix. So, there are Nr+1 sequences that begin with
X1 · · ·Xr, that is |{X1 · · ·Xr •xr+1}| = Nr+1. Define the type of a sequence by its prefix; there are |{x1 · · ·xr}| types.
Every sequence x1 · · ·xrxr+1 is one of these types, depending on the prefix x1 · · ·xr. So, by the sum rule,

|{x1 · · ·xrxr+1}| =
∑

prefixes
X1 · · ·Xr

|{X1 · · ·Xr •xr+1}| =
∑

prefixes
X1 · · ·Xr

Nr+1.

The last sum is just Nr+1 times the number of possible prefixes,

|{x1 · · ·xrxr+1}| = |{x1 · · ·xr}| ×Nr+1 = (N1 ×N2 × · · · ×Nr)×Nr+1,

where the last equality follows by the induction hypothesis. This proves the induction step.

Pop Quiz 13.2. 10× 9× 8× 7× · · · × 2× 1 = 10! = 3628800.

Exercise 13.3. There are two types of outcome: HS2 where S2 is a sum of 2 dice; or TS4 where S4 is a sum of 4 dice.
S2 ∈ {2, . . . , 12} (11 choices) and S4 ∈ {4, . . . , 24} (21 choices). The sum rule gives 11 + 21 = 32 outcomes.

Exercise 13.4. Label the (distinguishible) “named” committees: 1, 2,. . . , 16.
(a) (i) An assignment can be specified by s1s2s3 · · · s100, where si ∈ {1, 2, . . . , 16} is the committee senator i gets

assigned. By the product rule, there are 16100 such sequences, which equals the number of ways each senator can be
assigned to exactly one of 16 “named” committees. (Ponder what happens if the committees are indistinguishable.)

(ii) A senator can be in 0 or 1 committee. The assignment can be specified by s1s2 · · · s100, where si ∈ {0, 1, . . . , 16}:
si = 0 if senator i is assigned to no committee; otherwise, si is i’s committee. By the product rule, there are 17100

such sequences, which is the number of ways each senator can be assigned to at most one of 16 “named” committees.
STOP: Skip the solution of (b) on first reading. It is hard.

(b) The complication arises because by requiring that each committee is not empty we introduce a dependency between
the senators, where as previously the senators can be assigned independently. For example, if the first 99 senators
all get assigned to the first 15 committees, now the only available choice for s100 is committee 16, otherwise that
committee would be empty. Let us consider the case of 5 senators and 2 committees.

Exactly 1 committee per senator; no empty committee. When committees can be empty, there are 25 assignments.
If all 5 senators are in either committee there is an empty committee, so these two assignments are not allowed.
All others are allowed, so there are 25 − 2 ways.

Now consider n senators being distributed into k “named” committees (n distinguishable objects partitioned into
k distinguishable non-empty sets). First suppose the committees are indistinguishable (not named). For example,
with 5 senators and 3 committees, the following sequences s1s2s3s4s5 are the same committees,

12333 21333 13222 31222 23111 32111.

What matters is who is in a committee with whom. Let
{

n
k

}
be the number of indistinguishable committees.

Label the committees: pick one of the k labels for the first committee, one of the remaining k − 1 labels for the
second committee and so on resulting in k × (k − 1)× · · · × 1 ways to label the committees (product rule). So,

# ways to create k non-empty “named” committees from n senators = k!
{

n
k

}
.

The numbers
{

n
k

}
are known as Stirling numbers of the second kind,

{n

k

}

= # ways to partition n labeled objects into k non-empty unlabeled sets.

Stirling numbers are well studied. Here are some facts for you to verify (n ≥ 1, k ≥ 1):
{

0
0

}
= 1

{
n
0

}
= 0

{
0
k

}
= 0

{
n

n−1

}
= 1

2
n(n− 1)

{
n
2

}
= 2n−1 − 1.

The Stirling numbers
{

n
k

}
satisfy a recurrence. To partition n objects into k sets: the first object can be in its

own set and the other n− 1 objects are partitioned into k − 1 non-empty sets in
{

n−1
k−1

}
ways; or, the first object
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is in a set with some other objects, in which case the other n− 1 objects are partitioned into k non-empty subsets
in
{

n−1
k

}
ways which we multiply by the k to account for the k possible sets for the first object. Therefore,

{
n
k

}
= k

{
n−1
k

}
+
{

n−1
k−1

}
.

The reader may use this recurrence and prove by induction that
{

n
k

}
=
∑k

i=0(−1)k−i in

i!(k−i)!
. To conclude,

non-empty “named” k-committees from n senators (one committee per senator) =
k∑

i=0

(−1)k−i k!
i!(k−i)!

in.

At most 1 committee per senator; no empty committee. We consider the problem by “brute-force”, first deciding
the number of senators in no committees. There are 6 cases:

# senators not on a committee 0 1 2 3 4 5

# ways to pick the excluded senators 1 5 10 10 5 1

Verify the number of ways to exclude k senators in forming the committees: there is 1 way to exclude 0 senators
(all senators are in committees) and 1 way to exclude 5 senators (no senators are in committees); there are 5 ways
to exclude 1 senator (5 possible senators to exclude) and similarly 5 ways to exclude 4 senators (5 possible senators
to include). There are 10 pairs of senators. So there are 10 ways to exclude 2 senators and 10 ways to exclude 3
senators (select a pair to include). If you exclude 4 or 5 senators, both committees cannot be nonempty.
Conclusion: there are 4 types of committees: those that exclude 0,1,2 or 3 senators.
Let’s count the number of ways to form 2 non-empty committees if you exclude 2 senators. So you use 3 senators.
There are 10 ways to pick which 2 senators to exclude, and then there are 23 − 2 ways to form 2 non-empty
committees using the remaining 3 senators. By the product rule, there are 10× (23− 2) ways to form the two non-
empty committees. Using this logic, we compute the entries in the following table for the number of committees
that can be formed by excluding k senators, k = 0, 1, 2, 3.

# senators not on a committee 0 1 2 3

# committees 1× (25 − 2) 5× (24 − 2) 10× (23 − 2) 10× (22 − 2)

By the sum rule, the number of committees with at most 1 committee per senator and no empty committees is
1× (25 − 2) + 5× (24 − 2) + 10× (23 − 2) + 10× (22 − 2) = 170.

For n senators and k committees, we can leave out i senators and assign n− i of them to k non-empty committees
in k!

{
n−i
k

}
, providing n− i ≥ k. You will see later that there are n!/i!(n− i)! ways in which to exclude i senators,

so using the sum rule,
# ways to create k non-empty “named” committees
from n senators (at most one committee per senator)

=
n−k∑

i=0

n!k!
i!(n−i)!

{
n−i
k

}
.

Pop Quiz 13.5.
(a) To list all the sequences of length 6, prepend 0 and 1 to the length-5 sequences:

000000 000001 000010 000011 000100 000101 000110 000111
001000 001001 001010 001011 001100 001101 001110 001111
010000 010001 010010 010011 010100 010101 010110 010111
011000 011001 011010 011011 011100 011101 011110 011111

100000 100001 100010 100011 100100 100101 100110 100111
101000 101001 101010 101011 101100 101101 101110 101111
110000 110001 110010 110011 110100 110101 110110 110111
111000 111001 111010 111011 111100 111101 111110 111111

Purple is 0 ones; green is 1 one; red is 2 ones; blue is 3 ones. Count the sequences of each color to verify the first
6 entries in the row for n = 6. The other entries follow by symmetry, e.g. flipping a sequence with 2 ones gives a
sequence with 4 ones. Thus, the number of sequences with 4 ones equals the number of sequences with 2 ones.

(b) We want
(
10
3

)
, so we fill out our Pascal’s-triangle

table up to row n = 10.

We highlighted the number we seek:
(
10
3

)
= 120.

(
n
k

)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

n

k

Exercise 13.6.
(a) (i) Using (13.2) on page 13.2, Q(n, k) =

∑n
j=0 Q(j, k − 1) = Q(n, k − 1) +

∑n−1
j=0 Q(j, k − 1).

The sum on the RHS is Q(n− 1, k) by (13.2), so Q(n, k) = Q(n, k − 1) +Q(n− 1, k).
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(ii) If there are no candies of color-1 in the goody bag, the goody bag is made up of n candies using k− 1 colors:
there are Q(n, k − 1) such goody bags. Or, there is at least 1 candy of color-1. Place one candy of color-1 in
the bag. The remaining n − 1 candies make up a “goody bag” using k colors, so there are Q(n − 1, k) such
goody bags. By the sum rule, the total number of goody bags is Q(n, k − 1) +Q(n− 1, k).

(b) The dashed diagonal produces the same numbers as row 5 in Pascal’s triangle. The next diagonal produces the
numbers in Pascal’s triangle for row 6. Along the diagonal, n+ k is constant. For the dashed diagonal, n+ k = 6.

dashed diagonal n+ k = 6 ↔ row 5 in Pascal’s triangle;
next diagonal n+ k = 7 ↔ row 6 in Pascal’s triangle.

A diagonal gives row n+ k− 1 in Pascal’s triangle, so Q(n, k) =
(
n+k−1

ℓ

)
, that is m = n+ k− 1. We can read off

ℓ from the column k. Since k = 1 gives m = 0, m = k − 1 and our guess is Q(n, k) =
(
n+k−1
k−1

)
.

Exercise 13.7. The sequences end in 0 with a prefix having ≤ k 1s or end in 1 with a prefix having ≤ k− 1 1s. Thus,
∣
∣n
k

∣
∣ =

∣
∣n−1

k

∣
∣ +

∣
∣n−1
k−1

∣
∣. That is,

∣
∣n
k

∣
∣ (Pascal’s identity). The boundary conditions are

∣
∣n
0

∣
∣ = 1 and

∣
∣n
k

∣
∣ = 2n for k ≥ n.

The reader may build Pascal’s triangle and get
∣
∣ 6
3

∣
∣ = 42. Note,

∣
∣ 6
3

∣
∣ =

(
6
0

)
+
(
6
1

)
+
(
6
2

)
+
(
6
3

)
.

Exercise 13.8.
(a) The first thing to do with build-up is identify the object you are counting with a name and tinker. Let F (n) be

the number of subsets of [n] = {1, 2, . . . , n} that do not contain consecutive numbers. Now tinker with small n.

n subsets F (n)

1 ∅, {1} F (1) = 2

2 ∅, {1}, {2} F (2) = 3

3 ∅, {1}, {2}, {3}, {1, 3} F (3) = 5

If S contains n, it can’t contain n−1. The remaining elements in S are a subset of 1, . . . , n−2 not containing two
consecutive numbers, and there are F (n− 2) such subsets. If S doesn’t contain n, then S is a subset of 1, . . . , n− 1
and there are F (n− 1) such subsets. Those are the only options. By the sum rule,

F (n) = F (n− 1) + F (n− 2).

We can now compute F (20),

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F (n) 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711

There are 17,711 subsets of {1,2,. . . ,20} that do not contain consecutive numbers.
(b) Let G(n) be the number of subsets of [n] with at most 1 of any 3 consecutive numbers. Tinker with small n.

n subsets G(n)

1 ∅, {1} G(1) = 2

2 ∅, {1}, {2} G(2) = 3

3 ∅, {1}, {2}, {3} G(3) = 4

4 ∅, {1}, {2}, {3}, {4}, {1, 4} G(4) = 6

Now, let us build such a subset S. If S contains n, it cannot contain n− 1 or n− 2. So the remaining elements in
S are a subset of 1, 2, . . . , n− 3 containing at most one of any three consecutive numbers, and there are G(n− 3)
different such subsets (by definition of G(n)). If S does not contain n, then the elements in S are a subset of
1, 2, . . . , n− 1 and there are G(n− 1) different such subsets. Those are the only options for S. By the sum rule,

G(n) = G(n− 1) +G(n− 3).

We can now compute G(20),

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

G(n) 2 3 4 6 9 13 19 28 41 60 88 129 189 277 406 595 872 1278 1873 2745

There are 2,745 subsets of {1,. . . ,20} containing at most one of any three consecutive numbers.
(c) Same method, different problem. Let B(n) be the number of length-n sequences not containing 001. Tinker.

n length n sequences B(n)

1 0, 1 B(1) = 2

2 00, 01, 10, 11 B(2) = 4

3 000, 010, 011, 100, 101, 110, 111 B(3) = 7

Let us now try to build a sequence s of length n. It either starts with 1 or 0.

1

0 1
0

B(n− 1) sequences
B(n− 2) sequences
1 sequence
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If s starts with 1, what follows is any sequence of length n− 1 that does not conatin 001, and there are B(n− 1)
of these. If s starts with 0, there are two cases: the second bit is 1 in which case what follows is any sequence
of length n − 2 that does not conatin 001, and there are B(n − 2) of these; the second bit is 0 in which case all
remaining bits are 0, because otherwise the sequence contains 001. Therefore,

B(n) = B(n− 1) +B(n− 2) + 1;

We can now compute B(20),

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B(n) 2 4 7 12 20 33 54 88 143 232 376 609 986 1596 2853 4180 6764 10945 17710 28656

Do you see a similarity between B(n) and F (n) above. There are 28,656 sequences of length 20 not containing 001.
(d) Start small. For 2 players, there is one way to configure the first round. Let P (n) be the number of ways to

configure the first round with 2n players. P (1) = 1. With 2n players, the first player can pair with any of 2n− 1
players leaving 2(n− 1) players to be paired in P (n− 1) ways. Therefore, P (n) = (2n− 1)P (n− 1), and we have

n 1 2 3 4 5 6 7 8

P (n) 1 3 15 105 945 10395 135135 2027025

There are 2,027,025 different configurations for the first round matches.

Exercise 13.9.
(a) The claim is that Q(n, k) =

(
n+k−1
k−1

)
. We prove this by a “double induction”. We prove by induction on k, and

within the induction on k, we use induction on n. We prove, by induction, P (k) for k ≥ 1, for the claim:

P (k) : Q(n, k) =
(
n+k−1
k−1

)
for all n ≥ 0.

The base case is k = 1 which claims Q(n, 1) =
(
n
n

)
= 1, t. For the induction, assume P (k). We show

P (k + 1) : Q(n, k + 1) =
(
n+k
k

)
for all n ≥ 0.

When n = 0, Q(0, k + 1) = 1
(
k
k

)
. Let n∗ be the smallest n for which Q(n, k + 1) 6=

(
n+k
k

)
(well-ordering

principle). Thus, n∗ > 0. By the innduction hypothesis, Q(n∗, k) =
(
n∗+k−1

k−1

)
. Since n∗ is the smallest n which

fails, Q(n∗ − 1, k + 1) =
(
n∗+k−1

k

)
. By Exercise 13.6, Q(n, k) = Q(n, k − 1) +Q(n− 1, k), therefore

Q(n∗, k + 1) = Q(n∗, k) +Q(n∗ − 1, k + 1) =
(
n∗+k−1

k−1

)
+
(
n∗+k−1

k

)
=
(
n∗+k

k

)
.

In the last step we used the recursion
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
. The last expression shows that n∗ is not a

counterexample, a contradiction. So, there is no smallest counterexample, and P (k + 1) is true.
(b) The expression for Q(n, k) follows by using (a) with n+ k− 1 instead of n, and k − 1 instead of k. We prove that

(
n
k

)
= n!/k!(n− k)!. Define our claim,

P (n) :
(
n
k

)
= n!

k!(n−k)!
for 0 ≤ k ≤ n.

We prove by induction that P (n) is true for all n ≥ 1. First, we verify the base case n = 1,
(
1
0

)
= 1 = 1!/0!1! and

similarly
(
1
1

)
= 1 = 1!/1!0!. For the induction, assume P (n) is true.

(
n+1
k

)
=
(
n
k

)
+
(

n
k−1

)
(recursion in (13.1))

= n!
k!(n−k)!

+ n!
(k−1)!(n−k+1)!

(induction hypothesis)

= n!
(k−1)!(n−k)!

(
1
k
+ 1

n−k+1

)

(algebra)

= n!
(k−1)!(n−k)!

· n+1
k(n−k+1)

(algebra)

= (n+1)!
k!(n+1−k)!

(algebra)

Therefore P (n+ 1) is true, and, by induction, P (n) is true for all n ≥ 1.
(c) We denoted these numbers by F (n) in the solution to Exercise 13.9(a), where we showed that F (1) = 2, F (2) = 3

and F (n) = F (n− 1) +F (n− 2) (the Fibonacci recursion). We prove that F (n) = Fn+2 by strong induction. The
base cases n = 1, 2 are true because F3 = 2 and F4 = 3. For the induction step, we have that

F (n+ 1) = F (n) + F (n− 1) = Fn+2 + Fn+1 = Fn+3.

(The first step is the recursion for F (n); the second is by the strong induction hypothesis; and, the third uses the
Fibonacci recursion.) By induction, F (n) = Fn+2 for n ≥ 1.

(d) We denoted these numbers by B(n) in the solution to Exercise 13.9(c) (we showed that B(1) = 2, B(2) = 4). For
these two base cases, B(n) = Fn+3 − 1. For the strong induction step,

B(n+ 1) = B(n) +B(n− 1) + 1 = Fn+3 − 1 + Fn+2 − 1 + 1 = Fn+3 + Fn+2 − 1 = Fn+4 − 1.

(The first step is the recursion for B(n); the second is by the strong induction hypothesis; and, the last step uses
the Fibonacci recursion.) By induction, B(n) = Fn+3 − 1 for n ≥ 1.
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Pop Quiz 13.10.
(a) Everything in A maps to one element of B, f(1) = f(2) = f(3) = f(4) = 2.
(b) Trick question. 1-to-1 but not onto can only be done if |A| < |B|.
(c) Trick question. Not 1-to-1 but onto can only be done if |A| > |B|.
(d) F (1) = 2; F (2) = 3; F (3) = 4; F (4) = 5;

Pop Quiz 13.11.
(a) {3 , 4 , 2 }
(b) 000101000000
(c) Let 0•i •1 •0•j •1 •0•k be a binary sequence of length n + 2 with 2 ones. So, i, j, k ≥ 0 and i + j + k = n. The

sequence corresponds to the bag {i , j , k } containing i red candies, j blue candies and k green candies.

Clearly the correspondence is 1-to-1, different sequences will have different triples (i, j, k) which map to different
candy bags. For any candy bag, we can construct the sequence, so the mapping is onto, hence a bijection.

Exercise 13.12.
(a) xi is the number of candies of color i and since there are 10 candies,

∑

i xi = 10. Any goody bag with the 10
candies gives non-negative xi’s which sum to 10. Any non-negative integer solution to x1 + · · · + x4 = 10 gives a
candy bag with xi of candy i. We have a bijection between the candy bags and the non-negative solutions, that is

Q(10, 4) =
(
10+4−1

4−1

)
=
(
10
3

)
= number of non-negative solutions to x1 + · · ·+ x4 = 10.

(b) Let yi = xi − 1. Then yi are non-negative and y1 + · · · + y4 = x1 + · · · + x4 − 4 = 6. A non-negative solution to
y1+ · · ·+y4 = 6 gives a positive solution to x1+ · · ·+x4 = 10 and vice versa. So, we want Q(6, 4) =

(
6+4−1
4−1

)
=
(
9
3

)
.

(c) Introduce a dummy variable x5 = 10−(x1+ · · ·+x4), x5 ≥ 0 and x1+ · · ·+x5 = 10. Every non-negative solution to
x1+ · · ·+x5 = 10 gives a non-negative solution to x1+ · · ·+x4 ≤ 10, so the answer is Q(10, 5) =

(
10+5−1

5−1

)
=
(
14
4

)
.

(d) A roll is one of 6 “colors”: 1, . . . , 6. For identical dice, we care only about the number of rolls of each color. With
4 rolls, we have

(
4+6−1
6−1

)
=
(
9
5

)
.

(e) For the binary sequence b1 · · · b10 let the subset A contain all elements where bi = 1, A = {xi | bi = 1}. Every
binary sequence with three 1s gives a unique subset of A with 3 elements and every 3-subset identifies a binary
sequence with three 1s, so we have a bijection. Thus, the number of such subsets equals the number of binary
sequences with 3 ones, which is

(
10
3

)
. In general, the number of k-subsets of an n-element set is

(
n
k

)
.

(f) A 3-subset corresponds uniquely to its complement (a 7-subset) and vice versa. Since we have a bijection from
3-subsets to 7-subsets,

(
10
3

)
=
(
10
7

)
. In general

(
n
k

)
=
(

n
n−k

)
.

(g) Same bijection in (d), but to n-bit binary sequences with k ones. The ones identify the elements in the subset.
(h) Use the bijection in (e) from a k-subset to its complement, an (n− k)-subset.
(i) On page 180, we used the product rule to show that there are 2n binary sequences of length n. The 1s in a sequence

identify the elements in the subset, so there are 2n subsets of a set (see also Example 13.1 about Senate committees
on page 181). We can also count the subsets using the sum rule:

|{subsets}| = |{subsets of size 0}|+ |{subsets of size 1}|+ · · ·+ |{subsets of size n}|.
From parts (d) and (f), the number of subsets of size k is

(
n
k

)
, therefore

2n = |{subsets}| =
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

)
.

(A fundamental technique for establishing that two combinatorial expressions are equal: count a set in two different
ways. The answers must be equal. Here, one way of counting gave 2n, and the other gave

∑n
k=0

(
n
k

)
.)

Pop Quiz 13.13. This problem is deceptively complicated. The king has 64 positions. Each removes 15 possible
row-column squares for the queen. How many diagonal squares are removed? It depends on where the king is.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0ZKZ0
2 0J0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0ZKZ0
2 0J0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

On the left we show two king positions. The king on b2 covers 9 squares (excluding its own square), but the king on
f3 covers 11 squares. Verify using the figure on the right that positions on the black box all cover 9 squares and those
on the red box all cover 11 squares. We can use the sum rule with four types of positions for the king: the outer-most
ring of size 28 (covering 7 squares) to inner-most ring of size 4 (covering 13 squares)

ring size 28 20 12 4
diagonal squares covered 7 9 11 13
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The number of positions available to the queen, given the position of the king is

64− 15 row-column squares− number of diagonal squares covered.

Denoting the rings by 0,1,2,3 (ring-0 is outermost). Here are our observations:
type of king position ring-0 ring-1 ring-2 ring-3

number of possible king positions 28 20 12 4
diagonal squares covered 8 10 12 14

number of possible queen positions 42 40 38 36
Using the product rule within the types of king positions and the sum rule to add up the positions of each type to get
the total number of possible positioins,

number of possible positions = 28× 42 + 20× 40 + 12× 38 + 4× 36 = 2576

For practice, consider a general n × n board. First, if the queen cannot be on the same row and column as the king,
the number of ways to specify the sequence cKrKcQrQ is

n× n× (n− 1)× (n− 1) = n2(n− 1)2.

If the queen cannot be on the same diagonal, the number of row-columns squares covered by the king is 2n− 1. In the
outermost ring with 4n−4 squares, the number of diagonals covered is n−1, so the number of possible queen positions
is n2 − (2n − 1) − (n − 1). Each time you move in by one ring, the number of possible king positions decreases by 8
and the number of diagonals covered increases by 2, so the number of possible queen positions decreases by 2. Thus, in
ring-i, the number of possible king positions is 4n− 4− 8i and queen positions is n2− 3n+2− 2i = (n− 1)(n− 2)− 2i.
The number of rings is n/2 when n is even. When n is odd, the number of rings is (n − 1)/2 plus the single center
square. Using the product and sum rule for the rings,

number of possible positions =
k∑

i=0

(4n− 4− 8i)((n− 1)(n− 2)− 2i).

where k = n/2− 1 if n is even and k = (n− 1)/2− 1 when n is odd (when n is odd, there is also the center square to
consider). We use techniques from Chapter 9 to compute the sum.

number of possible positions = 4
k∑

i=0

(n− 1− 2i)((n− 1)(n− 2)− 2i)

= 4

[
k∑

i=0

(n− 1)2(n− 2)− 2
k∑

i=0

(n− 1)2i+ 4
k∑

i=0

i2
]

= 4
[
(k + 1)(n− 1)2(n− 2)− k(k + 1)(n− 1)2 + 4

6
k(k + 1)(2k + 1)

]

When n is even, we plug in k = n/2− 1 to get

number of possible positions = 1
3
n(n− 1)(n− 2)(3n− 1).

When n is odd, we plug in k = (n − 1)/2 − 1 and add the n2 − 4n + 3 positions with the king on the center square.
The resulting formula is the same.

Pop Quiz 13.14. To specify the positions of the 8 castles, specify the column and row of each castle, the sequence

(c1r1)(c2r2)(c3r3)(c4r4)(c5r5)(c6r6)(c7r7)(c8r8)

For the columns, there are 8×7×· · ·×1 = 8! ways. For the rows, there are 8×7×· · ·×1 = 8! ways. For the rows and
columns, by the product rule, there are (8!)2 ways. Consider one such sequence, (a1)(b2)(c3)(d4)(e5)(f6)(g7)(h8). If
we reorder some positions, for example to (b2)(a1)(c3)(d4)(e5)(f6)(g7)(h8), we get a different sequence but the same
position. There are 8× 7× · · ·× 1 = 8! possible reorderings of this position sequence, so this means that every position
corresponds to 8! different sequences, a 1-to-8! mapping. By the multiplicity rule, there are 8! times as many sequences
as there are positions. So the number of positions is (8!)2/8! = 8! = 40320.

Alternatively, we may assume the rows increasing, so a position is a sequence (c11)(c22)(c33)(c44)(c55)(c66)(c77)(c88)
(we only get to choose the columns). There are 8! ways to choose the columns.

Exercise 13.15.
(a) The number of poker hands is the number of subsets of 5 cards from 52, or

(
52
5

)
= 52!/(5!× 47!) = 2598960.

(b) The idea for such problems is to give a sequence of instructions to uniquely construct the object. The instructions
must be unambiguous. Effectively, you construct a bijection between sequences of instructions and the objects.
Now count the sequences. Here is a “recipe” to construct a 4-of-a-kind poker hand:
1: Choose a value v and pick all four cards of value v: ♠v ♥v ♦v ♣v.
2: Choose one of the other cards of a different value c.

The sequence vc completely specifies the 4-of-a-kind. Change any part of the sequence and you get a different
4-of-a-kind hand. We have a bijection between sequences vc and 4-of-a-kind hands. Counting the sequences is
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“easy”. There are 13 possible choices for v and for each choice of v there are 48 choices for c. By the product rule,
|{4-of-a-kind hands}| = |{sequences vc}| = 13× 48 = 624.

(c) To construct a flush, here is a recipe:
1: Pick the suit s, either ♠♥♦or ♣.
2: Choose a set of 5 values V = {v1, v2, v3, v4, v5} from the 13 values in suit s.

The sequence sV completely specifies the flush. There are 4 choices for s. Given s, V is a 5-subset of the 13 values,
so there are

(
13
5

)
choices for this subset. By the product rule,

|{flushes}| = |{sequences sV}| = 4×
(
13
5

)
= 5148.

(d) To construct a full-house, here is a recipe:
1: Choose a value v1.
2: Choose T1 = {s1, s2, s3}, a set of 3 suits having value v1.
3: Choose a second value v2 6= v1.
4: Choose T2 = {s1, s2}, a set of 2 suits having value v2.

The sequence v1T1v2T2 completely specifies the full-house. There are 13 choices for v1; given v1, T1 is a 3-subset
of the 4 suits, which can be picked in

(
4
3

)
ways; given v1T1, v2 has 12 choices (since v2 6= v1); given v1T1v2, T2 is a

2-subset of the 4 suits, which can be picked in
(
4
2

)
ways. By the product rule,

|{full-houses}| = |{sequences v1T1v2T2}| = 13×
(
4
3

)
× 12×

(
4
2

)
= 3744.

(e) To construct a 3-of-a-kind, here is a recipe:
1: Choose a value v
2: Choose T = {s1, s2, s3}, a set of 3 suits having value v.
3: Choose c1, a card of value v1 6= v.
4: Choose c2, a card of value v2 6= v or v1.

Let’s count sequences vT c1c2. There are 13 choices for v. Given v, pick T , a 3-subset of the 4 suits, in
(
4
3

)
ways.

Then pick c1 in 48 ways (v1 6= v), and c2 in 44 ways (v2 6= v or v1). By the product rule,
|{3-of-a-kinds}| = |{sequences vT c1c2}| = 13×

(
4
3

)
× 48× 44 = 109842.

WRONG! The mistake is similar to the issue with counting positions of two indistinguishible castles versus a king
and a queen (distinguishable pieces). These two 3-of-a-kind hands (♠A,♥A,♣A,♥7,♣2) and (♠A,♥A,♣A,♣2,♥7)
are the same. However, the two sequences vT c1c2 are different. So two different sequences map to the same hand:
we do not have a 1-to-1 mapping. There are many ways to resolve this problem. Every hand maps to two sequences,
so by the multiplicity rule, there are twice as many sequences as hands: the number of hands is 109842/2 = 54912.
Alternatively, we view the remaining 48 cards in some order and pick c1c2 with c1 < c2 (as with the castle positions).
The number of ways to pick c1 < c2 is half the number of ways to pick c1c2 (the other half have c1 > c2). The
systematic route is to give a recipe to uniquely construct a 3-of-a-kind hand:
1: Choose a value v
2: Choose T = {s1, s2, s3}, a set of 3 suits having value v.
3: Choose a pair of values V = {v1, v2} from the remaining 12 values.
4: Choose x1, a suit from value v1.
5: Choose x2, a suit from value v2.

Now, the sequence vT Vx1x2 uniquely constructs a 3-of-a-kind hand and we can count the sequences. There are
13 choices for v; given v, T is a 3-subset of the 4 suits, which can be picked in

(
4
3

)
ways; V is a 2-subset of the

remaining 12 values, with
(
12
2

)
choices; given V, x1 and x2 each have 4 choices. By the product rule,

|{3-of-a-kinds}| = |{sequences vT Vx1x2}| = 13×
(
4
3

)
×
(
12
2

)
× 4× 4 = 54912.

(f) To construct a two-pair, here is a recipe:

1: Choose V = {v1, v2} the values for each pair.
2: Choose S1 = {s1, s2}, a set of 2 suits having value v1.
3: Choose S2 = {s1, s2}, a set of 2 suits having value v2.
4: Choose a the 5th card c from the 44 not of value v1, v2.

Let’s count sequences VS1S2c:
(
13
2

)
choices for the 2-subset of values from 13; S1 and S2 are 2-subsets of the 4

suits, which can be picked in
(
4
2

)
ways each; lastly, there are 44 choices for c. By the product rule,

|{two-pairs}| = |{sequences VS1S2c}| =
(
13
2

)
×
(
4
2

)
×
(
4
2

)
× 44 = 123552.

Exercise 13.16. The top vertex must be used. The other two vertices must be on the same “level”. Choose a level in
4 ways and then a pair of points within the level in

(
6
2

)
ways, for a total of 4×

(
6
2

)
= 60 triangles.

Exercise 13.17.
1. From the binomial expansion, the terms in (2x2+1/x3)10 are

(
10
i

)
(2x2)i(1/x3)10−i =

(
10
i

)
2ix5i−30. The constant

term has 5i− 30 = 0, or i = 6 and the coefficient is 26
(
10
6

)
= 64 ∗ 10!

6!×4!
= 13440.
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2. From the binomial expansion, the terms in (1 + 3x)20 are
(
20
i

)
(3x)i =

(
20
i

)
3ixi. So, the ith coefficient is

ai =
(
20
i

)
3i. Let us consider ai+1/ai,

ai+1

ai
=

(
20
i+1

)
3i+1

(
20
i

)
3i

= 3 ·
20!

(i+1)!(19−i)!

20!
i!(20−i)!

= 3 · i!(20− i)!

(i+ 1)!(19− i)!
=

60− 3i

i+ 1
.

Observe that 60−3i
i+1

≤ 1 ↔ 59 ≤ 4i ↔ i ≥ 14 3
4
. Since i is an integer, this means that ai+1 ≤ ai ↔ i ≥ 15.

Therefore, the maximum occurs at i = 15 and that coefficient is a15 =
(
20
15

)
315.

Chapter 14

Exercise 14.1.
(a) The number of length 8 sequences with 3 a , 2 r , 1 d , 1 k and 1 d is

(
8

3,2,1,1,1

)
= 8!

3!×2!×1!×1!×1!
= 3360.

(b) A bouquet (goody-bag) has 36 objects of 4 colors. The number of bouquets is Q(36, 4) =
(
36+4−1

4−1

)
=
(
39
3

)
= 9139.

(c) Let the students be s1s2 · · · s25 (think of them all standing in a line).
(i) There are 5 types of students: those assigned to cook, clean, laundry, entertainment, groceries. There are 5

of each type, so we need a sequence of length 25 with 5 of each type. This can be done in
(

25
5,5,5,5,5

)
ways.

(
25

5,5,5,5,5

)
= 25!

(5!)5
≈ 2525e−25√50π

525e−25(10π)5/2
= 525 ·

√
50π

(10π)5/2
≈ 6.75× 1014.

(We used Stirling’s formula, n! ≈ nne−n
√
2πn. The exact answer is about 6.234× 1014.)

(ii) For each task we pick a subset of 5 students to perform the task, which can be done in
(
25
5

)
ways. By the

product rule, the number of ways to perform the tasks is
(
25
5

)
5 and

(
25
5

)
5 = 531305 ≈ 4.2× 1023.

Exercise 14.2.
(a) For this problem we use the binomial and multinomial theorem:

(i) We want the coefficient of 14x5 which is
(
9
4

)
= 126.

(ii) The coefficient of (2x)4(3y)3 is
(
7
4

)
= 35 which gives 35(2x)4(3y)3 = 35 · 24 · 33x4y3, so the coefficient of x4y3

is 35× 24 × 33 = 15120.
(iii) x4y8 is the coefficient of x1(x2)2(y2)4 which is

(
7

1,2,5

)
= 105.

(b) Monomials in (x+ y)n are xiyj . There are n+ 1 possible i (0, 1, . . . , n), and given i, j = n− i. So, the number of
different monomials is n+ 1.
For (x+ y + z)n, the monomials are specified by (i, j, k), the powers of x, y and z respectively: i ranges from 0 to
n; j ranges from 0 to n− i which is (n− i+ 1) choices for j; and k is n− i− j. So the number of monomials is

n∑

i=0

(n− i+ 1) = (n+ 1) + n+ · · ·+ 1 = 1
2
(n+ 1)(n+ 2).

(c) There are kn terms (n-sequences of a1, . . . , ak with repetition), and
(

n
i1,i2,...,ik

)
have i1 a1’s, i2 a2’s, . . . , ik ak’s.

Each such term is ai1
1 ai2

2 · · · a
ik
k . With i1 ≥ 0,. . . ,ik ≥ 0 and i1 + · · ·+ ik = n, we get the multinomial theorem:

(a1 + a2 + · · ·+ ak)
n =

∑

i1≥0, i2≥0,...ik≥0

i1+i2+···+ik=n

(
n

i1,i2,...,ik

)
ai1
1 ai2

2 · · · a
ik
k .

(d) The result is immediate from setting a1 = a2 = · · · = ak = 1 in part (c).
(e) Let’s first tinker a little to make sure we understand. (a1+a2)

n =
(
n
0

)
an
1a

0
2+
(
n
1

)
an−1
1 a1

2+
(
n
2

)
an−2
1 a2

2+· · ·+
(
n
n

)
a0
1a

n
2 ,

which is (n + 1) different monomials. From part (b) we see that (a1 + a2 + a3)
n has 1

2
(n + 1)(n + 2) different

monomials. For the general case, (a1+a2+ · · ·+ak)
n, we want the number of different terms in the sum of part (c).

That is, we need the number of different non-negative solutions to i1 + i2 + · · · + ik = n. Think of a1 to ak as
k colors. We want a goody bag of size n with these k colors, where i1, i2, . . . , ik represent the number of color-1,
color-2, . . . , color-k in the goody bag. So the number of non-negative solutions to i1 + i2 + · · ·+ ik = n is exactly
the number of goody bags you can make, which is Q(n, k) =

(
n+k−1
k−1

)
. Let us check with k = 2, 3.

(a1 + a2)
n has Q(n, 2) =

(
n+1
1

)
= n+ 1 different monomials;✓

(a1 + a2 + a3)
n has Q(n, 3) =

(
n+2
2

)
= 1

2
(n+ 1)(n+ 2) different monomials.✓

Pop Quiz 14.3. For convenience we repeat the derivation here.

|A1 ∪A2 ∪A3|
(a)
= |A1 ∪A2|+ |A3| − |(A1 ∪A2) ∩A3|
(b)
= |A1|+ |A2|+ |A3| − |A1 ∩A2| − |(A1 ∩A3) ∪ (A2 ∩A3)|
(c)
= |A1|+ |A2|+ |A3| − |A1 ∩A2| − (|A1 ∩A3|+ |A2 ∩A3| − |A1 ∩A3 ∩A2 ∩A3|)
(d)
= |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|.
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(a) Let B = A1 ∪A2. Using inclusion-exclusion for two sets, |B ∪A3| = |B|+ |A3| − |B ∩A3|.
(b) Apply two set inclusion-exclusion to |A1 ∪A2| and use the distributive property of intersection, (A1 ∪A2) ∩A3 =

(A1 ∩A3) ∪ (A2 ∩A3) (see Figure 2.1 on page 17).
(c) Let A = A1 ∩A3 and B = A2 ∩A3 and apply two set inclusion-exclusion to |A ∪B|.
(d) |A1 ∩A3 ∩A2 ∩A3| = |A1 ∩A2 ∩A3|.
Exercise 14.4.
(a) |A1 ∪A2 ∪A3 ∪A4| = +(|A1|+ |A2|+ |A3|+ |A4|)

−(|A1 ∩A2|+ |A1 ∩A3|+ |A1 ∩A4|+ |A2 ∩A3|+ |A2 ∩A4|+ |A3 ∩A4|)
+(|A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|+ |A1 ∩A3 ∩A4|+ |A2 ∩A3 ∩A4|)
−(|A1 ∩A2 ∩A3 ∩A4|)

We give a proof that will generalize to the induction step for the general case.

|A1 ∪A2 ∪A3 ∪A4| = |A1 ∪A2 ∪A3|+ |A4| − |(A1 ∪A2 ∪A3) ∩A3|
= |A1 ∪A2 ∪A3|+ |A4| − |(A1 ∩A4) ∪ (A2 ∩A4) ∪ (A3 ∩A4)|

We can apply 3-set inclusion-exclusion to the first and third terms:

|A1 ∪A2 ∪A3| =
3∑

k=1

(−1)k+1 ·∑ |{k-intersection of A1, A2, A3}|

|(A1 ∩A4) ∪ (A2 ∩A4) ∪ (A3 ∩A4)| =
3∑

k=1

(−1)k+1 ·
∑
|{k-intersection of A1 ∩A4, A2 ∩A4, A3 ∩A4}|

A k-way intersection of A1∩A4, A2∩A4, A3∩A4 is the intersection of A4 with that k-way intersection of A1, A2, A3.
For example (A1 ∩A4) ∩ (A2 ∩A4) = A1 ∩A2 ∩A4. Hence, |A1 ∪A2 ∪A3 ∪A4| equals

3∑

k=1

(−1)k+1 ·
∑
|{k-intersection of A1, A2, A3}|+ |A4|+

3∑

k=1

(−1)k+2 ·
∑
|{A4∩k-intersection of A1, A2, A3}|

The summands in the last term are the k+1-way intersections involving A4. The summands in the first term are
the k-way intersections that do not include A4. So, |A1 ∪A2 ∪A3 ∪A4| equals

3∑

k=1

(−1)k+1 ·
∑
|{k-intersection without A4}|+ |A4|+

3∑

k=1

(−1)k+2 ·
∑
|{(k + 1)-intersection with A4}|

The last two terms are all k-way intersections involving A4 with k = 1, . . . , 4. So, |A1 ∪A2 ∪A3 ∪A4| is
3∑

k=1

(−1)k+1 ·∑ |{k-intersection without A4}|+ |A4|+
4∑

k=1

(−1)k+2 ·∑ |{k-intersection with A4}|

Summing over k-way intersections with and without A4 amounts to summing over all k-way intersections,

|A1 ∪A2 ∪A3 ∪A4| =
4∑

k=1

(−1)k+1 ·∑ |{k-intersection}|

(b) Let A2, A3, A5, A7 be the sets of numbers from 1 to 2015 that are divisible by 2,3,5,7 respectively. We want
2015− |A2 ∪A3 ∪A5 ∪A7|. Here are two facts:

Lemma 30.5. There are
⌊
n/k

⌋
numbers from 1 to n that are divisible by k.

Lemma 30.6. x is divisible by d1, d2, . . . , dk if and only if x is divisible by least common multiple(d1, d2, . . . , dk).

To get |A2∪A3∪A5∪A7|, we need all k-way intersections. For example, |A2| =
⌊
2015/2

⌋
and |A2∩A3| =

⌊
2015/6

⌋

because numbers in A2 ∩ A3 are divisible by 2 and 3, and lcm(2, 3) = 6. Define Aij = Ai ∩ Aj and similarly Aijk

and Aijkl. We have:

|A2| = 1007; |A3| = 671; |A5| = 403; |A7| = 287.

|A23| = 335; |A25| = 201; |A27| = 143; |A35| = 134; |A37| = 95; |A57| = 57.

|A235| = 67; |A237| = 49; |A257| = 28; |A357| = 19.

|A2357| = 9.

Therefore, for |A2 ∪A3 ∪A5 ∪A7| we get:

1007 + 671 + 403 + 287− 335− 201− 143− 134− 95− 57 + 67 + 49 + 28 + 19− 9 = 1557.

We conclude that 2015− 1557 = 458 numbers are not divisible by any of {2, 3, 5, 7}.
(c) We count the ways to distribute the hats so that some girl gets the right hat and subtract from 4!, the number of

ways to distribute the hats. Let A1 be the orderings in which girl 1 gets her correct hat; similarly define A2, A3, A4.
The number of ways in which some girl gets the right hat is |A1 ∪A2 ∪A3 ∪A4|. For inclusion-exclusion, we need
the intersections. Let A12 = A1 ∩ A2 be the number of ways girls 1 and 2 get the correct hats; similarly define
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A13, A14, A23, A24, A34 and so on. Now, |Ai| = 3! (3! ways to distribute the other 3 hats after giving girl i his hat).
Similarly, |Aij = 2! because there are 2! ways to distribute the other 2 hats after giving girls i and j their hats;
|Aijk| = 1!; and, Aijkl| = 0!. We have

|A1| = |A2| = |A3| = |A4| = 6.

|A12| = |A13| = |A14| = |A23| = |A24| = |A34| = 2.

|A123| = |A124| = |A134| = |A234| = 1.

|A1234| = 1.

Applying the inclusion-exclusion formula, |A1 ∪A2 ∪A3 ∪A4| = 4× 6− 6× 2 + 4× 1− 1 = 15.
The answer is 4! − 15 = 9. Distributing n objects so that no object goes into its correct spot is a derangement.
Example 14.5 on page 201 discusses how to count derangements of n objects.

(d) The proof for general n by induction mimics the proof for n = 4. The base case is n = 2, which we have already
established. For the induction step, consider any n+ 1 sets.
|A1 ∪A2 ∪ · · · ∪An ∪An+1| = |A1 ∪A2 ∪ · · · ∪An|+ |An+1| − |(A1 ∪A2 ∪ · · · ∪An) ∩An+1|

= |A1 ∪A2 ∪ · · · ∪An|+ |An+1| − |(A1 ∩An+1) ∪ (A2 ∩An+1) ∪ · · · ∪ (An ∩An+1)|
The first term, by the induction hypothesis, sums over the k-way intersections not involving An+1. The last two

terms sum over the k-way intersections involving An+1. So, |A1 ∪A2 ∪A3 ∪ · · · ∪An ∪An+1| equals
n∑

k=1

(−1)k+1 ·∑ |{k-intersection not involving An+1}|+
n+1∑

k=1

(−1)k+1 ·∑ |{k-intersection involving An+1}|

=
n+1∑

k=1

(−1)k+1 ·∑ |{(k-intersection)}|.

That is, the formula holds for a union of n+ 1 sets, and by induction for all n ≥ 2.

Exercise 14.5.
(a) Let A be all the passwords, AU be all passwords not containing an uppercase letter and AS be all passwords not

containing a special character. We want |A| − |AU ∪ AS |. We have that |AU ∪ AS | = |AU | + |AS | − |AU ∩ AS |.
Passwords in AU have 72 − 26 = 46 choices per character, so |AU | = 468. Passwords in AS have 72 − 10 = 62
choices per character, so |AS | = 628. Passwords in AU ∩ AS use 72 − 26 − 10 = 36 choices per character, so
|AU ∩AS | = 368. Since |A| = 728, our answer is 728 − 468 − 628 + 368 ≈ 4.866× 1014.

(b) Let A12 be the permutations containing 12 and A24 the permutations containing 24. There are 10! pins. The
invalid pins are in A12 ∪A24, so the number of valid pins is 10!− |A12 ∪A24|. By inclusion-exclusion,

|A12 ∪A24| = |A12|+ |A24| − |A12 ∩A24|.
To count pins containing 12, treat 12 as a single token. We want a permutation of 0 12 3456789. There are 9!

permutations, i.e. 9! such pins. Similarly, there are 9! pins contatining 24. Therefore |A12| = |A24| = 9!. The pins
containing 12 and 24 must contain 124. Treating 124 as a single token, we need the permutations of 0 124 356789,
of which there are 8!. Thus, |A12 ∩A24| = 8!. The number of valid pins is

10!− 2× 9! + 8! = 2943360.

(c) Each element in A can map to m elements in B, so the total number of functions is mn. Let B = {b1, b2, . . . , bm}.
Let F1 be the functions which do not have b1 in the range (so no element of A maps to b1); similarly define
F2, . . . , Fm. A function is not onto if one of the bi’s is not in the range. That is, the functions which are not onto
are in F1∪F2∪· · ·∪Fm. Let us compute the size of a k-way intersection |Fi1 ∩Fi2 ∩· · ·∩Fik | – the functions which
do not use bi1 , bi2 , . . . , bik . The function can map each element of A to m − k of the bi’s, so there are (m − k)n

such functions. Since there are
(
n
k

)
such k-way intersections, by inclusion-exclusion,

|F1 ∪ F2 ∪ · · · ∪ Fm| =
m∑

k=1

(−1)k+1
(
m
k

)
(m− k)n.

The number of onto functions is mn − |F1 ∪ F2 ∪ · · · ∪ Fm|,

number of onto functions from [n] to [m] = mn −
m∑

k=1

(−1)k+1
(
m
k

)
(m− k)n =

m∑

k=0

(−1)k
(
m
k

)
(m− k)n.

Recall that in the solution to Exercise 13.4(c) we introduced
{

n
m

}
(Stiring numbers of the second kind): the

number of ways to distribute n named objects (the elements of A) into m unnamed (indistinguishable) bins (the
elements of B) so that no bin is empty. Here, the bins are distinguishable, so multiplying by m!, the number of
ways to label the bins with the labels b1, . . . , bm, we have that m!

{
n
m

}
is the number of ways to distribute the n

objects (A) into m bins (B), each such way being an onto function from A to B, so

number of onto functions from [n] to [m] = m!
{

n
m

}
=

m∑

k=0

(−1)k
(
m
k

)
(m− k)n.

This gives us another formula for the Stirling number,
{

n
m

}
= 1

m!

∑m
k=0(−1)k

(
m
k

)
(m− k)n.
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(d) If there were no upper bound constraints, we know how to compute the number of solutions:

number of solutions to x1 + x2 + x3 = 30 with x1, x2, x3 ≥ 0 is Q(30, 3) =
(
32
2

)
= 496.

(We used Q(n, k) =
(
n+k−1
k−1

)
.) Let S1 be the solutions which violate the upper bound on x1. So S1 contains

solutions to x1 + x2 + x3 = 30 with x1 ≥ 11 and x2, x3 ≥ 0. Similarly, define S2, the solutions to x1 + x2 + x3 = 30
with x2 ≥ 16 and x1, x3 ≥ 0 and S3, the solutions to x1 + x2 + x3 = 30 with x3 ≥ 21 and x1, x2 ≥ 0. The number
of solutions which satisfy the upper bounds is Q(30, 3)− |S1 ∪ S2 ∪ S3|. By inclusion-exclusion,

|S1 ∪ S2 ∪ S3| = |S1|+ |S2|+ |S3| − |S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|+ |S1 ∩ S2 ∩ S3|.
To get |S1|, observe that solutions to x1+x2+x3 = 30 with x1 ≥ 11 and x2, x3 ≥ 0 are solutions to x1+x2+x3 = 19
with x1, x2, x3 ≥ 0 after subtracting 11 from x1 (and vice versa). So, |S1| = Q(19, 3). Similarly, |S2| = Q(14, 3) and
|S3| = Q(9, 3). S1 ∩ S2 contains solutions to x1 + x2 + x3 = 30 with x1 ≥ 11, x2 ≥ 16, x3 ≥ 0. These solutions give
solutions to x1+x2+x3 = 3 with x1, x2, x3 ≥ 0 after subtracting 11 from x1 and 16 from x2, so |S1∩S2| = Q(3, 3).
Similarly, |S1 ∩ S3| = Q(−2, 3) = 0 and |S2 ∩ S3| = Q(−7, 3) = 0. Finally, S1 ∩ S2 ∩ S3 contains solutions to
x1+x2+x3 = 30 with x1 ≥ 11, x2 ≥ 16, x3 ≥ 21 which are solutions to x1+x2+x3 = −18 with x1, x2, x3 ≥ 0 after
subtracting 11 from x1, 16 from x2 and 21 from x3. So, |S1 ∩ S2 ∩ S3| = Q(−18, 3) = 0. Putting all this together,

|S1 ∪ S2 ∪ S3| = Q(19, 3) +Q(14, 3) +Q(9, 3)−Q(3, 3)− 0− 0 + 0 =
(
21
2

)
+
(
16
2

)
+
(
11
2

)
−
(
5
2

)
= 375.

Our answer is 496− 375 = 121 solutions.
(e) The numbers in [n] not relatively prime to n are divisible by p1 or p2 or . . . or pm. Let Ai be the numbers in [n]

that are divisible by pi. Then the numbers in [n] which are not relatively prime to n are in A1 ∪ · · · ∪Am, and so

ϕ(n) = n− |A1 ∪ · · · ∪Am|.
The k-way intersection Ai1 ∩ · · · ∩Aik has the numbers divisible by pi1 and pi2 and . . . and pik , hence

|Ai1 ∩ · · · ∩Aik | =
⌊

n
pi1pi2 ···pik

⌋
= n

pi1pi2 ···pik
,

where the last equality follows because n is divisible by pi1pi2 · · · pik . By inclusion-exclusion,

|A1 ∪ · · · ∪Am| =
m∑

k=1

(−1)k+1 · (sum over all k-way products of n/pi1pi2 · · · pik ).

Therefore, Euler’s totient function is

ϕ(n) = n−
m∑

k=1

(−1)k+1 · (sum over all k-way products of n/pi1pi2 · · · pik )

= n
m∑

k=0

(−1)k · (sum over all k-way products of 1/pi1pi2 · · · pik ).

Let’s compare with the formula ϕ(n) = n
∏m

i=1

(

1− 1
pi

)

= n
(

1− 1
p1

)(

1− 1
p2

)

· · ·
(

1− 1
pm

)

.

Multiplying out the RHS gives 2m terms. Each term is a product of k reciprocal primes, 1/pi1pi2 · · · pik with sign
(−1)k. Each term matches one term in our inclusion-exclusion sum, and so the two expressions are equal.

Pop Quiz 14.6. There are 7 days of the week (pigeonholes). Place 8 friends (pigeons) in pigeonholes by the day of
the week on which they were born, there will be at least two guests in the same pigeonhole.

Even with infinitely many friends, all could be born on Tuesday. This is important. Pigeonhole guarantees two are
born on the same day with 8 friends, but you don’t know which day (it could be any).

Exercise 14.7. The proof is similar to the example in the text with 10 numbers between 1 and 100. We have 100
numbers between 1 and 1028. The maximum possible subset sum is 100 × 1028 = 1030. So there are 1030 bins. The
number of possible subsets is 2100. Since 2100 ≥ 1.26× 1030, the number of subsets is larger than the number of bins.
By pigeonhole principle, some bin has more than one subset. Those two subsets in the same bin have the same sum.

Exercise 14.8.
(a) This is the same result as social twins, except with social enemies.
(b) You need to research two facts to solve this problem:

Population of New York City: larger than 8 million people.
Human head-hairs: the estimate is at most 200,000. So lets be safe and say 1 million.

Number pigeonholes 0, 1, . . . , 106. Place a person (pigeon) into the pigeonhole labeled with their number of head-
hairs. Two or more people are in the same pigeonhole and have the same number of head-hairs.

(c) We partitioned the 8 × 8 grid into 16 disjoint 2 × 2 buckets (right). 16 kings can be placed, one
in the top-left of each bucket. The buckets are pigeonholes and the kings are pigeons. Each king
is in one bucket. If there are more than 16 kings, two or more kings are in the same bucket and
attack each other. So there are at most 16 non-attacking kings. The argument generalizes to a
2n× 2n board, for which n2 is the maximum number of non-attacking kings.
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(d) With k + 1 numbers, some difference is divisible by k. Define pigeonholes 0, 1, . . . , k− 1. There are k pigeonholes.
The k+1 numbers are the pigeons. Place a number x in pigeonhole i if the remainder when x is divided by k is i.
That is, pigeonhole(x) = rem(x, k). There are more numbers than pigeonholes, so two or more numbers x1 and x2

are in the same pigeonhole. That is, rem(x1, k) = rem(x2, k), or x1 ≡ x2 (mod k) and k|x1 − x2.

(e) Pick any n + 1 distinct numbers from 1, 2, . . . , 2n. Consider the n bins {1, 2n}, {2, 2n − 1}, . . . , {n, n + 1}. Place
each number picked into its bin. Since there are n+1 numbers, some bin has two numbers and those two numbers
sum to 2n+ 1.

(f) The 4 suits are pigeonholes and cards are pigeons. Place a card into the pigeonhole for its suit. By part (e) sub-part
(i), there are at least

⌈
17/4

⌉
= 5 cards in one pigeonhole (suit). That is, there must be a 5-card flush.

(g) If no the unit squares overlap, they cover an area of. The circle’s area is A = 4π ≈ 12.57 < 13. So, if the squares
do not overlap, they cover an area larger than the circle, a contradiction. Thus, the squares must overlap.

Exercise 14.9. Let there be zi pigeons in pigeonhole i, for i = 1, . . . , k. Then n =
∑k

i=1 zi. If no pigeonhole has
at least

⌈
n/k

⌉
pigeons, zi <

⌈
n/k

⌉
. Since

⌈
n/k

⌉
is an integer, it means that zi ≤

⌈
n/k

⌉
− 1. One can verify

⌈
n/k

⌉
− 1 < n/k by separately considering the cases n/k is an integer or not. Therefore,

n =
k∑

i=1

zi ≤
k∑

i=1

(
⌈
n/k

⌉
− 1) <

k∑

i=1

n/k = n.

This contradiction proves that zi ≥
⌈
n/k

⌉
for at least one i.

(a) 350 students are pigeons and each month is a pigeonhole. At least
⌈
350/12

⌉
= 30 pigeons are born in some month.

(b) The 25 pigeonholes are 0, 1, . . . , 24 corresponding to the number of apples. The 51 baskets are pigeons. Some
pigeonhole has at least

⌈
51/25

⌉
= 3 baskets. Those baskets have the same number of apples.

(c) The 10 grades are the bins. (i) Let s be the number of students. To gguarantee at least 10 with the same grade,
we need

⌈
s/10

⌉
= 10 or s/10 > 9. The smallest such s is 91. (ii) No matter how many students you have, they

could all get A-, so you can’t guarantee this.

Exercise 14.10.
(a) (i) Certainly the longest non-increasing subsequence ending at xi contains xi, so 1 ≤ ℓi. By assumption,

ℓi ≤ n. So, there are n possibilities for ℓi: 1, 2, . . . , n. Define the pigeonholes 1, 2, . . . , n. The numbers
x1, . . . , xn2+1 are the pigeons. Place the number xi into the pigeonhole corresponding to ℓi. Since there
are n2 + 1 pigeons and n pigeonholes, there is at least one pigeonhole with at least

⌈
(n2 + 1)/n

⌉
pigeons.

⌈
(n2 + 1)/n

⌉
=
⌈
n+ 1/n

⌉
= n+ 1. That is, there are at least n+ 1 of the ℓi that are equal.

(ii) Suppose ℓi = ℓj . Then we show that xj < xi. Suppose, to the contrary, that xj ≥ xi. The longest non-
decreasing sequence ending at xi has length ℓi. Take this sequence and add xj to the end: since xj ≥ xi, this
is a non-decreasing sequence that ends at xj , so the longest non-decreasing sequence ending at xj has length
at least ℓi + 1 which contradicts the fact that ℓj = ℓi So xj < xi.

Thus, if ℓi1 = ℓi2 = · · · ℓik , then xik < xik−1 < · · · < xi2 < xi1 . That is, xi1 , . . . , xik are non-increasing.

By (ii), there are n + 1 of the ℓi that are equal. That is, ℓi1 = · · · ℓin+1 , which means xi1 , . . . , xin+1 are a
non-increasing subsequence of length n+ 1, concluding the proof.

This result is tight in that there are n2 numbers for which there are non-increasing and non-decreasing
sequences of length n but neither of length n+ 1. For example

2, 4, 1, 3 (n = 2) 3, 6, 9, 2, 5, 8, 1, 4, 7 (n = 3)

(b) More generally let a1, a2, . . . , an be a string of n integers and define Si = a1 + a2 + · · ·+ ai,

S1 = a1

S2 = a1 + a2

...
Sn = a1 + a2 + · · ·+ an.

If Si ≡= 0 (mod n) for any i then that substring solves our problem. Otherwise Si ≡= k (mod n) for 1 ≤ k ≤ n−1.
Define n− 1 pigeonholes for the possible values of k and place each Si into its corresponding bin. So at least two
sums are in the same bin, that is for i < j, Sj ≡ Si (mod n). This means n|Sj − Si, or the substring sum
ai+1 + ai+2 + · · ·+ aj is divisible by n.

(c) We colored the squares in the 4×4 grid so that each color is in each column and each row (a latin
square). This construction generalizes to an n× n latin square. Two castles on the same colored
square are non-attacking. Since there are 4 colors (the pigeonholes), placing 9 castles will require
at least

⌈
9/4

⌉
= 3 castles to occupy one color. Those castles don’t attack each other.
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Chapter 15

Pop Quiz 15.1.
(a) The statement involves John Smith and liver disease. The crucial aspect about a probabilistic statement is to

determine exactly what is the “source of the randomness”. Is it that 30% of the John Smiths will survive till
seventy? Is it that 30% of the John Smiths who are diagnosed with liver disease will survive till seventy? Is it
that 30% of people diagnosed with liver disease will survive till seventy (and this persons name being John Smith
is incidental)? Based on our intuitive understanding of the context, most would agree that the name is incidental,
and the probabilistic statement is being made about people diagnosed with liver disease.

My interpretation: from all people diagnosed with liver disease, about 30% of them will survive till seventy.

(b) Approximately 0.01% of internet packets are “dropped” and about 99.99% of them reach their destination.

(c) Between now and your wedding, several “random things will occur”. In some cases I make the wedding (e.g. I finish
my thesis); and, in some cases, I won’t (e.g. my experiments fails and I must redo it). In half the cases I make it.
This is similar to “The chance of rain tomorrow is 40%”. If we “re-live” the time between now and your wedding
100 times, in approximately 50 of those reincarnations I will be at your wedding.

Pop Quiz 15.2. Here is the outcome-tree with edge probabilities and outcome-probabilitities.
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The edge probabilities are all 1
6

because at each vertex the die-rolls is random. You win in the shaded outcomes when
the second roll is larger than the first (event of interest). Adding outcome probabilities for the shaded event,

P[“Win”] = 1
36
× (5 + 4 + 3 + 2 + 1) = 5

12
.

The probability to win the dice game is less, by 1
12

than the probability to win the coin
game. Over many games, you win 8.33% more coin games. You prefer the coin game.

We mention a more convenient representation for the outcomes of a pair of dice. Instead
of using a cumbersome tree, we can use a two dimensional grid illustrated on the right.
On the x-axis are rolls for die 1 and on the y-axis are rolls for die 2. The outcomes are
pairs, one from the x-axis and one from the y-axis, and every pair has the same outcome
probability 1

36
. This representation of the outcomes is much more compact than the tree.

The event of interest is the same, and we have shaded the outcomes where you win. As
above, there are 15 outcomes in the event of interest, so again, P[“Win”] = 15

36
= 5

12
. Die 1 Value

D
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2
V
a
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e
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The outcome-tree is the way to obtain the outcomes and outcome-probabilities. Once you have the outcomes and
outcome probabilities, you have no further need for the outcome tree. What matters are the outcomes, when defining
the event of interest, and the outcome-probabilities when computing the probability of the event. Thus, it is often
more convenient to represent the outcomes and their probabilities in a more compact way as we did here with a grid.

Pop Quiz 15.3. From partial outcome (1,2), the host has only one option, to open empty door 3. From partial
outcome (1,1), the host has a choice because both doors are empty. The two edges correspond to the two choices.

Pop Quiz 15.4.
(a) We use the 6-step method with the outcome-tree.

(i) Instead of the contestant choosing door 1, the contestant chooses any door he wishes. Since we are not told the
probabilities with which the contestant chooses each door, we denoted these (possibly different) probabilities
by p1, p2, p3, where p1 + p2 + p3 = 1. By switching, the contestent wins for the event

E = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2)}.
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1

1

2

3

2

3

3

2

P (1, 1, 2) = 1
6
p1

P (1, 1, 3) = 1
6
p1

P (1, 2, 3) = 1
3
p1

P (1, 3, 2) = 1
3
p1

1: Contestant 2: Prize 3: Host Probability

p1

1
3

1
3

1
3

1
2

1
2

1

1

2

2

1

3

1

3

3

1

P (2, 2, 1) = 1
6
p2

P (2, 2, 3) = 1
6
p2

P (2, 1, 3) = 1
3
p2

P (2, 3, 1) = 1
3
p2

p2

1
3

1
3

1
3

1
2

1
2

1

1

3
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2

1

1

2

1

2

P (3, 3, 1) = 1
6
p3

P (3, 3, 2) = 1
6
p3

P (3, 2, 1) = 1
3
p3

P (3, 1, 2) = 1
3
p3

p3
1
3

1
3

1
3

1
2

1
2

1

1

The probability of winning by switching is

P[E ] = 1
3
p1 +

1
3
p1 +

1
3
p2 +

1
3
p2 +

1
3
p3 +

1
3
p3 = 2

3
(p1 + p2 + p3) = 2

3
.

The probability to win by switching has not changed, as expected. All we are doing is relabeling the doors:
“contestant door” is door 1. The other two doors are arbitrarily labeled 2 and 3.

(ii) The outcome-tree is the same; the
edge-probabilities change.

The outcome-probabilities for the winning
outcomes are the same.

The probility to win by switching is still 2
3
.

1

2

3

2

3

3

2

P (1, 2) = 1
9

P (1, 3) = 2
9

P (2, 3) = 1
3

P (3, 2) = 1
3

Prize Host Probability

1
3

1
3

1
3

1
3

2
3

1

1

(b) We add a level in the outcome-tree for what the contestant does after the host opens a door.
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3

2

switch
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switch

stay

switch

stay

switch

stay

P (1, 2, switch) = 1
12

P (1, 2, stay) = 1
12

P (1, 3, switch) = 1
12

P (1, 3, stay) = 1
12

P (2, 3, switch) = 1
6

P (1, 2, 3, stay) = 1
6

P (3, 2, switch) = 1
6

P (1, 3, 2, stay) = 1
6

Prize Host Action Probability

1
3

1
3

1
3

1
2

1
2

1

1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

The probability of the outcomes where the contestant wins are highlighted with gray shading. Adding these
outcome-probabilities gives P[“ContestantWins”] = 1

12
+ 1

12
+ 1

6
+ 1

6
= 1

2
.

(c) You should do the outcome tree for practice. We reason as follows. You win by staying with probability 1
4
, when

the prize is at door 1. 3
4
-th of the time, the prize is at one of the doors 2,3,4. The host opens one door, so that

leaves 2 doors, which means half the time that the prize is behind one of the doors 2,3,4, you get it right by
switching. That is you win with probability 3

4
× 1

2
if you switch.

P[“WinBySwitching”] = = 3
8

P[“WinByStaying”] = 1
4
.
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Note, now the sum of these two probabilities is no longer 1. Why?

You may also wonder whether the answer depends on which door you switch to. For, example, what if you switch
to the lowest number door available, or you switch to a door randomly. It does not matter. The reason is the prize
is equally likely to be behind any door you switch to, so it does not matter which door you switch to.

Exercise 15.5.
(a) If you implement the algorithm and repeatedly run with n = 120, you might get different answers each time. So

there is no “right” answer. We ran it once and got
outcome (3,2) (2,3) (1,2) (1,3)

number of times 42 34 22 22
Prize Door 1 2 3

number of times 44 34 42

Each prize door occurs roughly 1
3
rd of the time. The prize has no “preference” for any door.

Half of the time when the prize door is 1, the host opens door 2, and the other half the time, he opens door 3.
When the prize door is 1, the host has no “preference” for a door.

(b) If you switch, you win for the outcomes (3,2) and (2,3), which is 76 times.
(c) Switching is better: you win 76 times versus 44 times if you stay.
(d) n 120 1,200 12,000

win
loss

ratio for switch 1.73 2.03 1.99

On the right we plot the win/loss ratio as you play more and more games.
As the number of games played becomes larger, by switching, your win/loss
ratio appears to “converge” to 2. You win about twice as often if you switch.
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o
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Exercise 15.6.
(a) In the table, we show the result of 10,000 games using the boxed Monte Carlo algorithm.

Die Battle A versus B B versus C A versus C

Result A wins 5527 games B wins 5531 games C wins 5538 games

1: dieA=[2,2,6,6,7,7]; dieB=[1,1,5,5,9,9]; % Die faces

2: NumGames = 1000; % Number of games

3: Awins = 0;
4: for games = 1 to NumGames do
5: a← random value from dieA;
6: b← random value from dieB;
7: if a > b then
8: Awins← Awins+ 1; % Die A wins

9: return Awins

(b) Since we are on a roll with Monte-Carlo, lets see what simulation gives sum of two rolls:

A versus B B versus C A versus C

B wins 5171 games C wins 5172 games A wins 5371 games
A wins 4616 games B wins 4584 games C wins 4143 games

tie 213 games tie 244 games tie 486 games

1: dieA=[2,2,6,6,7,7]; dieB=[1,1,5,5,9,9]; % Die faces

2: NumGames = 1000; % Number of games

3: Awins = 0; Bwins = 0;
4: for games = 1 to NumGames do
5: a← sum of two random values from dieA;
6: b← sum of two random values from dieB;
7: if a > b then
8: Awins← Awins+ 1; % Die A wins

9: if b > a then
10: Bwins← Bwins+ 1; % Die B wins

11: return Awins,Bwins

The winners of each battle are different. Though A dominates B in one roll, B dominates when you take the sum
of two rolls. Very strange. Let’s now do the outcome-tree analysis.
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An outcome specifies the value of 4 rolls. For example, in the battle of A versus B, the outcome (2,2)(1,1) stands
for die A rolling 2 then 2, and die B rolling 1 then 1.

Here are the die A outcomes: outcome (2,2) (2,6) (6,2) (2,7) (7,2) (6,6) (6,7) (7,6) (7,7)
sum 4 8 8 9 9 12 13 13 14

Here are the die B outcomes: outcome (1,1) (1,5) (5,1) (1,9) (9,1) (5,5) (5,9) (9,5) (9,9)
sum 2 6 6 10 10 10 14 14 18

Here are the die C outcomes: outcome (3,3) (3,4) (4,3) (4,4) (3,8) (8,3) (4,8) (8,4) (8,8)
sum 6 7 7 8 11 11 12 12 16

There are 9 outcomes for each die (2 rolls) and so in a battle, there are 81 possible outcomes (product rule). All
the outcomes have the same probability 1

3
× 1

3
× 1

3
× 1

3
= 1

81
.

A versus B. Let us count the outcomes where B beats A. If A is (2,2), 8 of B’s outcomes beat the sum 4. In this
way, for each outcome of A we count the outcomes of B which beat A, and then add them up (sum rule) to get
the number of outcomes where B beats A:

Number of outcomes where B beats A = 8 + 6 + 6 + 6 + 6 + 3 + 3 + 3 + 1 = 42.

Similarly, the number of outcomes where A beats B and A ties B are:
Number of outcomes where A beats B = 9 + 8 + 8 + 4 + 4 + 4 + 0 + 0 + 0 = 37;
Number of outcomes where A ties B = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 = 2.

Therefore, B wins over A because

P[“A beats B”] =
37

81
; P[“B beats A” ] =

42

81
; P[“A ties B”] =

2

81
.

B versus C. We perform the same analysis:
Number of outcomes where C beats B = 9 + 8 + 8 + 5 + 5 + 5 + 1 + 1 + 0 = 42;
Number of outcomes where B beats C = 6 + 6 + 6 + 6 + 3 + 3 + 3 + 3 + 1 = 37;
Number of outcomes where B ties C = 0 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 = 2.

Therefore, C wins over B because

P[“B beats C” ] =
37

81
; P[“C beats B”] =

42

81
; P[“B ties C” ] =

2

81
.

A versus C. We perform the same analysis:
Number of outcomes where C beats A = 9 + 5 + 5 + 5 + 5 + 1 + 1 + 1 + 1 = 33;
Number of outcomes where A beats C = 8 + 8 + 8 + 6 + 4 + 4 + 3 + 3 + 0 = 44;
Number of outcomes where A ties C = 0 + 1 + 1 + 0 + 0 + 2 + 0 + 0 + 0 = 4.

Therefore, A wins over C because

P[“A beats C”] =
44

81
; P[“C beats A”] =

33

81
; P[“A ties C” ] =

4

81
.

(c) Now, for die A, P
( )

= 1
2
, P
( )

= 1
6

and P
( )

= 1
3
. Only battles involving A change.

(i) The outcome-tree for A versus B is shown below. The probabilities for die A change, and this changes the
outcome probabilities. The event of interest, outcomes where A beats B are unchanged (shaded).

P
( )

= 1
6

P
( )

= 1
6

P
( )

= 1
6

P
( )

= 1
18

P
( )

= 1
18

P
( )

= 1
18

P
( )

= 1
9

P
( )

= 1
9

P
( )

= 1
9

1: Die A 2: Die B Probability

1
2

1
3
1
3
1
3

1
6

1
3
1
3
1
3

1
3 1

3
1
3
1
3

P
( )

= 1
6

P
( )

= 1
18

P
( )

= 1
18

P
( )

= 1
9

P
( )

= 1
9

Adding up the outcome-probabilities,

P[“DieABeatsB” ] = 1
6
+ 1

18
+ 1

18
+ 1

9
+ 1

9
= 1

2
.

It is now a tie between die A and B. We can repeat the analysis
for dies A and C. The outcomes where C beats A are unchanged,

{

, , , ,
}

The outcomes involving for die A have probability 1
6
; those

involving have probability 1
18

; and, those involving have
probability 1

9
. So,

P[“DieCBeatsA” ] = 1
6
+ 1

6
+ 1

6
+ 1

18
+ 1

9
= 2

3
.

A vs. B B vs. C A vs. C

P[A wins] = 1
2

P[B wins] = 5
9

P[C wins] = 2
3

In a Monte-Carlo simulation with 10,000 rolls:

A vs. B B vs. C A vs. C

A wins 4967 B wins 5579 C wins 6658
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(ii) Ayfos should choose die B (which beats C and is no worse than A). Now the best you can do is choose die
A and its a dead tie. Ayfos wins about 500 of the 1000 games.

Pop Quiz 15.7. See the outcome-tree and outcome-probabilities in Exercise 15.6(c).

Pop Quiz 15.8.
(a) Valid because all probabilities are positive and sum to 1.
(b) Not valid because P (HT) < 0, and probabilities must be positive.
(c) Not valid. Even though all probabilities are positive, they do not sum to 1. Rescaling each probability by

multiplying by 1/( 1
2
+ 1

3
+ 1

4
+ 1

5
) would make them valid.

Exercise 15.9. Remember always that an event is a set of outcomes. We assume that students have only one color
hair (hair cannot be both black and blonde).
(a) The outcomes are each student. Each student is equally likely.
(b) The event has all students with black or blonde hair (80% of the students): P[“either black or blonde hair”] = 0.8.

(c) The event has the 20% of students in the complement of the previous event: P[“neither black nor blonde hair”] = 0.2

(d) Trick question. We can only bound the probability. We want to know |{Black hair} ∪ {Brown eyes}|. This size is
at least 60% of the students (the brown eyed ones) and at most all the students, so

0.6 ≤ P[“either black hair or brown eyes”] ≤ 1.

Assuming proportionality, 0.6× 50% = 30% of black haired students have brown eyes. By inclusion-exclusion,

|{Black hair} ∪ {Brown eyes}| = 50% + 60%− 30% = 80%,

and therefore, assuming proportionality, P[“either black hair or brown eyes”] = 0.8.

(e) Trick question. We can only give bounds. If all black-haired students have brown eyes, the intersection can be as
large as 50%. If all the other 50% of students have brown eyes, then the intersection is as small as 10%. Therefore,
0.1 ≤ P[“black hair and brown eyes”] ≤ 0.5. Assuming proportionality, P[“black hair and brown eyes”] = 0.3.

Exercise 15.10.
(a) We are told E1 ∩ E2 = ∅.

P[E1 ∪ E2] =
∑

ω∈E1∪E2

P (ω)
(∗)
=

∑

ω∈E1

P (ω) +
∑

ω∈E2

P (ω) = P[E1] + P[E2].

(∗) is because the outcomes in E1 ∪ E2 can be partitioned into those in E1 and those in E2 because E1 ∩ E2 = ∅.
The sum rule generalizes to an arbitrary numebr of disjoint events.

P[∪n
i=1Ei] =

n∑

i=1

P[Ei].

(b) E and E are disjoint, so P[E ∩ E ] = P[E ] + P[E ]. Since E ∩ E = Ω and P[Ω] = 1, we have that

1 = P[Ω] = P[E ∩ E ] = P[E ] + P[E ].
(c) Consider P[E1]+P[E2] =

∑

ω∈E1
P (ω)+

∑

ω∈E2
P (ω). Every ω that is only in E1 contributes P (ω) to this sum once.

Similarly, every ω that is only in E2 contributes P (ω) to the sum once. However, every ω ∈ E1 ∩ E2 contributes
P (ω) twice to the sum, once in the sum over ω ∈ E1 and once in the sum over ω ∈ E2. By subtracting P (ω) from
the total for every ω ∈ E1 ∩ E2, we ensure such ω ∈ E1 ∩ E2 contributes P (ω) exactly once. That is,

P[E1 ∪ E2] =
∑

ω∈E1∪E2

P (ω) =
∑

ω∈E1

P (ω) +
∑

ω∈E2

P (ω)− ∑

ω∈E1∩E2

P (ω) = P[E1] + P[E2]− P[E1 ∩ E2].

This formula mimics the inclusion-exclusion formula for counting the size of a union.
(d) By (c), P[E1 ∪ E2] = P[E1] + P[E2]− P[E1 ∩ E2] ≤ P[E1] + P[E2] because P[E1 ∩ E2] ≥ 0.
(e) Let Ep be the outcomes where p is t. Let Eq be the outcomes where q is t. p → q means that whenever p is t, q

is t. That is ω ∈ Ep → ω ∈ Eq, or Ep ⊆ Eq. Since P (·) is non-negative, the sum over outcomes in Eq includes the
sum over outcomes in Ep plus possibly other outcome-probabilities. That is, P[Ep] ≤ P[Eq], which means

P[“p being true”] ≤ P[“q being true”].

(f) This follows from (e) because p→ p ∧ q. Alternatively, observe that E1 ∩ E2 ⊆ E1.
Exercise 15.11.
(a) There are 36 outcomes in this uniform probability space (see Pop Quiz 15.2). The outcomes where the sum is 9

are { , , , }. Therefore, P[“Sum is 9”] = 1
|Ω| · (# outcomes with sum 9) = 4

36
= 1

9
.

(b) You are not going to be able to draw the outcome tree here. To get to ann outcome, e.g. TTTTTTTTTT (ten
tails in a row), you multiply 10 edge probabilities which are all 1

2
. This is the same for every outcome, so we have a

uniform probability space with |Ω| = 210 and P = 2−10. The number of sequences with 4 heads is
(
10
4

)
. Therefore,

P[“4 heads”] =
# outcomes with 4 heads

|Ω| =

(
10
4

)

210
≈ 0.2051.
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(c) Each roll has 3 choices: { , , }. The edge probabilities are 1
3
, a uniform probability space with 310 outcomes.

(i) Choose 4 sevens in
(
10
4

)
ways; the remaining 6 rolls can be chosen in 2 ways each for 26 ways (product rule).

So, there are
(
10
4

)
× 26 outcomes (product rule again). Therefore,

P[“4 sevens” ] =
# outcomes with 4 sevens

|Ω| =

(
10
4

)
× 26

310
≈ 0.2276.

(ii) Choose the 4 sevens in
(
10
4

)
ways; of the remaining six rolls, choose 3 sixes in

(
6
3

)
ways. By the product rule,

there are
(
10
4

)
×
(
6
3

)
= 10!/4!3!3! outcomes. Therefore,

P[“4 sevens and 3 sixes” ] =
# outcomes with 4 sevens and 3 sixes

|Ω| =

(
10
4

)(
6
3

)

310
≈ 0.0711.

(iii) There are
(
10
4

)
× 26 outcomes with 4 sevens; there are

(
10
3

)
× 27 outcomes with 3 sixes; there are

(
10
4

)
×
(
6
3

)

outcomes with 4 sevens and 3 sixes. By inclusion-exclusion, there are
(
10
4

)
×26+

(
10
3

)
×27−

(
10
4

)
×
(
6
3

)
= 24, 600

outcomes with 4 sevens or 3 sixes. So,

P[“4 sevens or 3 sixes” ] =
# outcomes with 4 sevens or 3 sixes

|Ω| =
24600

310
≈ 0.4166.

(d) From Exercise 13.15, the number of Two-pair hands is 123,552 and the number of Three-of-a-kinds is (54,912). So,

P[“Two-pair”] =
123, 552
(
52
5

) ≈ 0.0475 P[“Three-of-a kind”] =
54, 912
(
52
5

) ≈ 0.0211.

Three-of-a-kind should win because it is rarer.
(e) We have a uniform probability space in which each of the

(
52
13

)
possible 13-card hands is equally likely. A hand

has no Ace means the 13 cards are selected from 48 cards. This can be done in
(
48
13

)
ways. So the probability to

not have any Aces is
(
48
13

)
/
(
52
13

)
. The complementary event is that the hand has an Ace, therefore

P[“Ace”] = 1−
(
48
13

)

(
52
13

) = 1− 39× 38× 37× 36

52× 51× 50× 49
≈ 0.6962.

Exercise 15.12. Tough problem. Rather than construct the infinite outcome-tree, we work directly with the proba-
bility space. The outcomes in the sample space are sequences of tosses of the form T•iHT•jH, where i, j ≥ 0,

Ω = {T•iHT•jH | i, j ≥ 0}.
The probability of an outcome is P (T•iHT•jH) = 2i+j+2. For practice, let us verify these probabilities sum to 1,

∑

ω

P (ω) =
∞∑

i=0

∞∑

j=0

( 1
2
)i+j+2 = 1

4

∞∑

i=0

( 1
2
)i

∞∑

j=0

( 1
2
)j = 1

4
× 2× 2 = 1.

The outcomes where Ayfos wins are when i+j is odd, so the event of interest is E = {T•iHT•jH | i, j ≥ 0, i+j is odd}.
There are two cases, either i is odd and j is even, or i is even and j is odd. Therefore,

P[E ] = 1
4

∞∑

k=0

( 1
2
)2k+1

∞∑

ℓ=0

( 1
2
)2ℓ + 1

4

∞∑

k=0

( 1
2
)2k

∞∑

ℓ=0

( 1
2
)2ℓ+1 = 1

2

∞∑

k=0

( 1
2
)2k+1

∞∑

ℓ=0

( 1
2
)2ℓ = 1

4

∞∑

k=0

( 1
2
)2k

∞∑

ℓ=0

( 1
2
)2ℓ = 1

4
× 4

3
× 4

3
= 4

9

So Ayfos, who goes first has the disadvantage. Ayfos wins with probability 4
9
. Liamsi wins with probability 1− 4

9
= 5

9
.

Exercise 15.13.
(a) The possible outcomes are sequences of heads and tails which end in either HHT or THH and there is no earlier

occurrence of HHT or THH. So, HHT (you win), HHHT (you win), THH (friend wins), TTHTHH (friend wins)
are possible outcomes, but TTHHT is not a possible outcome because though the sequence ends in HHT, there is
an earlier occurrence of THH. The outcome space is infinite. It is quite a complicated outcome space. We cannot
list out the possible outcomes with their probabilities. We show the how the game plays out as an outcome-tree.

H

T

H

T

Outcome Probability Winner

HH

HT

T

1
4

1
4

1
2

You

Friend

Friend

1
2

1
2

1
2

1
2

This outcome-tree is not showing outcomes of the game, but outcomes of coin tosses. Based on these outcomes of
the coin tosses, we reason about the game. If a tail appears, and the game is not over, then we know your friend
wins. This is because for you to win, there must occur HH; at the first occurrence of HH, a THH has appeared
and your friend has won. If HH appears, then you win, because for your friend to win, a T must appear and at
the first appearence of T, you have won. You win only if the coin tosses start out HH, that is P[“you win”] = 1

4
.
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(b) We use a similar reasoning here using outcomes of the coin tosses.

H

T

H

T
H

T

Outcome Probability Winner

HH

HTT

HTH

T

1
4

1
8

1
8

1
2

You

Friend

Restart

Restart

1
2

1
2

1
2

1
2

1
2

1
2

Let us explain the outcomes of the coin toss. As in (a), if the coin starts with HH, then you win, because for your
friend to win, a tail must be tossed, but at the first toss of a tail, you win. If the coin tosses HTH, then your friend
wins and the game ends. A winning sequence for either you or your friend must start with H. So, ff the coin starts
with HTT or T, both of you are waiting for an H to start a possible winning sequence. This is the same situation
as at the beginning of the game where you are both waiting for H. So the game effectively restarts.

You win (y) with probability 1
4
; your friend wins (f) with probability 1

8
; the game “restarts” (r) with probability 5

8
.

So the outcomes of the game are of the form r•iy (i restarts followed by you winning), or r•if (i restarts followed
by your friend winning), where i ≥ 0.

outcome r•iy r•if

probability 1
4
× ( 5

8
)i 1

8
× ( 5

8
)i

The outcomes where you win are r•iy, so the probability is P[“you win”] = 1
4

[

1 +
(
5
8

)
+
(
5
8

)2
+ · · ·

]

= 1
4
× 1

1− 5
8

=

2
3
.

(c) We use a similar reasoning here using outcomes of the coin tosses.

H

T

H

T

H

T

H

T

Outcome Probability Winner

HH

HT

THT

THH

TT

1
4

1
4

1
8

1
8

1
4

You

?

You

Friend

?

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

As above, for HH, you win at the first toss of tails. A similar reasoning applies to THH and THT is the winning
sequence for your friend. The interesting cases are the questions marks when a tail is tossed, T or HT. Now, any
number of tails can follow. At the first H, you win if the next toss is H and your friend wins if the next toss is T.
We show the outcomes in the table below, where i ≥ 1:

outcome HH HT•iHH HT•iHT T•iHH T•iHT

probability 1
4

1
8
× ( 1

2
)i 1

8
× ( 1

2
)i 1

4
× ( 1

2
)i 1

4
× ( 1

2
)i

winner you you friend you friend

The probability you win is the sum of the probabilities for the outcomes HH, HT•iHH and T•iHH, for i ≥ 1:

P[“you win”] = 1
4
+ 1

8

∞∑

i=1

(
1
2

)i
+ 1

4

∞∑

i=1

(
1
2

)i
= 1

4
+ 1

8
+ 1

4
= 5

8
.

(d) Monte Carlo is useful for checking a probability analysis. In Figure 30.1 is a simulation to compute the probability
that you win given your string and your friend’s string. Let us justify the update in step 13.

Let W be the number of wins up to that point; games is the number of games played (including the current game)
and win is the outcome of the current game. The previous value of Pwin is W/(games− 1) (0 if games = 1), that
is W = Pwin(games− 1). The updated value of Pwin should be (W + win)/games

Pwin← W + win

games
=

Pwin(games− 1) + win

games
= Pwin+

win− Pwin

games
.

The results of the simulation for 104, 105 and 106 games are shown in the next table.

Number of games 10,000 100,000 1,000,000
Probability you win (a) 0.2477 0.25 0.25
Probability you win (b) 0.6626 0.666 0.667
Probability you win (c) 0.6294 0.6235 0.6255
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1: you = [1, 1, 0]; friend = [0, 1, 1]; % H=1, T=0

2: NumGames = 10000; % Number of games

3: Pwin = 0; % Probability you win

4: for games = 1 to NumGames do
5: x← random binary vector of length 3;
6: while true do
7: if isequal(x, you) then
8: win = 1; break out of while; % You win

9: else if isequal(x, friend) then
10: win = 0; break out of while; % Your friend wins

11: else
12: x[1] = x[2];x[2] = x[3];x[3] = random bit; % Next toss

13: Pwin← Pwin+
win− Pwin

games
; % Update the probability

14: return Pwin

Figure 30.1: Monte Carlo algorithm to simulate tossing game.

The frequency (probability from the simulation) gets closer to the true probability as you play more.
(e) Behold the power of simulation. By symmetry, we may assume your friend’s sequence starts with H. For each of

the 4 possibilities, we can evaluate your 8 possible sequences and pick the best. Here are the simulation results.

friend your best choice P[“your best wins”] P[“your 2nd-best wins”]

(i) HHH THH 0.8747 0.7005

(ii) HHT THH 0.7500 0.5000

(iii) HTH HHT 0.6668 0.6253

(iv) HTT HHT 0.6658 0.5004

Let us analyze each of the 4 cases for your friends choice of string.

(i) If a T is tossed, you win at the first arrival of HH. So your friend can only win if the game specifically starts
HHH, which has probability 1

8
. P[“THH beats HHH”] = 7

8
. You cannot do better with any other sequence

(you must lose if the game starts HHH).
(ii) If the game starts HH (probability 1

4
), your friend wins at the first arrival of T. If the game starts any other

way, you win at the first arrival of HH. So, P[“THH beats HHT” ] = 3
4
.

(iii) We analyzed this in part (b). P[“HHT beats HTH” ] = 2
3
.

(iv) Here are relevant outcomes of the coin tosses.

H

T

H

T
H

T

Outcome Probability Winner

HH

HTT

HTH

T

1
4

1
8

1
8

1
2

You

?

Friend

Restart

1
2

1
2

1
2

1
2

1
2

1
2

The outcome with the question mark is equivalent to restarting from the shaded H vertex. We conclude that
the outcomes where you win start with any number of T’s followed by any number of HT’s followed by HH.
That is, the outcomes where you win are T•i(HT)•jHH, having probability ( 1

2
)i × ( 1

4
)j × 1

4
. Therefore,

P[“HHT beats HTT” ] = 1
4

∞∑

i=0

∞∑

j=0

( 1
2
)i( 1

4
)j = 1

4
× 2× 1

1− 1
4

= 2
3
.

Chapter 16

Pop Quiz 16.1.
(a) Barring catastrophes, P[There is a living Human tomorrow] ≈ 1 and P[Sun does not rise tomorrow] ≈ 1.
(b) Given the Sun does not rise tomorrow, some catastrophe indeed occurred. Humans are likely wiped out,

P[There is a living Human tomorrow | Sun does not rise tomorrow] ≈ 0.
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The new information significantly changes the probability of Humans being around tomorrow.

Exercise 16.2.

(a) P[CS | MATH] =
P[CS ∩MATH]

P[MATH]
=

0.016

0.02
= 0.8;

P[MATH | CS] =
P[CS ∩MATH]

P[CS]
=

0.016

0.2
= 0.08.

(In general, P[A | B] 6= P[B | A].)

(b) (i) P[A|A] = P[A ∩A]/P[A] = 1.
(ii) P[A|A ∩B] = P[A ∩ (A ∩B)]/P[A ∩B] = P[A ∩B]/P[A ∩B] = 1.
(iii) P[A ∩B|B] = P[(A ∩B) ∩B]/P[B] = P[A ∩B]/P[B] = P[A | B].
(iv) P[A ∪B|B] = P[(A ∪B) ∩B]/P[B] = P[B]/P[B] = 1.
(v) P[A|A ∪B] = P[A ∩ (A ∪B)]/P[A ∪B] = P[A]/P[A ∪B].

(c) (i) PB(ω) = P[{w} ∩B]/P[B]. If w 6∈ B, P[{w} ∩B] = P [∅] = 0; otherwise, P[{w} ∩B] = P[{w}] = P (w).

(ii) Recall P[B] =
∑

w∈B

P (w).

∑

w∈Ω

PB(ω) =
∑

w∈B

PB(ω) +
∑

w 6∈B

PB(ω) =
∑

w∈B

P (ω)

P[B]
+
∑

w 6∈B

0 =
1

P[B]

∑

w∈B

P (ω) =
P[B]

P[B]
= 1

Pop Quiz 16.3.
(a) The outcomes are (i, j), where i is the first roll and j is the second roll. So, 1 ≤ i, j ≤ 6. This is a uniform

probability space so P (i, j) = 1/(number of outcomes) = 1
36

.
(b) The number of outcomes in the event is 3 so P[Sum is 10] = 3

36
= 1

12
.

(c) The number of outcomes in the event is 9 so P[Both are Odd] = 9
36

= 1
4
.

(d) Only 1 outcome has both dice odd and a sum 10, so P[(Sum is 10) and (Both are Odd)] = 1
36
.

(e) P[Sum is 10 | Both are Odd] =
P[(Sum is 10) and (Both are Odd)]

P[Both are Odd]
=

1
36
1
4

=
1

9
.

(f) P[Both are Odd | Sum is 10] =
P[(Sum is 10) and (Both are Odd)]

P[Sum is 10]
=

1
36
1
12

=
1

3
.

Exercise 16.4.
(a) Similar to the example before Exercise 16.4 on page 228, with P (1, 2) = 0 and P (1, 3) = 1. The intuition is that

Monty must open door 3 if it’s available. If he doesn’t, door 3 is not available and you must win by switching.
(b) The outcome tree is shown on the left. We want P[WinBySwitching | Door2Opened].

1

2

3

2

3

2

3

2

3

Prize Host Outcome Probability

(1, 2)

(1, 3)

restart

(2, 3)

(3, 2)

restart

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
2

1
2

1
2

1
2

1
2

1
2

Door 2 is opened in outcomes (1, 2) and (3, 2).
You win by switching in outcome (3, 2), so the
conditional probability that we need is

P[{(3, 2)}]
P[{(1, 2), (3, 2)}] =

1
6

1
6
+ 1

6

=
1

2
.

Now, it is even odds whether to switch or not.
The intuition is that when the prize is behind
door 3, Monty is no longer forced to open door
2. He may restart by opening door 3 half the
time.

Exercise 16.5. On the left is the outcome-tree from which we can obtain the probabilities.

you

opp

you

opp

you

opp

you

opp

you

opp

Set 1 Set 2 Set 3 Outcome Prob

YY

YOY

YOO

OYY

OYO

OO

1
2
1
24

1
8

1
16

1
48
1
4

2
3

1
3

3
4

1
4

1
4

3
4

1
4

3
4

3
4

1
4

(a) Your wins are {YY,YOY,OYY}, with probability 1
2
+ 1

24
+ 1

16
= 29

48

(b) (i) You win the set 1: {YY,YOY,YOO}. You win set 1 and match:
{YY,YOY}.

P[Win set 1] = 1
2
+ 1

24
+ 1

8
= 2

3
;

P[Win set 1 & match] = 1
2
+ 1

24
= 13

24
;

P[Win match | set 1] = 13
24
/ 2
3
= 13

16
;

(ii) From (a), P[Win] = 29
48

. From (b), P[Win set 1 & match] = 13
24

.
Therefore,

P[Win set 1 | match] = 13
24
/ 29
48

= 26
26
.
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Exercise 16.6.
(a) Yes. You estimate P[student likes the course | student rated course]. Students who rate the course is not a random

sampling of students. In general, surveys suffer from sampling bias. This type of sampling bias is sometimes called
non-response bias. Those who do not respond tend to be a particular type of person, not random.

(b) Wald first surmised that the hits taken on planes should be somewhat random (shot accuracy is not high enough
in an aerial battle to target specific parts of a plane). So there should be just as many hits on the tail and nose as
main body. So the returing war-planes are not indicative of where the planes are getting hit; there are indicative
of which planes survive given they are hit. He concluded that

P[survive | hit on mid-body]≫ P[survive | hit on nose or tail].

Therefore, the nose and tail are the regions that needed fortification.

Pop Quiz 16.7.You are not old enough to have any profession but student.

Pop Quiz 16.8.We require P[A ∩B]/P[B] = P[A ∩B]/P[A] (assuming P[A],P[B] > 0), or P[A ∩B](P[A]− P[B]) = 0.
Either A and B must be disjoint so that P[A ∩B] = 0, or P[A] = P[B].

Exercise 16.9.
(a) By (16.1) on page 231, P[A1 ∩ (A2 ∩A3)] = P[A1 | A2 ∩A3]× P[A2 ∩A3]. Applying (16.1) again,

P[A1 ∩A2 ∩A3] = P[A1 | A2 ∩A3]× P[A2 | A3]× P[A3].

The general formula, which we encourage you to prove by induction, is

P[A1 ∩A2 ∩ · · · ∩An] = P[A1 | A2 ∩ · · · ∩An]× P[A2 | A3 ∩ · · · ∩An]× · · · × P[An−1 | An]× P[An].

(b) Let us consider an example path on the outcome-tree to a leaf. The outcome is v1v2v3v4:

v1
v2

v3
v4p1 p2

p3 p4

p1 is the probability that v1 occurs at the start, p1 = P[v1]. After v1 occurs, p2 is the probability that v2 occurs,
given v1 has occurred, p2 = P[v2 | v1]. Similarly, p3 is the probability that v3 occurs, given v1, v2 have occurred,
p3 = P[v3 | v1 and v2]; p4 = P[v4 | v1 and v2 and v3]. By part (a),

P[v4 ∧ v3 ∧ v2 ∧ v1] = P[v4 | v1 ∧ v2 ∧ v3]× P[v3 | v1 ∧ v2]× P[v2 | v1]× P[v1] = p4p3p2p1.

That is, the probability of the leaf outcome is exactly the product of the edge probabilities leading to that leaf.

Exercise 16.10.
(a) We don’t care about rolls that are not x or 7, so we want the conditional probability

P[x | x or 7] =
P[x ∩ {x or 7}]

P[x or 7]
=

P[x]

P[x] + P[7]
,

where the last step is because getting x or 7 are disjoint events.

x 2 3 4 5 6 7 8 9 10 11 12

P[x] 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

P[x before 7] 1
7

2
8

3
9

4
10

5
11

– 5
11

4
10

3
9

2
8

1
7

If you don’t see the conditional probability, use total probability with three cases for the first roll: x, 7, not x or
7.

P[x before 7] = P[x before 7 | x] · P[x] + P[x before 7 | 7] · P[7] + P[x before 7 | not x or 7] · P[not x or 7]

= 1 · P[x] + 0 · P[7] + P[x before 7](1− P[x]− P[7]).

Solving for P[x before 7] gives P[x before 7] = P[x]/(P[x] + P[7]) as before.
(b) P[win | x] is 1 if x ∈ {7, 11}, 0 if x ∈ {2, 3, 12} and P[x before 7] if x ∈ {4, 5, 6, 8, 9, 10}. Using total probability,

P[win] =
12∑

x=2

P[win | x]P[x]

= P[7] + P[11] +
∑

x∈{4,5,6,8,9,10}
P[x before 7]P[x]

= 6
36

+ 2
36

+ 3
9
· 3
36

+ 4
10
· 4
36

+ 5
11
· 5
36

+ 5
11
· 5
36

+ 4
10
· 4
36

+ 3
9
· 3
36

= 976
1908
≈ 0.4929.

This is a dangerously close to a fair game, so whoever designed it was sure to know about probability.

Exercise 16.11. The conditional probability, P[A | B] = P[A ∩B]/P[B]. Also, P[A ∩B] = P[B | A]P[A]. Therefore,

P[A | B] =
P[B | A]P[A]

P[B]
=

P[B | A]P[A]

P[B | A]P[A] + P[B | A]P[A]
.

(The second equality is by the law of total probability, P[B] = P[B | A]P[A] + P[B | A]P[A].)
(a) Using R for Republican and D for democrat,

P[oppose taxes] = P[oppose taxes | R]P[R] + P[oppose taxes | D]P[D] = 0.7× 0.4 + 0.5× 0.6 = 0.58.
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(b) Using Bayes’ Theorem, P[R | oppose taxes] =
P[oppose taxes | R]P[R]

P[oppose taxes]
=

0.7× 0.4

0.58
≈ 0.483.

Exercise 16.12. You win if two consecutive heads arrive before two consecutive tails.
(a) The outcomes where you win begin with (HT)•i or T(HT)•i, and end with HH.

Winning outcomes (HT)•iHH T(HT)•iHH

Probability (p(1− p))i × p2 (1− p)× (p(1− p))i × p2

To get the probability of winning, we add these probabilities,

P[win] = p2
∞∑

i=0

(p(1− p))i + p2(1− p)
∞∑

i=0

(p(1− p))i =
p2(2− p)

1− p(1− p)
.

(b) By the law of total probability,

P[win] = P[win|H]P[H] + P[win|T]P[T] = pP[win|H] + (1− p)P[win|T].

Let us compute P[win|H] and P[win|T] using total probability.

P[win|H] = (1− p)P[win|T] + p.

(If you get H you won, and if you get T, it is as if you started with T.) Similarly,

P[win|T] = pP[win|H].

(If you get T you lost, and if you get H, it is as if you started with H.) Using this expression for P[win|T], we have:
P[win|H] = p(1− p)P[win|H] + p. Solving for P[win|H]:

P[win|H] =
p

1− p(1− p)
and P[win|T] =

p2

1− p(1− p)
.

Substituting back, we get P[win] =
p2

1− p(1− p)
+

p2(1− p)

1− p(1− p)
=

p2(2− p)

1− p(1− p)
.

Chapter 17

Pop Quiz 17.1. This is a tricky question. The second toss is H with probability p, and that is independent of whether
the first toss came up H or T. You can view this independence as “full-knowledge” independence, or the “universe”-view.

Suppose you must predict the second toss. Does knowing the first toss help you? Yes. From your point of view, the
two tosses are not independent. The first toss tells you about p, which helps to predict the second toss. If the first
toss is H, then you would guess that p > 1

2
and predict the second toss as H. Imagine if the first 10 tosses are H. Now

you most certainly would suspect that p ≈ 1 (biased coin) and predict the 11th toss as H. Compare: The sun has risen
every day in recorded history. Does that help you predict whether or not the sun will rise tomorrow?

If you fix p = 1
3
, now you don’t care what the first toss was; p is what governs the second toss, so the two tosses are

independent. Your view becomes the full-knowledge (or universe) view.

Exercise 17.2.
(a) False. Consider two disjoint events, each having positive probability.
(b) False. Consider the rain and clouds example, or A = B with P[A] < 1.
(c) True. A ∩B ⊆ A, therefore P[A ∩B] ≤ P[A]; similarly P[A ∩B] ≤ P[B].

Exercise 17.3. We proved this formula in Exercise 16.11. Define the event

A = {Person is using a cellphone during a particular (fixed) weekday minute.}
Randomly pick a US-person. We want P[A]. To use Fermi’s method, break down A into smaller events.

A1 = “Has cellphone”; A2 = “Uses cellphone in the particular minute”.

A occurs if A1 and A2 occur.
P[A] = P[A1 ∩A2] = P[A1]× P [A2 | A1]

Typical surveys say that 9 in 10 adults (15-70 years old) have a cellphone and adults are about 50% of the population.
The typical cellphone plan is 1000 weekday minutes per month, which suggests that people who have a cellphone use
about 1000 weekday minutes. Assume that phone usage is evenly spaced during the month and a weekday has 12
hours (8am-8pm) which is 720 minutes, so 20 weekdays in a month equals 14400 weekday minutes. 1000 minutes
are spread evenly over these 14400 minutes. There are

(
14400
1000

)
ways to pick 1000 of the 14400 minutes. If you do

not use a particular minute, there are only
(
14399
1000

)
ways. The probability to not use a particular weekday minute is

(
14399
1000

)
/
(
14400
1000

)
. Since

(
n−1
k

)
= n−k

n

(
n
k

)
,
(
14399
1000

)
/
(
14400
1000

)
= 14400−1000

14400
.

P[Has cellphone] ≈ 9
10
× 1

2
= 9

20
.

P[Uses cellphone on the minute | Has cellphone] ≈ 1000
14400

≈ 1
15

.
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Multiplying, P[A] ≈ 9
20
× 1

15
= 3

100
. There are 320 million people in the USA, so about 10 million are in A.

Pop Quiz 17.4.
(a) Coins are independent, so any pair matches with probability 1

2
. This is also verified by “brute force” because, for

example, A1 = {HHH, HHT, TTH, TTT} contains 4 outcomes and each has probability 1
8

so P[A1] = 4× 1
8
= 1

2
.

(b) A2 = {HHH, THH, HTT, TTT}, so A1 ∩ A2 = {HHH,TTT}, and so P[A1 ∩ A2] = 2 × 1
8
= 1

4
P[A1] × P[A2]. A1

and A2 are independent. The other 2 cases are analogous.
(c) A1 ∩ A2 ∩ A3 = {HHH,TTT} (events A1, A2, A3 simultaneously hold). So, P[A1 ∩ A2 ∩ A3] =

1
4
. If coins 1 and 2

match and 2 and 3 match, then 1 and 3 must match, so any two pairs matching means the third matches as well.

Pop Quiz 17.5.
(a) A1 (blue) contains 18 outcomes, as does A2, so P[A1] = P[A2] =

18
36

= 1
2
. A3 contains 4 outcomes so P[A3] =

4
36

= 1
9
.

The intersection of the three shaded regions contains just the one outcome (3,6), and so P[A1 ∩ A2 ∩ A3] =
1
36

,
which is the product of the three probabilities. That is, we have 3-way independence.

(b) A1 ∩A3 contains the one outcome (3,6), so P[A1 ∩A3] =
1
36

and P[A1] · P[A3] =
1
18

.
(c) A2 ∩A3 contains the three outcomes {(3,6), (4,5), (5,4)} so P[A2 ∩A3] =

3
36

= 1
12

and P[A2] · P[A3] =
1
18

.
(d) The events are not 2-way independent.

Exercise 17.6.
(a) We use the definition of conditional probability.

P[A3 | A1 ∩A2] =
P[A1 ∩A2 ∩A3]

P[A1 ∩A2]
=

P[A1]P[A2]P[A3]

P[A1]P[A2]
= P[A3].

The penultimate step is by independence.
(b) If X = A1, Y = A2, Z = A3 the probability of the intersection equals the product by indemendence. Suppose that

exactly one of sets is the complement, for example Z = A3. Then, by the law of total probability,

P[A1 ∩A2 ∩A3] + P[A1 ∩A2 ∩A3] = P[A1 ∩A2]→ P[A1 ∩A2 ∩A3] = P[A1 ∩A2]− P[A1 ∩A2 ∩A3].

Now we can use independence to obtain

P[A1 ∩A2 ∩A3] = P[A1]P[A2]− P[A1]P[A2]P[A3] = P[A1]P[A2](1− P[A3]) = P[A1]P[A2]P[A3].

Let us give the general case and prove it by induction. Suppose A1, A2, . . . , An are independent. Let Xi = Ai or
Ai. Then we want to show that

P[X1 ∩ · · · ∩Xn] = P[X1]× · · · × P[Xn].
We prove a stronger claim by induction: the probability of any k-way intersection of the X’s equals the product

of the k probabilities. The base case, k = 1, trivially holds. Suppose the claim holds for any k-way intersection
and consider a (k + 1)-way intersection. We must prove:

P[Xi1 ∩ · · · ∩Xik+1 ] = P[Xi1 ]× · · · × P[Xik+1 ].

We use a second induction on the number of complements among these k+1 sets. When there are no complements,
the claim follows by independence of the Xi. Suppose this claim holds when there are ℓ complements and consider
the case where there are ℓ+1 complements. Without loss of generality, we may assume that Xik+1 = Aik+1 . Then,

P[Xi1 ∩ · · · ∩Xik ∩Aik+1 ] = P[Xi1 ∩ · · · ∩Xik ]− P[Xi1 ∩ · · · ∩Xik ∩Aik+1 ]

= P[Xi1 ]× · · · × P[Xik ]− P[Xi1 ∩ · · · ∩Xik ∩Aik+1 ]

= P[Xi1 ]× · · · × P[Xik ]− P[Xi1 ]× · · · × P[Xik ]× P[Aik+1 ].

= P[Xi1 ]× · · · × P[Xik ]× (1− P[Aik+1 ]).

= P[Xi1 ]× · · · × P[Xik ]× P[Xik+1 ].

(The first step follows because the claim holds for all k-way intersections. The second because the second term
has ℓ complements and the claim holds for ℓ complements.)

(c) Suppose (∗) in Exercise 17.6 holds for all 23 choices of (X,Y, Z). We must show 1,2 and 3-way independence. 3-way
follows directly from (∗). Suppose we have proved k-way independence, and consider (k − 1)-way independence.

P[Ai1 ∩ · · · ∩Aik−1 ] = P[Ai1 ∩ · · · ∩Aik−1 ∩Aik ] + P[Ai1 ∩ · · · ∩Aik−1 ∩Aik ]

= P[Ai1 ] · · ·P[Aik−1 ]P[Aik ] + P[Ai1 ] · · ·P[Aik−1 ](1− P[Aik ])

= P[Ai1 ] · · ·P[Aik−1 ]

If (∗) in Exercise 17.6 holds, then k-way independence implies (k − 1)-way independence. Since we have 3 way
independence, we have 2 and then 1. Our argument holds for general n > 3.

Pop Quiz 17.7. Given E1, E2, . . . , Ek−1, none of sk, . . . , sN are born on day 1 to day mathk-1. Suppose sk is born
on day k, then sk+1, . . . , sN (N − k students) are all born on days k + 1 to B (B − k of the B − k + 1 days, given
E1, E2, . . . , Ek−1). By independence,

P[Ek | E1 ∩ E2 ∩ · · · ∩ Ek−1] =
(

B−k
B−k+1

)N−k

.
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Exercise 17.8.

(a) We want P =
N∏

k=1

(
B−k

B−k+1

)N−k

, or equivalently, lnP =
N∑

k=1

(N − k) ln B−k
B−k+1

. The sum can be evaluated, but the

product is numerically unstable. Using (1 + 1
x
)x ≈ e for large x, observe that

(
B−k+1
B−k

)N−k

=
(

1 + 1
B−k

)N−k

=
(

1 + 1
B−k

)B−k(N−k)/(B−k)

≈ e(N−k)/(B−k),

Using this approximation in P , P ≈
N∏

k=1

exp(−N−k
B−k

) = exp
(

−
N∑

k=1

N−k
B−k

)

. We evaluate the sum in the exponent,

N∑

k=1

N−k
B−k

=
N∑

k=1

N−B+B−k
B−k

=
N∑

k=1

N−B
B−k

+ 1 = N +
N∑

k=1

N−B
B−k

Using the integration method,
N∑

k=1

N−B
B−k

≈ (N −B)
∫ N

1
dx 1

B−x
= (N −B) ln B−1

B−N
. Therefore,

P ≈ e(B−N) ln B−1
B−N

−N .

When B = 366 and N = 200, P ≈ e−69.2. Using the exact sum for lnP , P = e−68.4.
(b) Trick question. With 367 people and only 366 birthdays, by pigeonhole, two people must share the same birthday.
(c) We compute lnP =

∑N
k=1(N − k) ln B−k

B−k+1
, from which we obtaiin P The prob-

ability of no social twin is 1− P . We show a plot 1− P versus N in th figure to
the right. The probability of a social-twin rapidly increases and first goes over
0.5 for N = 23. So in a party of just 23, the odds favor there being a social-twin.
By N = 60, it is essentially guaranteed that you have a social-twin.

N

P
ro

b
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ili
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w
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0.5

0.75

1

(d) (i) Repetition is allowed. Each student has B choices giving BN sequences.
(ii) Each sequence is equally likely so each has probability 1/BN .
(iii) The first k birthdays are chosen in B(B−1) · · · (B−k+1) = B!/(B−k)! ways. The remaining N−k students

choose (with repetition) from the remaining B − k birthdays in (B − k)N−k ways. By the product rule, the
number of sequences with no repetitions of the first k birthdays is

B!
(B−k)!

× (B − k)N−k.

(iv) Multiply the number of allowed sequences in (iii) by their probability in (ii) to get

P[no repetition of first k birthdays] = 1
BN × B!

(B−k)!
× (B − k)N−k.

(v) We can cancel many terms in Equation (17.6) as follows:
(
B−1
B

)N−1
(

B−2
B−1

)N−2 (
B−3
B−2

)N−3

· · ·
(

B−k+1
B−k+2

)N−k+1 (
B−k

B−k+1

)N−k

= (B−1)N−1

BN−1 · (B−2)N−2

(B−1)N−2 · (B−3)N−3

(B−2)N−3 · · · (B−k+1)N−k+1

(B−k+2)N−k+1 · (B−k)N−k

(B−k+1)N−k

Terms in the same color simplify: the red terms simplify to (B−1); the green to (B−2); and so on. We get:
1

BN−1 × (B − 1)(B − 2) · · · (B − k + 1)
︸ ︷︷ ︸

1
B
× B!

(B−k)!

×(B − k)N−k = 1
BN × B!

(B−k)!
× (B − k)N−k.

(vi) When k = N , the result follows from
B(B−1)(B−2)···(B−(N−1))

BN = B
B
· (B−1)

B
· (B−2)

B
· · · (B−(N−1))

B
,

To derive this formula directly, observe that

P[s2 does not match s1] = 1− 1
B
;

P[s3 does not match any of s1, s2 | no match in s1, s2] = 1− 2
B

P[s4 does not match any of s1, s2, s3 | no match in s1, s2, s3] = 1− 3
B

...
P[sN does not match any of s1, . . . , sN−1 | no match in s1, . . . , sN−1] = 1− N−1

B
.

Multiplying these conditional probabilities,

P[no match in s1, s2, . . . , sN ] = (1− 1
B
)× (1− 2

B
)× (1− 3

B
)× · · · × (1− N−1

B
).

Exercise 17.9.
(a) B = 300 and N = 100, so we can use e−N(N−1)/B ≤ P[no collisions] ≤ e−N(N−1)/2B :

e−33 ≤ P[no collisions] ≤ e−16.5 (essentially 0).
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(i) There are no collisions if and only if every bin has at most one object, so:

e−33 ≤ P[every bin has at most one object] ≤ e−16.5.

(ii) A bin has more than one object if and only if there’s a collision which has probability 1−P[no collisions]. So,

1− e−16.5 ≤ P[some bin has more than one object] ≤ 1− e−33.

(b) We want P[no collisions] ≥ 0.9, so we set e−N(N−1)/B ≥ 0.9 which gives B ≥
⌈
N(N−1)/ ln(1/0.9)

⌉
, or B = 93, 964.

That is a pretty big table size for just 100 words.
(c) P[no collisions] ≥ e−N(N−1)/B . When B = N2+ǫ, N(N − 1)/B = N−ǫ − 1/N1+ǫ → 0. Therefore e−N(N−1)/B → 1.

Probabilities are at most 1, so P[no collisions]→ 1.
(d) P[no collisions] ≤ e−N(N−1)/2B . When B = N2−ǫ, N(N − 1)/2B = 1

2
N ǫ − 1

2
N ǫ−1 → ∞ for 1 > ǫ > 0. Therefore

e−N(N−1)/2B → 0. Probabilities are at least 0, so P[no collisions]→ 0.
Pop Quiz 17.10. By interchanging home and the lockup, P[home] = 1

3
. Alternatively, the successful step-sequences

are L(RL)•iL, having probability 1
2
× ( 1

4
)i × 1

2
. Summing these probabilities,

P[home] = 1
4

∞∑

i=0

(
1
4

)i
= 1

4
× 1

1− 1
4

= 1
3
.

Alternatively, by the law of total probability, P[home] = P[home | LR]P[LR]
︸ ︷︷ ︸

P [home]× 1
4

+P[home | LL]P[LL]
︸ ︷︷ ︸

1× 1
4

+P[home | R]P[R]
︸ ︷︷ ︸

0× 1
2

.

That is, P[home] = 1
4
· P[home] + 1

4
. Solving, P[home] = 1

4
/(1− 1

4
) = 1

3
.

Exercise 17.11.
(a) As in example 17.5, we want P (200, 200, 18

38
) = (β400 − β200)/(β400 − 1), where β = 0.9. The probability to double

up is about 7× 10−10 ≈ 0. If the bet size is $5, she is 40 steps from the goal and ruin, so the chances increase to
0.015. The best bet-size is $200, betting all or nothing with a double up probability of 18

38
≈ 0.474.

(b) Let x be the amount of money you start with. Then for p = 18/38, β = 18/20 = 9/10 and

P[win] =
β100 − β100+x

1− β100+x
= β100 1− βx

1− β100+x
≤ β100.

The win-probability is at most β100 ≈ 0.0027%, no matter how much money you start with!. A more accurate
estimate, ignoring the minute denominator is P[win] ≈ β100(1− βx).

Exercise 17.11. This interesting problem has a counter-intuitive answer. One expects the person farthest from you
is most likely to get bread last, but this is not true. Everyone but yourself is equally likely to be the last. This includes
the person next to you as well as the person diametrically opposite. Everyone has a probability 1

14
to be the last.

Consider person x. One of x’s two neighbors gets the bread before the other. In this situation, the bread needs to
travel n− 2 steps to the other neighbor before reaching x if x is the last to get the bread (n is the number of people).
That is, we have a random walk with k = 1 (one step to reach x) n− 2 steps in the other direction to reach the other
neighbor before x. So, k = 1, L = n − 1 and β = 1. The probability to reach x first is (L − 1)/L = (n − 2)/(n − 1).
This is the probability that x is not last. The probability x is last is 1/(n− 1), as claimed.

Important: If you do not believe it, use Monte Carlo to play out bread passing with 5 people and check.

Chapter 18

Pop Quiz 18.1.

(a) (i) X = 2 and Y = 1 are disjoint so P[X = 2 ∩Y = 1] = 0. P[X = 2]× P[Y = 1] = 3
8
× 1

4
= 3

32
. The two do not

match. The events are not independent.
(ii) {X = 2} ∩ {Y = 1} = {HHH}, hence P[X = 2 ∩Y = 1] = 1

8
. P[X ≥ 2] × P[Y = 1] = 1

2
× 1

4
= 1

8
. The two

match. The events are independent.

(b) (i) P[X = 2 | Y = 0] =
P[X = 2 ∩Y = 0]

P[Y = 0]
= 3

8
/ 6
8
= 1

2
. (ii) P[X ≥ 2 | Y = 0] =

P[X ≥ 2 ∩Y = 0]

P[Y = 0]
= 3

8
/ 6
8
= 1

2
.

Exercise 18.2.Let us first construct the (non-uniform) probability space and the random variables.
HHHH

16
81

2
2
2
4
4

HHHT
8
81

2
2
1
4
3

HHTH
8
81

2
1
1
3
3

HHTT
4
81

2
1
0
3
2

HTHH
8
81

1
1
2
2
3

HTHT
4
81

1
1
1
2
2

HTTH
4
81

1
0
1
1
2

HTTT
2
81

1
0
0
1
1

THHH
8
81

1
2
2
3
3

THHT
4
81

1
2
1
3
2

THTH
4
81

1
1
1
2
2

THTT
2
81

1
1
0
2
1

TTHH
4
81

0
1
2
1
2

TTHT
2
81

0
1
1
1
1

TTTH
2
81

0
0
1
0
1

TTTT
1
81

0
0
0
0
0

outcome
probability

X12

X23

X34

X12 +X23

X12 +X34
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Using this table, we can compute the probabilities of interest.
(a) (i) P[X12 ≥ 2] = 36

81
= 4

9
. (ii) P[X12 +X23 ≥ 2] = 66

81
= 22

27
. (iii) P[X12 +X34 ≥ 2] = 72

81
= 8

9
.

(b) (i) P[X12 ≥ 2] = 4
9
; P[X23 ≥ 2] = 4

9
; P[X12 ≥ 2 ∩X23 ≥ 2] = 24

81
6= 4

9
× 4

9
. Not independent.

(ii) P[X12 ≥ 2] = 4
9
; P[X34 ≥ 2] = 4

9
; P[X12 ≥ 2 ∩X34 ≥ 2] = 16

81
= 4

9
× 4

9
. Independent.

Pop Quiz 18.3. The shaded upper-left to lower-right diagonals as shown in the probability space for X = 9 contain
all the outcomes with a particular value of X. The probability is the number of outcomes in the diagonal divided by
36 (table below). Simplifying the fractions gives the answer.

x 2 3 4 5 6 7 8 9 10 11 12

PX(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Exercise 18.4. A is a normalizing constant for the PDF, which ensures that the PDF sums to 1.
(a) The PDF must sum to 1,

∑

x PX(x) = 1. Here,
∑10

x=1 Ax = 1→ 55A = 1 or A = 1/55.
(b) P[X ≥ 5] = 1

55

∑10
x=5 x = 45/55 = 9/11.

Pop Quiz 18.5. The outcome-probabilities in the underlying probability space sum to 1. Every outcome is represented
once in the joint probabilities, so the sum of the joint probabilities is 1.

Summing column sums just sums all the joint probabilities. So the column sums add to 1. Similarly for the row sums.

Pop Quiz 18.6. Yes. The first 5 coin tosses are one experiment; the second 5 tosses are another; and, the 2 dice rolls
are a third. X depends only on the first experiment, Y only on the 2nd and 3rd experiments (unrelated to the 1st).

Exercise 18.7.
(a) Start with the probability space

and construct the random vari-
ables, as shown on the right.

Sample Space Ω

ω HHH HHT HTH HTT THH THT TTH TTT
P (ω) 1/27 2/27 2/27 4/27 2/27 4/27 4/27 8/27

X(ω) 3 2 2 1 2 1 1 0

Y(ω) 1 1 0 0 1 0 0 0

X(ω) +Y(ω) 4 3 2 1 3 1 1 0

We use the probability space to derive the joint PDF
and the marginals shown on the right. We shaded
the event X+Y ≥ 2, from which P[X+Y ≥ 2] = 7

27
.

The event X ≤ 2 ∩ X + Y ≥ 2 has its probabili-
ties in red. The conditional probability is the ratio
(red sum)/(shaded sum) = 6

7
.

PXY(x, y)
X PY

0 1 2 3

Y
0 8/27 12/27 2/27 0 22/27

1 0 0 4/27 1/27 5/27

PX 8/27 12/27 6/27 1/27

(b) In each case, we give the joint PDF and the joint PDF obtained from the product of the marginals. If the two
match, the random variables are independent. Otherwise they are not.

(i)
PX12X23

X12

0 1 2

X23

0 3
81

6
81

0 1
9

1 6
81

18
81

12
81

4
9

2 0 12
81

24
81

4
9

1
9

4
9

4
9

PX12PX23

X12

0 1 2

X23

0 1
81

4
81

4
81

1
9

1 4
81

16
81

16
81

4
9

2 4
81

16
81

16
81

4
9

1
9

4
9

4
9

PX12X23 6= PX12PX23 , so X12 and X23 are not independent.

(ii)
PX12X34

X12

0 1 2

X34

0 1
81

4
81

4
81

1
9

1 4
81

16
81

16
81

4
9

2 4
81

16
81

16
81

4
9

1
9

4
9

4
9

PX12PX34

X12

0 1 2

X34

0 1
81

4
81

4
81

1
9

1 4
81

16
81

16
81

4
9

2 4
81

16
81

16
81

4
9

1
9

4
9

4
9

In all entries, PX12X34 = PX12PX34 , so X12 and X34 are independent. No surprise because the first 2 coin
tosses and the last 2 coin tosses are unrelated experiments.
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(iii)
PX2

12X
2
34

X2
12

0 1 4

X2
34

0 1
81

4
81

4
81

1
9

1 4
81

16
81

16
81

4
9

4 4
81

16
81

16
81

4
9

1
9

4
9

4
9

PX2
12
PX2

34

X2
12

0 1 4

X2
34

0 1
81

4
81

4
81

1
9

1 4
81

16
81

16
81

4
9

4 4
81

16
81

16
81

4
9

1
9

4
9

4
9

No surprise. If two random variables have nothing to do with each other (are independent) then functions of
the random variables will also be unrelated.

(c)
∑

x

∑

y

PX(x)PY(y) =
∑

x

PX(x)
∑

y

PY(y). Each individual sum is 1, so the product is 1.

Exercise 18.8. We reproduce the outcome tree from Exercise 15.2. Below each outcome in the outcome-tree, is its
probability and the value the maximum (the random variable).

1
36

1

1
36

2

1
36

3

1
36

4

1
36

5

1
36

6

1
36

2

1
36

2

1
36

3

1
36

4

1
36

5

1
36

6

1
36

3

1
36

3

1
36

3

1
36

4

1
36

5

1
36

6

1
36

4

1
36

4

1
36

4

1
36

4

1
36

5

1
36

6

1
36

5

1
36

5

1
36

5

1
36

5

1
36

5

1
36

6

1
36

6

1
36

6

1
36

6

1
36

6

1
36

6

1
36

6

1
6

1
6

(a) x 1 2 3 4 5 6
PX(x) 1

36
3
36

5
36

7
36

9
36

11
36

(b) We only give the CDF at the values with positive PDF. The PDF can be computed from jumps in the CDF.

x 1 2 3 4 5 6
FX(x) 1

36
4
36

9
36

16
36

25
36

36
36

(c) Consider n dice values X1, . . . ,Xn. In the problem, n is 10. Note:

max(X1, . . . ,Xn) ≤ x ↔ X1 ≤ x and X2 ≤ x and · · · and Xn ≤ x

The outcomes in the first event are the same as the outcomes in the second. That means,

P[max(X1, . . . ,Xn) ≤ x] = P[X1 ≤ x and X2 ≤ x and · · · and Xn ≤ x].

Since X1, . . . ,Xn are independent, the RHS is a product of probabilities. Using P[Xi ≤ x] = x/6 for x ∈ {1, . . . , 6},
P[max(X1, . . . ,Xn) ≤ x] = FX(x) = (x/6)n .

The jumps in FX give us the PDF PX,

PX(x) = FX(x)− FX(x− 1) = (xn − (x− 1)n)/6n.

Pop Quiz 18.9.
(a) Since I show you the smaller number half the time, you will be wrong half the time.
(b) Using the law of total probability for the two cases you say smaller or larger,

P[you win] = P[you win | smaller]P[smaller] + P[you win | larger]P[larger] = 1
2
× 1

2
+ 1

2
× 1

2
= 1

2
.

(c) I choose (3,4). You always say smaller and win half the time.
(d) Yes! See the discussion following the pop quiz in the text and Exercise 18.10.

Exercise 18.10.
(a) P[you win] = P[E ] · P[you win | E ] + P[ E ] · P[you win | E ] (total probability)

= P[E ] · 1 + (1− P[E ]) · 1
2

(if E occurs you win; if not you win half the time)

= 1
2
+ 1

2
P[E ] ≥ 2

3
(algebra and P (E) = (H − L)/3 ≥ 1/3)

For last step, E contains H − L values of X in the interval (L,H) each with probability 1/3.
(b) Let the PDF of X be p1, p2, p3 with minimum pi <

1
3
. I now choose L = i and H = i + 1. Then P[E ] = pi. And

so, P[you win] = 1
2
+ 1

2
P[E ] = 1

2
+ 1

2
pi <

1
2
+ 1

2
× 1

3
= 2

3
.
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Pop Quiz 18.11.
(a) Binomial. A kid is a “trial”. A “success” is a boy. Children are independent and the chances of a boy are the same

for each kid, approximately 1/2. We have 10 independent trials with success probability 1/2.
(b) Not Binomial. Again a trial is a child, but the number of trials is not some fixed number.
(c) Not Binomial. This is tricky. The 10 trials are each kid in the team. A success is a boy. The success probability

on the first trial is 10/30. If the first trial succeeds, the second trial success probability is 9/29 (sampling without
replacement). Trials are not independent and the success probabilities change depending on the outcomes.

Exercise 18.12.
(a) Xi = 1 if you get question i correct; P[Xi = 1] = 1

5
. The number of correct answers is X = X1 + · · · + X20, a

Binomial with n = 20 and p = 1
5
. We want P[X ≥ 10] = P[X ≥ 10] =

∑20
k=10

(
20
k

) (
1
5

)k ( 4
5

)20−k ≈ 0.0026.

(b) The outcomes AAAA (A wins four in a row) or BBBB each have probability ( 1
2
)4 = 1

16
. So P[4 games] = 1

8
.

If the series ends in 5 games, there are two cases: A wins or B wins. Each has the same probability. If A wins,
the series looks like xxxxA, and A must win 3 games in the first 4. We have a Binomial with n = 4 and p = 1

2
.

P[k = 3] =
(
4
3

)
( 1
2
)3( 1

2
)1 = 4

16
. Therefore P[A wins in 5] = 4

16
× 1

2
(the last 1

2
is because A wins the last game). So,

P[5 games] = P[A wins in 5] + P[B wins in 5] = 4
16
.

Similarly, A wins in 6 games with probability
(
5
3

)
( 1
2
)3( 1

2
)2 × 1

2
, and

P[6 games] = P[A wins in 6] + P[B wins in 6] = 10
32

= 5
16
.

Lastly, A wins in 7 games with probability
(
6
3

)
( 1
2
)3( 1

2
)3 × 1

2
, and

P[7 games] = P[A wins in 7] + P[B wins in 7] = 20
64

= 5
16
.

(c) There are
(
100
20

)
×
(
80
30

)
× 450 sequences with 20 ones and 30 fours (

(
100
20

)
ways to choose the 1s; of the remaining

80 positions there are
(
80
30

)
ways to choose the 4s; each of the remaining 50 slots can be picked in 4 ways for 450).

The probability of each sequence is ( 1
6
)100, so

P[20 ones and 30 fours] =
(
100
20

)
×
(
80
30

)
× 450 ×

(
1
6

)100 ≈ 9.226× 10−6.

Here is another derivation of the multinomial distribution. The number of sequences with k1 objects of type 1, k2
of type 2 and k3 of type 3 is

(
k1+k2+k3
k1,k2,k3

)
. There are

(
100

20,30,50

)
sequences with 20-ones, 30-fours, and 50-other-values

(three types). Each 1 and 4 have probability 1/6 and each non-1-or-4 has probability 4/6. The probability of each
such sequence is ( 1

6
)20 · ( 1

6
)30 · ( 4

6
)50 and we recover the same result from:

P[20 ones and 30 fours] =
(

100
20,30,50

)
( 1
6
)20 · ( 1

6
)30 · ( 4

6
)50

(d) The challenge is to evaluate small numbers, like (1 − p)n. It is numerically
more stable to compute the logPX. So, logPX(0) = n log(1 − p). Having
computed logPX(k − 1), you can use the following update to get logPX(k),

logPX(k)← logPX(k − 1) + log

(
p(n− k + 1)

(1− p)k

)

.

k

P
X

250 300 3500

0.01

0.02

0.03

Exercise 18.13.
(a) A boy is “success” and the probability of success is 1/2. Let X be the number of trials till success. We want

P[X ≥ 5] where PX(t) = β(1− p)t with p = 1/2 and β = p/(1− p) = 1

P[X ≥ 5] =
∞∑

t=5

(1

2

)t

=
(1

2

)5

× 1

1− 1/2
=

1

16
.

Alternatively, observe that X ≥ 5 if and only if the first 4 children are girls, which happens with probability ( 1
2
)4.

(b) Your wait for two successes is t when the tth trial is a success and there is one
success in trials 1, . . . , t−1. There are t−1 sequences with one success in the
first t−1. The probability of each such sequence is p2(1−p)t−2 (two successes
and t− 2 failures), where the success probability p = 1/2. Therefore,

P[X = t] = PX(t) = (t− 1)p2(1− p)t−2 = β2(t− 1)(1− p)t.

t

P
X

1 5 10 150

0.1

0.2

(c) (i) You fail to send any packet with probability (0.1)15, so the probability of at least 1 success is 1− (0.1)15.
(ii) If you need at least 15 transmissions, then in the first 14 transmissions at most 11 are successful. Let X be

the number of successful transmissions in the first 14 trials, X ∼ B(14, 0.9). We want P[X ≤ 11],

P[X ≤ 11] =
11∑

k=0

(14

k

)

(0.9)k(0.1)14−k ≈ 0.16

.
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Chapter 19

Exercise 19.1. The discussion after the exercise suggests the values you should observe for the Monte Carlo averages.
(a) Average dice roll is about 3.5. (b) 10 coin tosses yields on average 5 heads. (c) 7.5mm of rain per day on average.
(d) The gamblers lose on average $52.63.

Pop Quiz 19.2. For the two coin tosses:
∑

ω∈Ω X(ω) ·P (ω) = 2 · 1
4
+1 · 1

4
+1 · 1

4
+0 · 1

4
= 1. More generally, consider

all outcomes ω with X(ω) = x. The contribution of these outcomes is

x · (sum of probabilites for the outcomes whose value is x) = xPX(x),

which is one of the terms in
∑

x∈X(Ω) xPX(x), which means the two sums are equal. Here is a formal mathematical
proof. Let X(Ω) = {x1, x2, . . . , xM} be the possible values for x. Since we have entered a proof, we know you are on
high alert and take this as an opportunity to introduce a useful notation, the Boolean indicator function JAK which is
1 when A is true and 0 when false. We are going to use J·K to express PX(x) as a convenient summation

PX(x) = P[X = x] =
∑

ω:X(ω)=x

P (ω) =
∑

ω∈Ω

P (ω) JX(ω) = xK .

The first sum is from the definition of P[X = x]: add the probabilities of all outcomes for which X(ω) = x. The second
sum is over all ω; the Boolean indicator ensures that the summand is 0 when X(ω) 6= x. So, the second sum also adds
the probabilities only when X(ω) = x. Thus,

∑

x∈X(Ω)

x · PX(x) =
∑

x∈X(Ω)

x
∑

ω∈Ω

P (ω) JX(ω) = xK

(a)
=

∑

x∈X(Ω)

∑

ω∈Ω

P (ω)x JX(ω) = xK pull x inside
∑

ω

(b)
=

∑

x∈X(Ω)

∑

ω∈Ω

P (ω)X(ω) JX(ω) = xK replace x with X(ω)

(∗)
=

∑

ω∈Ω

∑

x∈X(Ω)

P (ω)X(ω) JX(ω) = xK reverse order of sums

(c)
=

∑

ω∈Ω

P (ω)X(ω)
∑

x∈X(Ω)

JX(ω) = xK pull P (ω)X(ω) outside
∑

x

(d)
=

∑

ω∈Ω

P (ω)X(ω).
∑

x
JX(ω) = xK = 1

(a) is because x is a constant w.r.t. ω; (b) is because when the summand is non-zero, x = X(ω); (∗) is a technical. You
can always reverse the order of summation for finite sums;1 (c) is because X(ω) is a constant w.r.t. x as summation
index; (d) is because only one term contributes to the sum, the unique x which equals X(ω).

Pop Quiz 19.3.

number of rolls

av
er

ag
e
−

E
[X

]

102 103 104 105 106

-0.1

0

0.1

Pop Quiz 19.4. We show the probability space with the random variables below.

1In general you can’t reverse order of summation in infinite sums unless the sums are absolutely convergent. The expected
value is defined only when

∑

ω∈Ω P (ω)|X(ω)| <∞ (absolute convergence) and then you can add the terms in any order.

sol – 55



30. Solutions to Quizes & Exercises

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

Probability Space

Die 1 Value

D
ie

2
V

al
u
e

0

−1
−2
−3
−4
−5

1

0

−1
−2
−3
−4

2

1

0

−1
−2
−3

3

2

1

0

−1
−2

4

3

2

1

0

−1

5

4

3

2

1

0

X = D1 −D2

Die 1 Value

D
ie

2
V

al
u
e

0

1

2

3

4

5

1

0

1

2

3

4

2

1

0

1

2

3

3

2

1

0

1

2

4

3

2

1

0

1

5

4

3

2

1

0

X = |D1 −D2|

Die 1 Value

D
ie

2
V

al
u
e

To compute expectation, weight each random-variable value by its probability and add. For D1 −D2, every positive
value cancels a corresponding negative value, so E[D1 −D2] = 0. The cancelation does not occur for E[|D1 −D2|],

E[|D1 −D2|] = 1
36
× 2× (5× 1 + 4× 2 + 3× 3 + 2× 4 + 1× 5) = 70

36
= 1 17

18
.

We argued from the sample space. You can get these same results by first computing the PDF.

Exercise 19.5.
(a) Directly computing the expected value from the sample space, (Pop Quiz 19.2),

E[X] =
∑

ω∈Ω

X(ω)P (ω) =
∑

ω∈Ω

X(ω)
1

|Ω| =
1

|Ω|
∑

ω∈Ω

X(ω).

For two dice, the probability space is uniform, so the expected sum is:

E[X] = sum(2,...,7)+sum(3,...,8)+sum(4,...,9)+···+sum(7,...,12)
36

= 252
36

= 7.

(b) This is easiest to prove directly from the sample space (Pop Quiz 19.2):

E[Y] =
∑

ω∈Ω

P (ω)Y(ω) =
∑

ω∈Ω

P (ω)(aX(ω) + b) = a
∑

ω∈Ω

P (ω)X(ω) + b
∑

ω∈Ω

P (ω) = aE[X] + b.

(c) Again, it’s easiest to prove directly from the sample space, with Y(ω) = X1(ω) +X2(ω).

E[Y] =
∑

ω∈Ω

P (ω)Y(ω) =
∑

ω∈Ω

P (ω)(X1(ω) +X2(ω)) =
∑

ω∈Ω

P (ω)X1(ω) +
∑

ω∈Ω

P (ω)X2(ω) = E[X1] + E[X2].

Exercise 19.6.
(a) n = 20 and p = 1

2
, so E[X] = np = 10. The expected number of heads is 10.

(b) n = 20 and p = 1
5
, so E[X] = np = 4. The expected number of correct answers is 4.

(c) n = 5. If you hit a region with probability proportional to its area, then p = 1/100 (area is proportional to radius
squared). So, E[X] = np = 5× 1/100 = 1/20.

(d) E[X(X− 1)] =
n∑

k=0

k(k − 1)
(
n
k

)
pk(1− p)n−k =

n∑

k=2

k(k − 1)
(
n
k

)
pk(1− p)n−k. Observe that

k(k − 1)
(
n
k

)
= k(k−1)n!

k!(n−k)!
= n!

(k−2)!(n−k)!
= n(n−1)(n−2)!

(k−2)!(n−k)!
= n(n− 1)

(
n−2
k−2

)
.

Using this identity in the expression for E[X(X− 1)],

E[X(X− 1)] =
n∑

k=2

n(n− 1)
(
n−2
k−2

)
pk(1− p)n−k

= n(n− 1)p2
n∑

k=2

(
n−2
k−2

)
pk−2(1− p)n−k (n(n− 1)p2 is a constant)

= n(n− 1)p2
n−2∑

ℓ=0

(
n−2
ℓ

)
pℓ(1− p)n−2−ℓ (change index to ℓ = k − 2)

= n(n− 1)p2(p+ 1− p)n−2 (Binomial theorem)

= n(n− 1)p2 (p+ 1− p = 1)

Exercise 19.7.
(a) Hitting the bulls-eye is success. The bulls-eye area is 1

100
th the area of the board, so p = 1

100
. Therefore, the

expected number of darts you throw is 1
p
= 100.

(b) A 5-pack contains no EX with probability 0.995 ≈ 0.95. So a 5-pack contains an EX (success) with probability
p ≈ 0.05. You expect to buy 1

p
≈ 20 5-packs to get an EX.

(c) If you pay x, with probability 10−7 you win 106 and with probability 1− 10−7 you lose x, so your expected profit
is 10−7 × 106 − x(1− 10−7). You play if you make a profit so x < 1

10
/(1− 10−7) ≈ 10¢.

(d) (i) We may assume the first child is a boy (the argument is identical if the first is a girl). You are now waiting
for a girl with success probability p = 1

2
. Therefore you expect 2 trials to get a girl, for a total of 3.
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(ii) You expect to wait 2 trials for the first boy and 2 more for the second for a total of 4 kids. Let’s compute
this from the PDF for waiting time to 2 successes in Exercise 18.13. Since p = 1

2
, PX(t) = (t− 1)( 1

2
)t,

E[X] =
∞∑

t=1

t(t− 1)( 1
2
)t. (∗)

We need to compute this infinite sum. Note that the first term in the sum is zero and

1
2
E[X] =

∞∑

t=1

t(t− 1)( 1
2
)t+1 =

∞∑

t=2

(t− 1)(t− 2)( 1
2
)t. (∗∗)

Subtracting (∗∗) from (∗), the LHS is E[X]− 1
2
E[X] = 1

2
E[X] and we have:

1
2
E[X] =

∞∑

t=2

(t(t− 1)− (t− 1)(t− 2))( 1
2
)t =

∞∑

t=2

2(t− 1)( 1
2
)t =

∞∑

t=2

(t− 1)( 1
2
)t−1.

The last sum is
∞∑

t=1

t( 1
2
)t which equals 2 by Lemma 19.6 on page 281, so we get E[X] = 4.

Exercise 19.8.
(a) Conditioned on D1 +D2 ≥ 4, there are now 33 outcomes, each having probability 1

33
. So,

E[D1+D2 | D1+D2 ≥ 4] =
3× 4 + 4× 5 + 5× 6 + 6× 7 + 5× 8 + 4× 9 + 3× 10 + 2× 11 + 1× 12

33
=

244

33
≈ 7.4.

(b) (i) The relevant outcomes are {0, 2, 4, . . . , 20}.

P[X = 2i | even] =
P[X = 2i ∩ even]

P[even]
=

1

P[even]

(
20
2i

)
· ( 1

2
)2i · ( 1

2
)20−2i =

1

220P[even]

(
20
2i

)
.

We can compute P[even] as a sum over Binomial coefficients:

P[even] = ( 1
2
)20

∑

even i

(
20
i

)
= ( 1

2
)20 × 219 = 1

2
,

where we used
∑

even i

(
n
i

)
= 2n−1 (also equals

∑

odd i

(
n
i

)
). To see this, the Binomial Theorem gives:

2n = (1 + 1)n =
n∑

i=0

(
n
i

)
=
∑

even i

(
n
i

)
+
∑

odd i

(
n
i

)

0 = (−1 + 1)n =
n∑

i=0

(
n
i

)
(−1)i = ∑

even i

(
n
i

)
− ∑

odd i

(
n
i

)







solve→
∑

even i

(
n
i

)
=
∑

odd i

(
n
i

)
= 2n−1.

Now for the conditional expectation:

E[X | even] =
∑

even i

i · P[X = i | even] =
∑

even i

i

220P[even]

(20

i

)

=
1

219

∑

even i>0

20!

(i− 1)!(20− i)!

=
20

219

∑

even i>0

19!

(i− 1)!(19− (i− 1))!

=
20

219

∑

even i>0

( 19

i− 1

)

=
20

219

∑

odd i

(19

i

)

.

The last sum is 218 and so E[X | even] = 10.

(ii) We need to do a similar analysis: E[X | at least 8] =
∑

i≥8 i · P[X = i | at least 8], where

P[X = i | at least 8] =
1

220P[at least 8]

(20

i

)

,

and P[at least 8] = 2−20∑

i≥8

(
20
i

)
≈ 0.86841. Therefore,

E[X | at least 8] =
1

220P[at least 8]

∑

i≥8

i ·
(20

i

)

≈ 10.553.

(c) The relevant outcomes are {5, 7, 11, 13} each with conditional probability 1/4. So

E[X2 | prime] = 1
4
(52 + 72 + 112 + 132) = 91.

(d) We want E[X | X ≥ k + 1]. We need the conditional probability

P[X = t | X ≥ k + 1] =
P[X = t ∩X ≥ k + 1]

P[X ≥ k + 1]
=

β(1− p)t

(1− p)k
,
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Because P[X ≥ k + 1] is the probability to fail on the first k trials which is (1− p)k. Therefore,

E[X | X ≥ k + 1] =
β

(1− p)k

∞∑

t=k+1

t(1− p)t =
β

(1− p)k

∞∑

t=1

(t+ k)(1− p)t+k =
1

p
+ k.

Exercise 19.9. E[X | X ≥ 25] =
∑

x≥25 xPX(x)/P[X ≥ 25] and E[X | X ≥ 17] =
∑

x≥17 xPX(x)/P[X ≥ 17]. So,

E[X | X ≥ 25]− E[X | X ≥ 17] =

(

P[X ≥ 17]
∑

x≥25 xPX(x)− P[X ≥ 25]
∑

x≥17 xPX(x)
)

P[X ≥ 25]P[X ≥ 17]
.

We show that the numerator is positive: Let P1 = P[17 ≤ X < 25]; P1 = P[X ≥ 25]; S1 =
∑24

x=17 xPX(x); and,
S2 =

∑

x≥25 xPX(x). Note: S2 > 25P2 and S1 < 24P1. We have,

P[X ≥ 17]
∑

x≥25

xPX(x)− P[X ≥ 25]
∑

x≥17

xPX(x)

= (P1 + P2)S2 − P2(S1 + S2)

= P1S2 − P2S1 > 25P1P2 − 24P2P1 > 0.

Pop Quiz 19.10.
(a) Definition of expected value.
(b) By the law of total probability, P[X = x] = P[A]P[X = x | A] + P[A]P[X = x | A].
(c) P[A] and P[A] are independent of x and can be pulled out of the sum (constant rule).
(d) Definition of the conditional expectation.

Exercise 19.11.
(a) E[X] = E[X | fair]P[fair] + E[X | biased]P[biased], where P[fair] = m

m+k
and P[biased] = k

m+k
.

(i) E[X] = 1
2
n×m/(m+ k) + n× k/(m+ k) = n( 1

2
m+ k)/(m+ k).

(ii) E[X] = 2×m/(m+ k) + 1× k/(m+ k) = (2m+ k)/(m+ k).

(b) E[X] = E[X | B]P[B] + E[X | G]P[G] (the two cases are the first child is B and the first child is G). Let p be the
probability of a boy. If the first child is B, you are waiting for a G, so the expected wait is 1 (for the boy you
already have) plus the expected wait to the girl which is 1/(1− p), E[X | B] = 1+ 1/(1− p). If the first child is G,
you are waiting for a B, so the expected wait is 1 (for the girl you already have) plus the expected wait to the boy
which is 1/p, E[X | G] = 1 + 1/p. So,

E[X] =
(

1 + 1
1−p

)

p+
(

1 + 1
p

)

(1− p) = 1
p(1−p)

− 1.

When p = 1
2
, you expect to 3 kids till you get a boy and a girl.

(c) Since girls are twice as likely as boys, p = 1
3

and the expected number of children is 3 1
2
.

(d) As with 3 dice. Let X1 be the first die, and X3 the sum of the remaining 3 dice. The dice are independent, so
P[X3 = x3 | X1 = x1] = PX3(x3). By the law of total probability,

E[X] =
6∑

i=1

E[X3 | X1 = i]P[X1 = i].

Since E[X | X1 = i] =
∑

x3
(i+ x3)PX3(x3) = i+ E[X3] = i+ 10.5, we have

1
6
E[X] =

6∑

i=1

(i+ 10.5) = 1
6
E[X] =

6∑

i=1

gi+ 1
6
E[X] =

6∑

i=1

10.5 = 3.5 + 10.5 = 14.

The expected sum of 4 dice is 4 times the expexted value of one die.
(e) E[X] = E[X | H]P[H] + E[X | T]P[T] = 7p+ 10.5(1− p) = 10.5− 3.5p, where p = P[H].
(f) Let Y be the waiting time. X = Y2. E[Y2] = E[Y2 | success]P[success] + E[Y2 | fail]P[fail]. In case of success,

Y2 = 1. In case of failure, the process restarts and Y2 = (1 + Z)2, where Z is the waiting time to success. So,

E[Y2] = p+ (1− p)E[(1 + Z)2] = p+ (1− p) + 2(1− p)E[Z] + (1− p)E[Z2].

Since E[Y2] = E[Z2], we can solve for E[Y2] to get E[Y2] = (2− p)/p2. This problem is trickier than it appeared.

Exercise 19.12.
(a) For n > 1, let Ai be the event the pivot is ith smallest, i = 1, . . . , n. P[Ai] =

1
n
. By total probability,

Tn = E[runtime(n)] =
n∑

i=1

E[runtime | Ai]P[Ai] =
1
n

n∑

i=1

E[runtime | Ai].

Given Ai, the runtime is n+1 plus the time on the left list of size i− 1 plus the time on the right list of size n− i.

runtime given Ai = n+ 1 + runtime(i− 1) + runtime(n− i).
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Taking the expection, E[runtime | Ai] = (n+ 1) + Ti−1 + Tn−i. Therefore,

Tn = 1
n

n∑

i=1

[(n+ 1) + Ti−1 + Tn−i] = n+ 1 + 1
n
(T0 + Tn−1 + T1 + Tn−2 + · · ·+ Tn−2 + T1 + Tn−1 + T0).

The sum contains two copies of each Ti. Since T0=0, we have Tn = n+ 1 + 2
n

n−1∑

i=1

Ti.

(b) Using (a), T2 = 3 + 2
2
T1 = 4. Rewriting the recursion in (a), nTn = n(n+ 1) + 2

n−1∑

i=1

Ti.

Similarly, for n > 2, we have (n− 1)Tn−1 = (n− 1)n+ 2
n−2∑

i=1

Ti.

Subtracting the latter equation from the former equation gives,

nTn − (n− 1)Tn−1 = n(n+ 1)− (n− 1)n+ 2
n−1∑

i=1

Ti − 2
n−2∑

i=1

Ti = 2n+ 2Tn−1.

Rearranging gives nTn = (n+ 1)Tn−1 + 2n. Dividing both sides by n gives the desired result.
(c) Deriving the upper bound is interesting. Given the bound, proving it by induction is good practice. We need two

facts: 1 + x ≤ ex; eHn ≥ n + 1 (which we proved using the integration method on page 120.) One can verify the
bound for T1 and T2. Suppose the bound holds for Tn and apply this induction hypothesis to Tn+1:

Tn+1 = (1 + 1
n+1

)Tn + 2 ≤ 2(1 + 1
n+1

)Hne
Hn + 2 ≤ 2e1/(n+1)Hne

Hn + 2 = 2Hne
Hn+1 + 2.

Writing Hn = Hn+1 − 1
n+1

, we get that

Tn+1 ≤ 2(Hn+1 − 1
n+1

)eHn+1 + 2 = 2Hn+1e
Hn+1 + 1− 1

n+1
eHn+1 .

eHn+1 > n+ 2 implies 1
n+1

eHn+1 ≥ n+2
n+1

> 1, or 1− 1
n+1

eHn+1 < 0. Therefore,

Tn+1 ≤ 2Hn+1e
Hn+1 + 1− 1

n+1
eHn+1 ≤ 2Hn+1e

Hn+1 .

How did we derive the upper bound? We unfolded the recursion:

Tn = (1 + 1
n
)Tn−1 + 2

(1 + 1
n
)Tn−1 = (1 + 1

n
)(1 + 1

n−1
)Tn−2 + 2(1 + 1

n
)

(1 + 1
n
)(1 + 1

n−1
)Tn−2 = (1 + 1

n
)(1 + 1

n−1
)(1 + 1

n−2
)Tn−3 + 2(1 + 1

n
)(1 + 1

n−1
)

...
(1 + 1

n
) · · · (1 + 1

4
)T3 = (1 + 1

n
)(1 + 1

n−1
) · · · (1 + 1

3
)T2 + 2(1 + 1

n
) · · · (1 + 1

4
).

Now equate the sum of the left hand sides to the sum of the right hand sides,

Tn = (1 + 1
n
) · · · (1 + 1

3
)T2 + 2

(

1 + (1 + 1
n
) + (1 + 1

n
)(1 + 1

n−1
) + · · ·+ (1 + 1

n
) · · · (1 + 1

4
)
)

.

The first term is bounded by e1/ne1/(n−1) · · · e1/3 = eHn−H2 . The second term is a sum of terms of the form ak,
where ak = (1 + 1

n
) · · · (1 + 1

k
). Using ln(1 + x) ≤ x (because 1 + x ≤ ex),

log ak ≤
n∑

i=k

1
i
= Hn −Hk−1,

which implies Tn ≤ T2e
Hn−H2 + 2

n∑

k=3

eHn−Hk = T2e
Hn−H2 + 2eHn

n∑

k=3

e−Hk .

Since Hk ≥ ln k, e−Hk ≤ 1
k

and so
∑n

k=3 e
−Hk ≤

∑n
k=3

1
k
= Hn −H2. We conclude that

Tn ≤ T2e
Hn−H2 + 2eHn(Hn −H2) = 2Hne

Hn + eHn(T2e
−H2 − 2H2).

Since T2 = 4, you may verify that T2e
−H2 − 2H2 < 0 which gives the bound.

Chapter 20

Exercise 20.1.
(a) X is the sum of the dice, X = X1+ · · ·+Xn. Xi is an ri-sided dice, so E[Xi] =

1
ri
(1+ · · ·+ri) =

1
ri
× 1

2
ri(ri+1) =

1
2
(ri + 1). By linearity of expectation, E[X] =

∑n
i=1 E[Xi] =

1
2

∑n
i=1(1 + ri) =

n
2
+ 1

2

∑n
i=1 ri.

(b) Let Xi indicate (0 or 1) whether trial i is a success. Xi is a Bernoulli with success probability pi and E[Xi] = pi.
The number of successes X = X1 + · · ·+Xn. By linearity of expectation, E[X] =

∑n
i=1 E[Xi] =

∑n
i=1 pi.

(c) Xi is the number of trials from the (i− 1)th success to the ith and X = X1 + · · ·+Xn. E[Xi] = 1/pi. By linearity
of expectation, E[X] =

∑n
i=1 1/pi.

(d) Computing the PDF is very challenging, let alone computing the expectation from the PDF.
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Pop Quiz 20.2. Let’s count possible outcomes. If die 1 is i, there are i further rolls, so there are 6i possible outcomes
given i. Thus, the number of possible outcomes is 61 + · · ·+ 66 = 55986.

The probability space is not uniform. Outcome (1, 1) has probability 1/62, but outcome (2, 1, 1) has probability 1/63.

You could creat a uniform outcome space by tossing 7 dice. You would then define the equivalent random variable X1

as the first roll and X2 as the sum of the next X1 rolls.

Exercise 20.3.
(a) For cases X = 1, 2, . . . , 100, total probability gives

PY(y) =
100∑

x=1

PY(y | x)PX(x) = 1
100

100∑

x=y

1/x

because: PX(x) = 1/100 (X ∼ U[100]); PY(y | x) = 0 for x < y;
PY(y | x) = 1/x for x ≥ y. (Y ∼ U[x]). The sum is H100 for y = 1 and
H100 −Hy−1 for y > 1, where Hn is the nth harmonic number. So,

PY(y) =

{

H100/100 y = 1;

(H100 −Hy−1)/100 y ∈ {2, . . . , 100}
y

P
Y

1 20 40 60 80 100
0

0.02

0.04

To verify that the probabilities sum to 1, use the Harmonic sum
∑n

i=1 Hn = (n+1)Hn−n (prove it by induction).
Computing the expected value from this PDF is torture by summation. Since we are young, let’s do it, especially
since Harmonic sums are frequent. We do the computation for general n (in our case n = 100).

E[Y] =
n∑

i=1

iPY(i) =
1

n

(

Hn +
n∑

i=2

i(Hn −Hi−1)

)

=
1

n

(

Hn

n∑

i=1

i−
n∑

i=2

iHi−1

)

.

The first sum is 1
2
n(n+ 1). The second sum is an example of a Harmonic sum.

n∑

i=2

iHi−1 = 2×H1 = 2
1

+ 3×H2 = 3
1

+ 3
2

+ 4×H3 = 4
1

+ 4
2

+ 4
3

+ 5×H4 = 5
1

+ 5
2

+ 5
3

+ 5
4

...
...

...
...

+ n×Hn−1 = n
1

+ n
2

+ n
3

+ n
4

+ · · · + n
n−1

Let’s sum columns (shaded) instead of rows. The 1st column is (2 + · · ·+ n) = 1
2
(n(n+ 1)− 1(1 + 1))/1; the 2nd

is (3 + · · ·+ n)/2 = 1
2
(n(n+1)− 2(2 + 1))/2; the ith column is ((i+1)+ · · ·+ n)/i = 1

2
(n(n+1)− i(i+1))/i. So,

n∑

i=2

iHi−1 = 1
2

n−1∑

i=1

n(n+1)−i(i+1)
i

= 1
2
n(n+ 1)Hn−1 − 1

2

n−1∑

i=1

(i+ 1)

= 1
2
n(n+ 1)Hn−1 − 1

2

n−1∑

i=1

(i+ 1) = 1
2
n(n+ 1)Hn−1 − 1

2
( 1
2
n(n+ 1)− 1).

(You may use this technique to compute the Harmonic sum
∑n

i=1 Hn.) For E[Y] we get

E[Y] =
1

n

(
1
2
n(n+ 1)Hn − 1

2
n(n+ 1)Hn−1 +

1
4
n(n+ 1)− 1

2

)
=

1

n

(
1
2
n(n+1) (Hn −Hn−1)

︸ ︷︷ ︸

1/n

+ 1
4
n(n+1)− 1

2

)

=
n+ 3

4
.

In our case, n = 100, so E[Y] = 25 3
4
.

(b) Y ∼ U[X]. By Theorem 19.3 on page 279, E[Y | X] = 1
2
(X+ 1). By iterated expectation,

E[Y] = EX[E[Y | X]] = E[ 1
2
(X+ 1)] = 1

2
+ 1

2
E[X] = 25 3

4
,

where the last step follows because X ∼ U[100], so E[X] = 1
2
(100 + 1). How much easier!

Exercise 20.4.
(a) Y depends on Z. If Z = 0, Y = 0, so E[Y | Z = 0] = 0. If Z = 1, Y has the same PDF as X, so E[Y | Z = 1] = E[X]

and E[Y2 | Z = 1] = E[X2]. We can summarize both cases as

E[Y | Z] = E[X] · Z, E[Y2 | Z] = E[X2] · Z.
(b) E[Y] = EZ

[
E[Y | Z]

]
= EZ

[
E[X] · Z

]
= E[X] · EZ[Z] = (1− p)E[X]

E[Y2] = EZ

[
E[Y2 | Z]

]
= EZ

[
E[X2] · Z

]
= E[X2] · EZ[Z] = (1− p)E[X2]

(Remember that E[X] is just a number, so it can be pulled outside the expectation w.r.t. Z.)
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(c) E[X] = 1 + E[Y] = 1 + (1− p)E[X] → E[X] = 1/p.

E[X2] = 1 + 2E[Y] + E[Y2] = 2/p− 1 + (1− p)E[X2] → E[X2] = (2− p)/p2.

Why derive something we already derived using total expectation? First, to showcase iterated expectation, which is
often useful in more complicated situations. Second, it always helps to revisit old results using new tools.

Pop Quiz 20.5.
(a) X is fixed with respect to the inner expectation that is w.r.t. Y.
(b) Y is independent of X, so its PDF is unchanged, given X. The conditional and unconditional expectations match.
(c) E[Y] is a number independent of X that can be pulled outside the expectation.

Exercise 20.6.
(a) Knowing X1 + X2 = 9 makes X1 and X2 dependent. The possible outcomes are (3, 6), (4, 5), (5, 4), (6, 3), each

with conditional probability 1
4
. The conditional expectation of the product is 1

4
(18 + 20 + 20 + 18) = 19. The

conditional expectation of each roll is 1
4
(3+4+5+6) = 4.5 and 4.52 = 20.25, so the conditional expectation of the

product is not the product of condtional expectations, even though the random variables started out independent.
(b) (i) E[ 1

X1
] = 1

6
( 1
1
+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
) ≈ 0.41, where as 1/E[X1] = 1/3.5 ≈ 0.29. Not equal.

(ii) By total expectation, E[X1/X2] =
∑6

i=1 E[X1/X2 | X1 = i]P[X1 = i]. Since E[X1/X2 | X1 = i] = iE[1/X2],

E[X1/X2] =
1
6
E[1/X2]

6∑

i=1

i = E[X1]E[1/X2] ≈ 1.43.

E[X1]/E[X2] = 1. Not equal.
(iii) In (ii) we showed that E[X1/X2] = E[X1]E[1/X2].

Exercise 20.7. The insight to solving problems like this is to “reparameterize” a sum, just like changing variables in
a double integral. That is, change the order in which the terms are added. Here, we let n = k+ i. The possible values
of n are 0, 1, . . . , r. Given n, the possible values of k are 0, 1, . . . , n; and given n, k fixes i = n− k. Therefore,

r∑

k=0

r−k∑

i=0

f(k, i) =
r∑

n=0

n∑

k=0

f(k, n− k).

The identity holds for any f(k, i); every term on the left is accounted for on the right and vice-versa. Using this
identity,

r∑

k=0

r−k∑

i=0

(−1)i

k!i!
=

r∑

n=0

n∑

k=0

(−1)n−k

k!(n−k)!
=

r∑

n=0

(−1)n

n!

n∑

k=0

n!
k!(n−k)!

(−1)k =
r∑

n=0

(−1)n

n!

n∑

k=0

(
n
k

)
(−1)k.

By the Binomial theorem,
∑n

k=0

(
n
k

)
(−1)k = (−1 + 1)n = 0, unless n = 0, which contributes (−1)0/0! = 1.

Exercise 20.8.
(a) Year 1 is always a record-breaker (there is no record to break), so P[X1 = 1] = 1.

For t ≥ 2, we use total probability with n cases (y1, y2, . . . , yn) for the temperature in year t, and P[Y = yi] =
1
n
:

P[Xt = 1] =
n∑

i=1

P[Xt = 1|Y = yi] · P[Y = yi] = 1
n

n∑

i=2

P[Xt = 1|Y = yi], (30.1)

(b) The temperature yi is a record-breaker y1, . . . , yi−1 are lower. This occurs with probability (i− 1)/n. P[Xt = 1 |
Yt = yi] is the probability that every prior year has a temperature lower than yi, which by independence is

P[year 1< yi and · · · and year t− 1 < yi] = P[year 1< yi]× · · · × P[year t− 1 < yi] =
(
i−1
n

)t−1
.

(c) We can now compute P[Xt = 1] from (30.1),

P[Xt = 1] = 1
n

n∑

i=2

(
i−1
n

)t−1
= 1

n

n−1∑

i=1

(
i
n

)t−1
(30.2)

In the last expression, we just changed the summation index i to go from 1 to n− 1.
(d) The number of records is X = X1 +X2 + · · ·+XT = 1+

∑T
t=2 Xt. We used X1 = 1. By linearity of expectation,

E[X] = 1 +
T∑

t=2

E[Xt]
(a)
= 1 + 1

n

T∑

t=2

n−1∑

i=1

(
i
n

)t−1 (b)
= 1 + 1

n

n−1∑

i=1

T∑

t=2

(
i
n

)t−1
.

In (a) we used (30.2) and E[Xt] = P[Xt = 1] because Xt is Bernoulli; in (b) we reversed summations, which you
can always do for finite sums (you can add terms in any order). The sum with respect to t is a geometric series,

T∑

t=2

(
i
n

)t−1
= i

n

T−2∑

t=0

(
i
n

)t
= i

n
·
(

1−(i/n)T−1

1−i/n

)

= i
n−i
·
[

1−
(

i
n

)T−1
]

.

We now have our expression for E[X], E[X] = 1 + 1
n

∑n−1
i=1

i
n−i

[

1−
(

i
n

)T−1
]

.
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(e) When T →∞, i/n→ 0 because i < n. So, E[X]→ 1 + 1
n

∑n−1
i=1

i
n−i

and

1 + 1
n

n−1∑

i=1

i
n−i

= 1 + 1
n

n−1∑

i=1

(
n

n−i
− 1
)

= 1− n−1
n

+
n−1∑

i=1

1
n−i

= 1
n
+ 1

n−1
+ · · ·+ 1

1
= Hn.

(f) When n ≈ 200, we expect about H200 ≈ 5.88 records over history.

(g) The model in Example 20.9 assumes arbitrarily precise temperatures, so the highs are all distinct and the number
of records grows as lnT . With finite precision, there are only a finite number n of possible highs, depending on
the level of precision. There cannot be more than n records, and on average one observes O(lnn) records.

Exercise 20.9.
(a) Let Xi indicate if i is picked. P[Xi = 0] = (1− 1/n)m (by independence, because i is not picked with probability

1− 1/n), so E[Xi] = 1− (1− 1/n)m. The number of distinct elements is X = X1 + · · ·+Xn. By linearity,

E[X] =
n∑

i=1

E[Xi] = n (1− (1− 1/n)m) = n− n (1− 1/n)m .

(b) Let Xi indicate that white ball i is picked, i = 1, . . . , a. There are
(
a+b
k

)
ways to choose k balls (no replacement),

each equally likely. If ball i is not picked, there are
(
a+b−1

k

)
ways. So, P[Xi = 0] =

(
a+b−1

k

)
/
(
a+b
k

)
= 1− k/(a+ b)

and E[Xi] = k/(a+ b). The number of white balls picked is X = X1 + · · ·+Xa. By linearity of expectation,

E[X] =
a∑

i=1

E[Xi] = ak/(a+ b).

(c) Getting expectations from the PDF is hard. We need the PDF, which requires counting. Then, we compute the
expectation, a heavy duty summation. Why go through the effort? Because the PDF contains more information.
What if you wanted to know how large m should be to see at least half the objects in part (a)?

(a) We need P (k) = probability that k distinct elements are sampled. There are nm m-sequences of the n objects.
How many of these contain exactly k distinct objects?

First choose the k elements to sample in
(
n
k

)
ways. Now from these elements, construct your m-sequence, with

the condition that each of the k elements are used at least once. The number of m-sequences of the k objects
is km. Let Ai be the sequences that do not use element i. The number of sequences using all k elements is
km − |A1 ∪A2 ∪ · · · ∪Ak|. Since |ℓ-way intersection of Ai| = (k − ℓ)m, by inclusion-exclusion,

|A1 ∪A2 ∪ · · · ∪Ak| =
k∑

ℓ=1

(−1)ℓ+1
(
k
ℓ

)
(k − ℓ)m.

km −∑k
ℓ=1(−1)ℓ+1

(
k
ℓ

)
(k − ℓ)m =

∑k
ℓ=0(−1)ℓ

(
k
ℓ

)
(k − ℓ)m sequences use all k objects. Dividing by nm gives

P (k) =
(
n
k

) k∑

ℓ=0

(−1)ℓ
(
k
ℓ

) (
k−ℓ
n

)m
=
(
n
k

) k∑

ℓ=0

(−1)k−ℓ
(
k
ℓ

) (
ℓ
n

)m
,

where k = 1, 2, . . . , n. The second expression changes summation index to k − ℓ and uses
(

k
k−l

)
=
(
k
l

)
. Note

that if k > m, then P (k) should be 0 and this is indeed the case.

Lemma 30.7. If k > m, then
k∑

ℓ=0

(−1)ℓ
(
k
ℓ

)
ℓm = 0.

Proof. Strong induction on m. When m = 0,
∑k

ℓ=0(−1)ℓ
(
k
ℓ

)
= (1 − 1)k = 0. For m ≥ 0 assume

∑k
ℓ=0(−1)ℓ

(
k
ℓ

)
ℓx = 0 for all x ≤ m and k > x. Consider

∑k
ℓ=0(−1)ℓ

(
k
ℓ

)
ℓm+1 with k > m + 1. Since m ≥ 0,

the first term is 0, so we have
k∑

ℓ=1

(−1)ℓ
(
k
ℓ

)
ℓm+1 =

k∑

ℓ=1

(−1)ℓℓ
(
k
ℓ

)
ℓm =

k∑

ℓ=1

(−1)ℓk
(
k−1
ℓ−1

)
ℓm.

(We used ℓ
(
k
ℓ

)
= k

(
k−1
ℓ−1

)
.) Summing from 0 to k − 1 instead of 1 to k, we get

−k
k−1∑

ℓ=0

(−1)ℓ
(
k−1
ℓ

)
(ℓ+ 1)m = −k

k−1∑

ℓ=0

(−1)ℓ
(
k−1
ℓ

) m∑

i=0

(
m
i

)
ℓi = −k

m∑

i=0

(
m
i

) k−1∑

ℓ=0

(−1)ℓ
(
k−1
ℓ

)
ℓi.

We used the Binomial theorem for (ℓ+1)m. In the last step, we change the order of summing. Since k > m+1,
k − 1 > m and the right sum is zero for i ∈ {0, . . . ,m} by the induction hypothesis, concluding the proof.

Using this lemma, we compute E[X] as
∑n

k=1 kP (k) without regard to m because if k > m then P (k) = 0.
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Exercise: We know that
∑n

k=1 P (k) = 1 since it is a PDF (prove it). This task is advanced. We want
n∑

k=1

kP (k) =
n∑

k=1

(k − n+ n)P (k)

= n−
n∑

k=1

(n− k)P (k) use:
n∑

k=1

P (k) = 1

= n−
n∑

k=1

k∑

ℓ=1

(−1)k−ℓ(n− k)
(
n
k

)(
k
ℓ

)
( ℓ
n
)m

= n−
n∑

k=1

k∑

ℓ=1

(−1)k−ℓ(n− k)
(
n
ℓ

)(
n−ℓ
n−k

)
( ℓ
n
)m use:

(
n
k

)(
k
ℓ

)
=
(
n
ℓ

)(
n−ℓ
n−k

)

= n−
n∑

ℓ=1

n∑

k=ℓ

(−1)k−ℓ(n− k)
(
n
ℓ

)(
n−ℓ
n−k

)
( ℓ
n
)m use:

n∑

k=1

k∑

ℓ=1

=
n∑

ℓ=1

n∑

k=ℓ

= n−
n∑

ℓ=1

n−1∑

k=ℓ

(−1)k−ℓ(n− ℓ)
(
n
ℓ

)(
n−ℓ−1
n−k−1

)
( ℓ
n
)m

In the last step we used (n− k)
(
n−ℓ
n−k

)
= (n− ℓ)

(
n−ℓ−1
n−k−1

)
and dropped the term with k = n because it is zero.

Now move all terms involving only ℓ outside the inner sum,
n∑

k=1

kP (k) = n−
n∑

ℓ=1

(−1)−ℓ(n− ℓ)
(
n
ℓ

)
( ℓ
n
)m

n−1∑

k=ℓ

(−1)k
(
n−ℓ−1
n−k−1

)

= n−
n∑

ℓ=1

(−1)−ℓ(n− ℓ)
(
n
ℓ

)
( ℓ
n
)m

n−1−ℓ∑

i=0

(−1)n−1−i
(
n−ℓ−1

i

)

= n−
n∑

ℓ=1

(−1)n−1−ℓ(n− ℓ)
(
n
ℓ

)
( ℓ
n
)m

n−1−ℓ∑

i=0

(−1)i
(
n−ℓ−1

i

)

The inner alternating sum of Binomial coefficients is 0, unless n− 1− ℓ = 0 in which case the inner sum is 1.
Therefore, the entire sum for the expectation collapses to one term, the one with ℓ = n− 1:

n∑

k=1

kP (k) = n− (−1)n−1−(n−1)(n− (n− 1))
(

n
n−1

) (
n−1
n

)m
= n− n

(
1− 1

n

)m
.

That’s the same answer we got by using indicators, but what a computation. Wow!
(b) There are

(
a+b
k

)
ways to choose k balls. If i are white, there are

(
a
i

)
ways to choose the i white balls and

(
b

k−i

)
ways to choose the remaining balls as black. So, P (i) =

(
a
i

)(
b

k−i

)/(
a+b
k

)
.

Exercise: We know that
∑n

k=1 P (k) = 1 since it is a PDF. Prove it. To prove that
∑

k P (k) = 1 you need a
famous identity known as Vandermonde convolution, which is an application of the Binomial theorem:

a+b∑

k=0

(
a+b
k

)
xk = (1 + x)a+b = (1 + x)a(1 + x)b

=
a∑

i=0

(
a
i

)
xi

b∑

j=0

(
b
j

)
xj

=
a∑

i=0

b∑

j=0

(
a
i

)(
b
j

)
xi+j let k = i+ j,

=
a+b∑

k=0

αkx
k, where αk =

a∑

i=0

(
a
i

)(
b

k−i

)

On the left is a polynomial in x. On the right is also a polynomial in x. Two polynomials are equal if and
only if their coefficients match. That is, αk =

(
a+b
k

)
.

Lemma 30.8 (Vandermonde convolution).
a∑

i=0

(
a
i

)(
b

k−i

)
=
(
a+b
k

)
.

Now for the expectation. We need
∑a

i=0 iP (i) =
∑

i i
(
a
i

)(
b

k−i

)/(
a+b
k

)
:

a∑

i=0

i
(
a
i

)(
b

k−i

)
=

a∑

i=1

i
(
a
i

)(
b

k−i

)
(i = 0 term is zero)

=
a∑

i=1

a
(
a−1
i−1

)(
b

k−i

)
use: i

(
a
i

)
= a

(
a−1
i−1

)

= a
a−1∑

i=0

(
a−1
i

)(
b

k−1−i)

)
(sum over i = 0, . . . , a− 1)

= a
(
a+b−1
k−1

)
. (Vandermonde convolution)

Finally, E[X] = a
(
a+b−1
k−1

)/(
a+b
k

)
= ak

a+b
, as we got before with indicators.

Exercise 20.10. A permutation σ of the vertices is a potential ranking. Let Xσ indicate if it is a ranking. Then,
P[Xσ = 1] = 1/29 because there are 9 edges in the path and each edge will be oriented correctly with probability 1/2.
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So E[Xσ] = 1/29. The number of rankings is
∑

σ Xσ and so the expected number of rankings is

E[number of rankings] =
∑

σ

E[Xσ] =
1

29

∑

σ

1 =
10!

29
= 7087.5.

This formula can be generalized to n!/2n−1 for a random tournament with n vertices.

An interesting corollary is that some tournament on 10 vertices has at least 7088 rankings. Do you see why?

Chapter 21

Pop Quiz 21.1. E[∆] = −5
36

+ −4
18

+ −3
12

+ −2
9

+ −1×5
36

+ 0
6
+ 1×5

36
+ 2

9
+ 3

12
+ 4

18
+ 5

36
= 0. In general,

E[∆] = E[X− µ] = E[X]− E[µ] = µ− µ = 0.

Exercise 21.2.
(a) (i) To get the table on the right, we use E[X] = 3 1

2
.

σ2 = E[∆2] = 1
24
(25 + 9 + 1 + 1 + 9 + 25) = 35/12

std. deviation = σ =
√

35/12.

X 1 2 3 4 5 6

∆2 25
4

9
4

1
4

1
4

9
4

25
4
← (X− 3 1

2
)2

PX
1
6

1
6

1
6

1
6

1
6

1
6

(ii) We show the possible outcomes for the average of two dice, with the PDF. We know that E[average] = 3 1
2
.

X 1 1 1
2

2 2 1
2

3 3 1
2

4 4 1
2

5 5 1
2

6

∆2 25
4

16
4

9
4

4
4

1
4

0
4

1
4

4
4

9
4

16
4

25
4

← (X− 7
2
)2

PX
1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

Note that the probabilities do not change. It is just the random variable that changed.

σ2 = E[∆2] = 1
4×36

(25 + 32 + 27 + 16 + 5 + 0 + 5 + 14 + 27 + 32 + 25) = 35
24

std. deviation =
√

35/24.

(b) The mean is p, so the deviations are

∆ =

{

−p prob = 1− p;

1− p prob = p.
→ σ2 = (1− p)p2 + p(1− p)2 = p(1− p).

The standard deviation is σ =
√

p(1− p).

(c) µ = 7 and σ = 2.52 so the event of interest is 5 ≤ X ≤ 9. So, P[µ− σ ≤ X ≤ µ+ σ] = 1
9
+ 5

36
+ 1

6
+ 5

36
+ 1

9
= 2

3
.

Exercise 21.3.
(a) (i) E[X2] = 1

6
(12 + · · ·+ 62) = 15 1

6
; E[X2]− E[X]2 = 15 1

6
− (3 1

2
)2 = 35

12
✓

(ii) E[X2] = 22·1+32·2+···+72·6+82·5+···+122·1
4×36

= 329
24

; E[X2]− E[X]2 = 329
24
− 49

4
= 35

24
✓

(b) E[X2] = (1− p)× 02 + p× 12 = p; E[X2]− E[X]2 = p− p2 = p(1− p) ✓

Exercise 21.4. By linearity, E[Y] = E[a+ bX] = a+ bE[X]. The deviations in Y are

∆Y = Y − E[Y] = a+ bX− a+ bE[X] = b(X− E[X]) = b∆X.

So, σ2(Y) = E[∆2
Y] = E[b2∆2

X] = b2E[∆2
X] = b2σ2(X).

Let X be a Bernoulli. The drunk’s step is Y = 2X− 1. By Theorem 21.3, σ2(Y) = 22σ2(X) = 4p(1− p).

Exercise 21.5. This exercise requires careful manipulation of sums that are squared.

σ2
( n∑

i=1

aiXiBig) = E

[( n∑

i=1

aiXi

)2]

− E

[ n∑

i=1

aiXi

]2

(definition)

= E

[ n∑

i=1

aiXi

n∑

j=1

ajXj

]

−
( n∑

i=1

aiE[Xi]
)2

(linearity)

=
n∑

i=1

n∑

j=1

aiajE [XiXj ]−
n∑

i=1

n∑

j=1

aiajE[Xi]E[Xj ] (linearity)

=
n∑

i=1

a2
i (E

[
X2

i

]
− E[Xi]

2)−
n∑

i=1

n∑

j 6=1

aiaj(E [XiXj ]− E[Xi]E[Xj ]
︸ ︷︷ ︸

0 for independent random variables

)

=
n∑

i=1

a2
iσ

2(Xi)

The key step is to break the double sum into i = j (XiXj = X2
i ) and i 6= j (Xi and Xj are independent).
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Exercise 21.6. X = X1+X2+X3+X4+X5, where Xi are independent waiting times each with variance (1−p)/p2 = 6.
So σ2(X) = 5× 6 = 30.

A Monte Carlo with 100,000 experiments gave average wait time of 14.98 with variance 29.99, matching the theory.

Pop Quiz 21.7. X1 = 1 ∧X2 = 0→ X3 = 0; X1 = 0 ∧X2 = 0→ X3 = 0 or 1.

Exercise 21.8. X =
∑n

i=1 Xi and E[X2] = E

[ n∑

i=1

n∑

j=1

XiXj

]

=
n∑

i=1

n∑

j=1

E[XiXj ] =
n∑

i=1

E[X2
i ] +

n∑

i=1

n∑

j 6=1

E[XiXj ].

(The second step uses linearity of expectation.) Xi is a Bernoulli with probability p = 1
n

so E[X2
i ] = p. Since XiXj is

a Bernoulli with probability p = P[Xi = 1 ∧Xj = 1] = (n− 2)!/n! = 1/n(n− 1), we have E[XiXj ] = 1/n(n− 1) and

E[X2] =
n∑

i=1

1
n
+

n∑

i=1

n∑

j 6=1

1
n(n−1)

= 1
n
× n+ 1

n(n−1)
× n(n− 1) = 2.

Since E[X] = 1, we have σ2(X) = E[X2]− E[X]2 = 2− 1 = 1.

Exercise 21.9.
(a) A fair dice roll is a U[6], so σ2 = 1

12
(62 − 1) = 35/12. Since the n dice are independent, the variance of the sum is

the sum of the variances and so σ2(sum of n dice) = 35n/12.
(b) The expected sum is µ(n) = 7n/2.
(c) Using (a) and (b),

µ± 3σ = 7n/2± 3
√

35n/12.

In the figure, the 3σ-envelope is gray. The max (6n) and min (n)
are dotted lines, and the mean µ is the solid line.

n

3
-s

ig
m

a
ra

n
ge

max

min

1 2 3 4 5 6 7

10

20

30

(d) The bound is not trivial when 7n/2+3
√

35n/12 ≤ 6n. Since n is
an integer, this means n ≥ 5.

Pop Quiz 21.10. Since X is a positive random variable, and E[X] = 1, P[X ≥ 50] ≤ 1/50.

Pop Quiz 21.11. Since µ = 1 and σ = 1,

P[X ≥ 50] = P[X− 1 ≥ 49] ≤ P[|X− 1| ≥ 49] = P[|X− µ| ≥ 49σ] ≤ 1/492 ≈ 0.00042.

The first inequality is because X − 1 ≥ 49 → |X − 1| ≥ 49; the second uses Chebyshev’s Inequality. The probability
that at least 50 men get the correct hat is the sum of P (k) for k = 50 to 100.

P[X ≥ 50] =
100∑

k=50

1

k!

100−k∑

i=0

(−1)i
i!
≤ 51

50!
≈ 0,

because, for k ∈ [50, 100],
∑100−k

i=0
(−1)i

i!
≤ 1 and 1/k! ≤ 1/50!. (Much smaller than the Chebyshev or Markov bounds.)

Exercise 21.12. X = X1 + · · ·+Xn, where Xi is Bernoulli with probability p = 1/2.
(a) By linearity, E[X] = np = 100 × 1

2
= 50. For the variance, σ2(Xi) = p(1 − p). By independence and linearity,

σ2(X) = np(1− p) = n× 1
4
= 25 and σ = 5.

(b) Since X has a Binomial PDF, P[40 ≤ X ≤ 60] =
∑60

k=40

(
100
k

)
( 1
2
)k( 1

2
)100−k = 1

2100

∑60
k=40

(
100
k

)
≈ 0.9648.

(c) P[40 ≤ X ≤ 60] = P[|X− µ| < 10] = P[|X− µ| < 2σ] ≥ 1− 1
22

= 0.75.

Exercise 21.13.
(a) P[|X− µ| ≥ tσ] = P[X− µ ≥ tσ] + P[X− µ ≤ −tσ]. Using (21.7),

P[X− µ ≤ −tσ] = P[X ≤ µ− tσ] = FX(µ− tσ) ≈ φ
(√

n(µ−tσ)
σ

)

= φ(−t√n) = 1− φ(t
√
n).

P[X− µ ≥ tσ] = 1− P[X− µ ≤ tσ] = 1− FX(µ+ tσ) ≈ 1− φ(t
√
n).

Adding, these two equations gives the desired result: P[|X− µ| ≥ tσ] ≈ 2(1− φ(t
√
n)).

(b) When t
√
n is large, φ(t

√
n) ≈ 1− e−

1
2
nt2/
√
2πnt2. Therefore, P[|X− µ| ≥ tσ] ≈ 2e−

1
2
nt2/
√
2πnt2.

Chapter 22

Pop Quiz 22.1.

(a) (i) An injection maps A to a three-ordering of B. There are 4× 3× 2 = 24 3-orderings. (ii) Since |A| < |B|, there
are no surjections. (iii) Similarly, there are no bijections.

(b) (i) |A| ≤ |B| (ii) It is not the case that |A| ≤ |B|, which means |A| > |B|.
(c) (i) |A| ≥ |B| (ii) It is not the case that |A| ≥ |B|, which means|A| < |B|.
(d) The injection means |A| ≤ |B|. No bijection means |A| 6= |B|. Together this means |A| < |B|.

sol – 65



30. Solutions to Quizes & Exercises

Exercise 22.2.
(a) 1 7→ 2, 2 7→ 3, 3 7→ 4 is a bijection from A to B so |A| = |B|.

(b) Suppose n ≤ k, then ai 7→ bi is an injection from A to B, so |A| ≤ |B|.
Suppose |A| ≤ |B|: there is an injection f : A 7→ B. We prove by induction on n that n ≤ k. If n = 1, then B
contains f(a1), so k ≥ 1. Suppose the claim holds for n. Consider any set A with n+1 elements. Let f(an+1) = bℓ.
Relabel the elements of B so that bℓ → bk and bk → bℓ (swap bℓ and bk). Now, f maps an+1 7→ bk. If there was an
element ar which mapped to bk under f , ar now maps to bℓ. Now remove bk from B and an+1 from A. The new
f is an injection from a1, . . . , an to b1, . . . , bk−1. By the induction hypothesis, n ≤ k − 1 or n+ 1 ≤ k.

(c) If |A| ≤ |B| and |B| ≤ |A|, by (b),
|A| ≤ |B| → n ≤ k
|B| ≤ |A| → k ≤ n

}

→ n = k. So, ai 7→ bi is a bijection and |A| = |B|.

(d) If A ⊆ B, then for a ∈ A, f(a) = a is an injection from A to B. Therefore, |A| ≤ |B|.

(e) No: in (a), A 6⊆ B and B 6⊆ A. When any two sets are comparable, the relationship is a total order. The subset
relationship does not give a total order. You can always compare two sets using the injection relationship. Either
A

inj7→B or B
inj7→A, so either |A| ≤ |B| or |B| ≤ |A|, which means size comparison using injection gives a total order.

Pop Quiz 22.3. Surely, there are twice as many natural numbers as even numbers or odd numbers, and far more
than squares? Nope. The cardinalities of all four sets are the same. Here is a bijection from E to N, f(x) = x/2:

2

1

4

2

6

3

8

4

10

5

12

6

14

7

16

8

18

9

20

10

E :

N :

· · ·

· · ·

Simularly, f(x) = (x + 1)/2 and f(x) =
√
x are bijections from respectively O and S to N. Note that, in this case,

E,O, S are all subsets of N, hence |E| ≤ | N |, |O| ≤ | N |, |S| ≤ | N |. It suffices to find injections from N. Injections
from N to E,O, S are respectively f(k) = 2k, f(k) = 2k − 1 and f(k) = k2 (these happen to be bijections too).

Exercise 22.4. First we show f is 1-to-1. Suppose not. Let n1 6= n2 and f(n1) = f(n2). So,

1
4
(1 + (−1)n1(2n1 − 1)) = 1

4
(1 + (−1)n2(2n2 − 1)) → (−1)n1(2n1 − 1) = (−1)n2(2n2 − 1).

The sign of both sides must be the same, so (−1)n1 = (−1)n2 and we conclude 2n1 − 1 = 2n2 − 1. That is, n1 = n2,
a contradiction. So, f is an injection. Now we show that f is onto. Given z ∈ Z, we must find n for which f(n) = z.

z > 0 : n = 2z → f(n) = 1
4
(1 + (−1)2z(4z − 1)) = z;

z ≤ 0 : n = 2|z|+ 1 → f(n) = 1
4
(1 + (−1)2|z|+1(4|z|+ 1)) = −|z| = z.

Therefore, f is onto, and hence a bijection from N to Z.

Pop Quiz 22.5. f is an injection, so two elements of A cannot map to the same element of N.

Pop Quiz 22.6. Yes (every integer has a unique list position). Mathematically, one can show z1 6= z2 → f(z1) 6= f(z2).
The positions of {0,+3,−3,+6,−6} are {1, 6, 7, 12, 13}.
Exercise 22.7.
(a) The zig-zag path moves out one square at a time. Given z/n ∈ Q, the column in which z appears is c = 2z if z > 0

and c = 2|z|+1 if z ≤ 0. We want to know when the path hits the cth column and nth row. This entry will be hit
when traversing the column and row for the square of size max(n, c). If z > 0 (c even), you come down the RHS
of the square; if z ≤ 0 (c odd), you go up the RHS of the square. So, there are four cases:

n ≥ c; n even i = (n− 1)2 + 2n− c = n2 − c+ 1

n ≥ c; n odd i = (n− 1)2 + c

c > n; c even i = (c− 1)2 + n

c > n; c odd i = (c− 1)2 + 2c− n = c2 − n+ 1

(b) What is the list position of 0
2
? All positions are used by rationals with denominator 1.

(c) The sets are countable, so can be listed {A1, A2, A3, . . . , }. Each set is countable, so too can be listed, for example:
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A1 = {A1,1, A1,2, A1,3, . . .}. So, all the elements in A1∪A2∪A3∪ · · · can be put in a grid as follows (similar to Q):

N

N

A1,1

A2,1

A3,1

A4,1

A5,1

A1,2

A2,2

A3,2

A4,2

A5,2

A1,3

A2,3

A3,3

A4,3

A5,3

A1,4

A2,4

A3,4

A4,4

A5,4

A1,5

A2,5

A3,5

A4,5

A5,5

A1,6

A2,6

A3,6

A4,6

A5,6

A1,7

A2,7

A3,7

A4,7

A5,7

1 2 3 4 5 6 7 · · ·

A1

A2

A3

A4

A5

...

· · ·

· · ·

· · ·

· · ·

· · ·
...

...
...

...
...

...
...

. . .

The path of arrows starting at A1,1

lists the elements in the union. So,
the union is countable.

(d) We have not shown R is countable (it’s not), so we don’t know if we can list the columns.

Exercise 22.8.
(a) No: b̄, the complement of the diagonal, is infinite, and is not required to be in the list.
(b) Countable means you must produce a fixed list (injection to N). Cantor diagonalization shows that there is no

injection from B∞ to N. Adding b̄ won’t help because the complement of the new diagonal won’t be in the list.
(c) Every infinite binary string is a subset of N. The ones in the string identify the elements of N. This is a bijection

between the subsets and infinite binary strings, so |subsets of N| = |B∞|.
(d) Given a finite subset, construct a finite binary string for the subset by taking its infinite binary string and truncating

it at the last 1. For example {1, 3, 7} 7→ 1010001. Two different subsets will have 1’s in different positions and
so the truncated finite binary strings will be different. We have an injection from finite binary strings to B which
proves that |{finite binary strings}| ≤ |B| ≤ | N |. So, the finite binary strings are countable.

Exercise 22.9.
(a) For any string that is eventually zero, construct a finite binary string by truncating it at the last 1. Two different

strings which are eventually zero have 1s in different positions, and so will truncate to different finite strings.
Hence, we have an injection from the strings which are eventually zero and finite binary strings. So,

|{strings which are eventually zero}| ≤ |{finite binary strings}| ≤ | N |.
(b) An infinite string is either eventually zero or it is not, so (by definition) B∞ = B0

∞ ∪ B∗
∞.

(c) Suppose B∗
∞ is countable. In (a) we showed that B0

∞ is countable, so B∞ = B0
∞ ∪ B∗

∞ is a union of countable sets
and, by Theorem 22.3, is countable. That contradicts Theorem 22.6, hence B∗

∞ is uncountable.
(d) Let a1a2a3 · · · and b1b2b3 · · · be two different infinite strings in B∗

∞. We prove that they map to different values
in [0, 1] which proves the mapping is an injection and therefore |B∗

∞| ≤ |[0, 1]|.
Let xa =

∑∞
i=1 ai2

−i and xb =
∑∞

i=1 bi2
−i. Since ai 6= bi for all i, by well-ordering, there is some minimum k for

which ak 6= bk. Suppose ak = 1 and bk = 0. We have:

xa − xb = 2−k +
∞∑

i=k+1

ai2
−i −

∞∑

i=k+1

bi2
−i.

Since a is not eventually zero, the ai for i ≥ k + 1 cannot all be zero, so
∑∞

i=k+1 ai2
−i > 0. Setting bi = 1 for all

i ≥ k + 1 gives
∑∞

i=k+1 bi2
−i ≤∑∞

i=k+1 2
−i = 2−k. Therefore, xa − xb > 2−k + 0 − 2−k = 0 and xa 6= xb as was

to be shown. The same argument works if ak = 0 and bk = 1.

Chapter 23

Pop Quiz 23.1.
(a) Lpush contains odd numbers, or strings that end in 1.
(b) Start the string with a the state of the light (1 on, 0 for off). The rest of the string is the binary string encoding

the number of pushes. Lpush contains strings whose first and last bit are different, Lpush = {01, 10, 001, 110, . . .}.
Pop Quiz 23.2. Strings with more 1’s than 0’s in which every prefix has at least as many 1’s as 0’s.
(a) Open. (b) Closed. (c) Closed (not a valid sequence of walk-on/walk off). (d) Open. (e) Open. (f) Closed.
(g) Closed (not a valid sequence).

Pop Quiz 23.3.The graph represented by the string is shown on the right.
The distance between vertices 1 and 5 is three, so the answer is no .

1
2

3 4

5
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Exercise 23.4.
(a) Starting from 1, you get your answer after D decision problems, for lengths 1, 2, . . . , D. To handle the case when

there is no path, you answer ∞ after n decision problems, the number of vertices in the network.
(b) Use distances 1, 2, 4, . . ., doubling each time. Suppose the first yes is at 2k using k+1 questions. Then, 2k−1 < D ≤

2k. Perform a binary search in the interval [2k−1, 2k]. Binary search needs O(log2(length of interval)) questions.
The length of the interval is 2k−2k−1 = 2k−1. So the total number of questions is at most k+1+O(log2(2

k−1)) ∈
O(k). Since 2k−1 < D, it follows that k < 1 + log2 D ∈ O(log2 D) and you need only O(log2 D) questions.

Pop Quiz 23.5. The yes -set ⊆ {finite binary strings}, so it’s countable and hence can be listed.

Exercise 23.6.
(a) Lbalanced = {ε, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, . . .}
(b) L1,L1 ∪ L2,L1 ∩ L2 are all collections of finite binary strings, so they are computing problems.
(c) Finite binary strings can be listed, Σ∗ = {w1, w2, . . . , }. A computing problem L (subset of Σ∗) can be identified

by an infinite binary sequence, where the 1’s in the sequence identify the strings in L. This injection from infinite
binary sequences (which are uncountable) to computing problems means computing problems are uncountable,

uncountable = |{infinite binary sequences}| ≤ |{computing problems}|.

Pop Quiz 23.7.
(a) (i) {01, 011, 01111}. (ii) {ε, 00, 0000}. (iii) {00, 000, 001, 100, 0000, 0001, 0010, 0011, 1000, 1001, 0100, 1000, 1100}.
(b) {0, 1}∗1 or ∗1.
(c) ∗1 ∗ 1 ∗ 1∗ describes strings with at most two 1s. Here are two regular expressions without using complement.

{0}∗ •{ε, 1} •{0}∗ •{ε, 1} •{0}∗ and ({0}∗) ∪ ({0}∗ •1 •{0}∗) ∪ ({0}∗ •1 •{0}∗ •1 •{0}∗)

Pop Quiz 23.8. ε → 00, 11 → 0000, 1001, 0110, 1111
0 → 000, 101 → 00000, 10001, 01010, 11011
1 → 010, 111 → 00100, 10101, 01110, 11111

Exercise 23.9.
(a) L0n1k = 0∗1∗. If you find a regular expression for L0n1n , let us know. The challenge is enforcing equality.
(b) There is no regular expression for L0n1n , yet it’s easy to describe recursively. (Minimality is there by default.)
L0n1k : 1 ε ∈ L0n1k .

2 w ∈ L0n1k → 0 •w ∈ L0n1k ,
w ∈ L0n1k → w •1 ∈ L0n1k .

L0n1n : 1 ε ∈ L0n1n .
2 w ∈ L0n1n → 0 •w •1 ∈ L0n1n .

Pop Quiz 23.10.
(a) All these strings are in Lpush. The states traversed, ending in the resting state are:

(i) q0q1q1q1q1 (ii) q0q0q1q0q1 (iii) q0q1q0q0q1 (iv) q0q1q1q1q0q0q0q1 (v) q0q1q0q0q0q0q0q0q1q1

(b) None of these strings are in Lpush. The states traversed, ending in the resting state are:
(i) q0q1q0 (ii) q0q0q0q1q0 (iii) q0q1q0q1q0 (iv) q0q1q1q1q1q1q0 (v) q0q0q0q0q0q0q1q1q0

Chapter 24

Pop Quiz 24.1.

(a) (i) q0|⊲0000
M7→ q1|0⊲000

M7→ q1|00⊲00
M7→ q1|000⊲0

M7→ q1|0000⊲
(ii) q0|⊲1000

M7→ q2|1⊲000
M7→ q2|10⊲00

M7→ q2|100⊲0
M7→ q2|1000⊲

(iii) q0|⊲0001
M7→ q1|0⊲001

M7→ q1|00⊲01
M7→ q1|000⊲1

M7→ q2|0001⊲
(iv) q0|⊲0100

M7→ q1|0⊲100
M7→ q2|01⊲00

M7→ q2|010⊲0
M7→ q2|0100⊲

(v) q0|⊲0•k1•ℓ
M7→ q1|0⊲0•k−11•ℓ

M7→ q1|0•2⊲0•k−21•ℓ

...
M7→ q1|0•k⊲1•ℓ

M7→ q2|0•k1⊲1•ℓ−1

M7→ q2|0•k1•2⊲1•ℓ−2

...
M7→ q2|0•k1•ℓ⊲

(b) Non-empty string containing only 0’s.
(c) (i) yes (goes to q1 and stays). (ii) yes (stays in q1). (iii) no (cannot escape q2).

Exercise 24.2.
(a) When M processes a 1, it enters q2 and stays leaves, so M(w) = no if w contains a 1. If w = ε, then M stops in q0

and rejects. If w = 0•n for n > 0, then M enters q1 and never leaves, accepting. Therefore, L(M) = {0•n | n > 0}
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(b) (i) Strings with no 1’s: L(M) = {0}∗. (ii) Strings which are not only 0’s: L(M) = {0•n | n > 0}.
(iii) Strings with an even number of zeros (incuding no 0’s and ε). (iv) Strings with an odd number of zeros.
(v) L(M) = {ε, 0} (a finite language with just 2 yes -strings). (vi) Every string except ε and 0: L(M) = {ε, 0}.

Exercise 24.3.
(a) We give a construction that generalizes to any finite language. Let ℓ be the length of the longest string in L.

Construct the binary tree to depth ℓ corresponding to every binary string of length at most ℓ, as shown in the DFA
below. Every string of length at most ℓ leads the DFA to its unique state, which is a yes -state or not depending
on whether the string is in L. In the automaton below, the yes -states are s00, s000, s101, s111.

sε

e

s0

0

s00

0

s000

0

0,1

s001

1

0,1

s01

1

s010

0

0,1

s011

1

0,1

s1

1

s10

0

s100

0

0,
1

s101

1

0,1

s11

1

s110

0

0,1

s111

1

0,1

0,1

(b) One can generalize (a). Instead, we use induction on ℓ, the length of the longest string in L.

Base Cases:L = ∅ : q0

0,1

L = {ε} : q0 q1
0,1

0,1

Suppose a finite language with maximum string length at most ℓ can be solved by a DFA. Consider any language
L with maximum string length ℓ + 1. L has two types of strings: those starting with 0 and those starting with
1. So L = (0 •L0) ∪ (1 •L1) where L0 contains the suffixes of strings in L that start with 0 and L1 the suffixes of
the strings in L that start with 1. L0 and L1 are finite languages with maximum string length at most ℓ. By the
induction hypothesis, there are DFAs M0 and M1 that solve L0 and L1. We construct a DFA M for L as follows.

q0

r0

s0

M0

M1

M :

0

1

If a string starts with 0, the DFA transitions to r0, the start state of M0, runs M0 and accepts if and only the
suffix is in L0, i.e. if and only if the string is in L. The logic is similar for a string that starts with 1. So, M
accepts a nonempty string if and only if the string is in L. Lastly, if the empty string ε ∈ L, make q0 a yes -state.

Exercise 24.4.
(a) Strings in L1 ∩ L2 contain a zero and end in 1 so they are strings of the form: ∗0 ∗ 1.

From the start state, you wait for 0, transition to s1 and wait for
1. If you get 1, you must ensure it is the last bit. The DFA which
implements this logic is on the right.

s0 s1 s2

0 1

1 10

0

(b) Using product states, the DFA structure is exactly the same as for
the union L1 ∪ L2. However, the DFA should accept only the states
qisj where both qi is a yes -state of M1 and sj is a yes -state of
M2. The resulting DFA is on the right

q0s0 q0s1

q1s0 q1s1

1

0
0

1

0 1
1

0

Pop Quiz 24.5.
(a) L contains a string with a zero concatenated with a string ending in 1, which gives any string with a zero that

ends with 1. That is, ∗0 ∗ 1. So we can use the same DFA in Exercise 24.4(b).
(b) From Exercise 24.4(a), L = L1 ∩ L2. We can use the same DFA from Exercise 24.4(c).
(c) False. Consider any two L1,L2 with L1 ∩ L2 = ∅. For example, L1 = {0} and L2 = {1}.
Pop Quiz 24.6. In M ′

1, every zero toggles between q0 and q1. An odd number of 0’s leaves you in q1 which accepts.
Similarly, in M ′

2 the DFA toggles between q0 and q1 for every bit.
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Exercise 24.7.
(a) After processing 100, the automaton state is q0 or s1, and 101 remains to be processed.

(b) {q0}|⊲100101
M′′

7→ {q0}|1⊲00101
M′′

7→ {q1}|10⊲0101
M′′

7→ {q0, s1}|100⊲101
M′′

7→ {q0, s0}|1001⊲01
M′′

7→ {q1, s1}|10010⊲1
M′′

7→ {q0, s0, s1}|100101⊲

At the end of the computation the non-
deterministic automaton could be in either of
the states q0, s0 or s1.

We show the “computation-tree” on input 100101.
The automaton starts in q0 and processes the bits
10, transitioning to state q0 then q1. At the next 0,
there are two possible actions so the computation
branches. This happens each time the automaton
is in q1.

q0 q0

q0 q0

q1

q1

q1

s0 s0s1 s1

s11 0 0

1

1 0 1

0 1

At the end, there are three possible computation paths the automaton could have taken (3 final states).
(c) If s1 is one of the possible ending states, then there is a computation path that must have gone through q1 (prefix

in L1) and ended in s1 without re-entering q0 (suffix in L2), so M ′′ should accept. In this case the decision is yes .
(d) Construct a state for every non-empty subset of states in M ′′. We use the subset as state-label. The states are

{q0}, {q1}, {s0}, {s1}
{q0, q1}, {q0, s0}, {q0, s1}, {q1, s0}, {q1, s1}, {s0, s1}
{q0, q1, s0}, {q0, q1, s1}, {q0, s0, s1}, {q1, s0, s1}
{q0, q1, s0, s1}

For each “subset”-state, the DFA transitions to a subset of states for
each bit by considering all the possible ending states starting from
any of the possible starting states of the transition. Consider, for
example, state {q1, s1} and input bit 1. q1

1→{q1, s1} and s1
1→s0, so

{q1, s1} 1→ {q1, s0, s1}. The DFA accepts whenever s1 is in the set of
possible states. The full automaton is on the right. Though there
are 15 subset states, only 8 are reachable from the start state.
Our “principled” approach may not give the most efficient DFA. For
example, states {q1, s1}, {q0, s0, s1}, {q1, s0, s1} state {q1s0} can be
connected directly to are all accepting and only transition amongst
themselves, so they can all be merged into a single accepting state.

{q0}

{q1}

{q0, s1}

{q0, s0}

{q1, s1}

{q1, s0}

{q0, s0, s1}

{q1, s0, s1}

1

0 0

1

0

11

0
0

1

0

1

1

0
1

0

Exercise 24.8.
(a) L∗

1 = L•0
1 ∪L•1

1 ∪L•2
1 ∪ · · · where L•0

1 = {ε}. Since L1 contains all strings with
a 0, any string in L•k

1 for k ≥ 1 must contain a 0. That means L•k
1 ⊆ L1, hence

L∗
1 = {ε} ∪ L1. The DFA for L∗

1 is on the right,

s0 s1 s2

1 0

0,11

0

(b) Start with a DFA for L and convert it to a DFA for L∗. Using the method in
Exercise 24.3 gives a DFA for L = {1, 10}, shown on the right. To implment L∗,
from an accept state of L, we must restart the DFA as well as continue with the
current path. That is, for input 0, add an arrow to the state sǫ would transition
to for 0. Similarly, for input 1, add an arrow to where sǫ would transition. For
example, add a 0-arrow from s1 to e and a 1-arrow from s1 to s1. We get a
non-deterministic automaton for L+.

sε s1 s10

e

1 0

0,1
0

1

0,1

sε s1 s10

e

non-deterministic
automaton for L+

1
0

1

1

0,1
0

0,1

0,1

Let us emphasize that a non-deterministic automaton is an interesting machine in its own right. However, for our
purposes, it merely serves as an intermediate tool for getting at the DFA we need. One more small detail: since
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ε ∈ L∗, the non-deterministic automaton above only captures the non-empty strings in L∗ (often denoted L+). At
the end, we must augment the automaton to accept ε. We now use the subset-state method to get the DFA for
L+. We only show the subset-states that are used in the DFA, not all 15 subset-states.

{sε} {s1} {s1, e}

{s10, e}{e}

DFA for L+ 1 1

0
0

1

1

0

0

0,1

Lastly, to get the DFA for L∗, simply make the start state {sε} accepting.
(c) (i) {0, 1, 00, 10, 000, 100, 0000, 1000, 110, 111, 010, 011, 1010, 1100, 1011, 1110, 0010, 0100, 0011, 0110}

(ii) We use the same approach as in (b). From any accept state, we must allow the automaton to continue its
current path or “restart” from state q0 for the next bit. The only accept state is q1, so q1 should also transition to
wherever q0 transitions for bits 0,1. This gives the non-deterministic automaton for L(M)+.

q0 q1
non-deterministic
automaton for L(M)+

0,1

1
0,1

We use subset-states to get a DFA for L(M)∗. To accept ε, the start state accepting. The result is:

{q0} {q1} {q0, q1}DFA for L(M)∗
0,1

1

0

0 1

You will notice that this DFA accepts every string including ε: L(M)∗ = Σ∗. This is no surprise because the
Kleene star of any language that contains 0 and 1 is Σ∗. So, a much simpler solution for L(M)∗ is 0,1 .
We are not after the simplest solution. We are after a systematic solution.

Exercise 24.9. Let L1 contain strings with an even number of 1’s and L2 strings whose number of 1’s is divisible by
3. We first argue that L1 and L2 are regular, which means there are DFAs M1 and M2 to solve L1 and L2:

q0 q1M1:
1

1

0 0

q0 q1 q2M2:
1 1

1

0 0 0

We build L = L1 ∪ L2 using set operations on L1 and L2. By Theorem 24.2, L1 ∪L2 is regular because L1 and L2 are
(closure under union). Again, by Theorem 24.2, L1 ∪ L2 is regular (closed under complement). Therefore L is regular.

Pop Quiz 24.10. q0 q1 q3
1

0

0 1

0,1

Pop Quiz 24.11. The same proof used for Theorem 24.3 works. If the DFA has k states then for some 0 ≤ i < j ≤ k,
the DFA gives the same answer for 0•i1•i and 0•i1•j , but the first is balanced and the second is not, a contradiction.

Exercise 24.12.
(a) The start state is q0. It is an accept state if the input string is empty.

q0 → e: If the first bit is 1, transition to error, doing nothing to the stack.
q0 → q1: If the first bit is 0, push it onto the stack and transition to q1. (Step I.)
e → e: remain in the error state for any input (0, 1, ε) and stack symbol (0, 1,∅), doing nothing to the stack.
symbol. If the input is ε, the automaton stops and rejects.
q1 → q1: if input is 0 and stack is 0, push 0 onto the stack and remain in q1. (Step II.)

(b)

q0 q1 q2 q3

e

{1}
{∅

} →
{}

{0}{∅} → {push(0)}

{0}{0} → {push(0)}

{0, 1, ε}{0, 1,∅} → {}

{ε
}{

0
}
→

{}

{1}{0} → {pop()}

{1}{0} → {pop()}

{ε}{0} →
{}

{1}{∅} →
{}

{0}{0,∅} →
{}

{ε}{∅} → {}

(The transitions q2 → e are three
separate instructions conveniently
stacked on top of each other.

)
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(c) Left of the head is the substring processed and to the right is the substring remaining. The stack is to the left of
the state (the top of the stack is rightmost in black). Denote our PDA by M . The traces for the four strings are:

∅ | q0 |⊲010ε
M7→ ∅0 | q1 | 0⊲10ε
M7→ ∅ | q2 | 01⊲0ε
M7→ ∅ | e | 010⊲ε
M7→ ∅ | e | 010ε⊲
stop, reject

∅ | q0 |⊲00011ε
M7→ ∅0 | q1 | 0⊲0011ε
M7→ ∅00 | q1 | 00⊲011ε
M7→ ∅000 | q1 | 000⊲11ε
M7→ ∅00 | q2 | 0001⊲1ε
M7→ ∅0 | q2 | 00011⊲ε
M7→ ∅0 | e | 00011ε⊲
stop, reject

∅ | q0 |⊲0011ε
M7→ ∅0 | q1 | 0⊲011ε
M7→ ∅00 | q1 | 00⊲11ε
M7→ ∅0 | q1 | 001⊲1ε
M7→ ∅ | q2 | 0011⊲ε
M7→ ∅ | q3 | 0011ε⊲
stop, accept

∅ | q0 |⊲00111ε
M7→ ∅0 | q1 | 0⊲0111ε
M7→ ∅00 | q1 | 00⊲111ε
M7→ ∅0 | q1 | 001⊲11ε
M7→ ∅ | q2 | 0011⊲1ε
M7→ ∅ | e | 00111⊲ε
M7→ ∅ | e | 00111ε⊲
stop, reject

(d) The PDA is mechanically plausible. The only concern is the infinite stack to process inputs like 0•n1•n for
arbitrarily large n. In practice, ofcourse, we can only implement a PDA with a finite stack memory.

Exercise 24.13.
(a) No DFA exists for (01)•n(10)•n. This is similar to 0•n1•n. Suppose the language is solved by a DFA with k states,

and consider its state after processing (01)•0, (01)•1, . . . , (01)•k. By pigeonhole, at least two of these states for
(01)•i and (01)•j with i < j must be the same, say q. The strings (01)•i(10)•i and (01)•j(10)•i pose a problem for
this DFA. The final states must be the same. However, the DFA must accept one string and reject the other. This
contradiction implies that such a DFA does not exist.

(b) L2 is actually quite simple though it looks superficially similar to L1. If the string
starts with 0, we are okay unless a 1 appears in which case a 01 substring has
appeared. To balance this 01, another 0 must appear to generate a 10 substring,
at which point we are back to begining situation where the string started with
a 0. This means if the string starts with 0, it must end with 0. Similarly, if it
starts with 1, it must end with 1. We leave it to the reader to prove by induction
that a string is in L2 iff it starts and ends in the same bit. Checking if the start
and end bit are the same is actually quite easy to do with a DFA.

q0

q1 q3

q2 q4

0

1

1

0

0

1

1

0

0

1

Chapter 25

Pop Quiz 25.1. This CFL is {0•n1•n | n ≥ 0}. (a) S
1:⇒ T0A

3:⇒ T0XT1
2:⇒ T0T0T1T1

4:⇒ T00T1T1
4:⇒ 00T1T1

5:⇒ 001T1
5:⇒ 0011

(b) impossible (c) impossible (d) impossible. Starting from X: {0•n1•n | n > 0}. Starting from A: {0•n1•n+1 | n > 0}.
Pop Quiz 25.2. S

1:⇒ <phrase><verb>
5:⇒ <phrase>runs.␣S

2:⇒ <article><noun>runs.␣S
3:⇒ A␣<noun>runs.␣S

4:⇒ A␣cat␣runs.␣S
1:⇒ A␣cat␣runs.␣<phrase><verb>

5:⇒ A␣cat␣runs.␣<phrase>walks.
2:⇒ A␣cat␣runs.␣<article><noun>walks.

3:⇒ A␣cat␣runs.␣The␣<noun>walks.
4:⇒ A␣cat␣runs.␣The␣dog␣walks.

Exercise 25.3.
(a) (i) S

1:⇒ <stmt>;S
2:⇒ <declare>;S

3:⇒ int␣<variable>;S
7:⇒ int␣x;S

1:⇒ int␣x;<stmt>;S
2:⇒ int␣x;<declare>;S

3:⇒ int␣x;int␣<variable>;S
7:⇒ int␣x;int␣x<variable>;S

7:⇒ int␣x;int␣xx;S
1:⇒ int␣x;int␣xx;<stmt>;S

2:⇒ int␣x;int␣xx;<assign>;S
4:⇒ int␣x;int␣xx;<variable>=<integer>;S

7:⇒ int␣x;int␣xx;x=<integer>;S
5:⇒ int␣x;int␣xx;x=<integer><digit>;S

6:⇒ int␣x;int␣xx;x=<integer>2;S
5:⇒ int␣x;int␣xx;x=<digit>2;S

6:⇒ int␣x;int␣xx;x=22;S
1:⇒ int␣x;int␣xx;x=22;<stmt>;

2:⇒ int␣x;int␣xx;x=22;<assign>;
4:⇒ int␣x;int␣xx;x=22;<variable>=<integer>;
7:⇒ int␣x;int␣xx;x=22;x<variable>=<integer>;
7:⇒ int␣x;int␣xx;x=22;xx=<integer>;
5:⇒ int␣x;int␣xx;x=22;xx=<digit>;

6:⇒ int␣x;int␣xx;x=22;xx=8;

Long and tedious, but that’s what it takes to derive non-trivial strings in non-trivial grammars.
(ii) S

1:⇒ <stmt>;S
2:⇒ <assign>;S

4:⇒ <variable>=<integer>;S
7:⇒ x=<integer>;S

5:⇒ x=<digit>;S
6:⇒ x=8;S

1:⇒ x=8;<stmt>;
2:⇒ x=8;<declare>;

3:⇒ x=8;int␣<variable>;
7:⇒ x=8;int␣x;
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(iii) S
1:⇒ <stmt>;S

2:⇒ <declare>;S
3:⇒ int␣<variable>;S

7:⇒ int␣x;S
1:⇒ int␣x;<stmt>;

2:⇒ int␣x;<assign>;
4:⇒ int␣x;<variable>=<integer>;

7:⇒ int␣x;x<variable>=<integer>;
7:⇒ int␣x;xx=<integer>;

5:⇒ int␣x;xx=<digit>;
6:⇒ int␣x;xx=8;

(b) (i) semantically correct. (ii) variable used before declared. (iii) variable used is not declared.
(c) Add the white space variable in the rule for S and a new rule to create the white space:

1: S → <stmt>;WS | <stmt>;
2: <stmt> → <assign> | <declare>
3: <declare> → int␣<variable>

4: <assign> → <variable>=<integer>

5: <integer> → <integer><digit> | <digit>
6: <digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
7: <variable> → x | x<variable>
8: W → WW | ε | ␣ | \n

Pop Quiz 25.4. Let w be a non-empty string in Lequal. Either w starts with 0 or with 1. Consider the case 0, w = 0v.
Since w has an equal number of 0’s and 1’s, v has more 1’s than 0’s. Therefore some prefix of v (for example v itself)
has more 1’s than 0’s. By the well-ordering principle, there is a shortest prefix of v that has more 1’s than 0’s. Call
this prefix v1, v = v1w2 and v1 must end in 1 otherwise some shorter prefix has more 1’s than 0’s. Therefore, v1 = w11
and w1 cannot have more 1’s than 0’s, since v1 is the shortest prefix with this property. Therefore, w1 must have an
equal number of 1’s than 0’s, because otherwise v1 would not have more 1’s. We have proved:

w = 0v = 0v1w2 = 0w11w2,

where w1 has an equal number of 1’s and 0’s. Since w has an equal number of 1’s and 0’s, this means that w2 must
also have an equal number of 1’s and 0’s. The case where w starts with 1 uses analogous reasoning.

Exercise 25.5.
(a) (i) 1: S → ε | 1S (Every non-empty string in L is of the form 1w where w ∈ L.)

(ii) By induction on the length of the derivation. The base cases are S ⇒ ε and S ⇒ 1. All other derivations
start S ⇒ 1S followed by a shorter derivation for the S on the RHS. For this shorter derivation, by the induction
hypothesis the string derived is 1•n for n ≥ 0 and so the full derivation fives 1•n+1.
(iii) By induction on n: Suppose S ∗⇒ 1•n. Then, S ⇒ 1S ∗⇒ 1 •1•n is a derivation of 1•n+1.

(b) (i) 1: S → A1
2: A → ε | 0 | 1 | AA

(ii) All derivations start S ⇒ A1 followed any derivation from A. The result is a string in A followed by 1.
(iii) By induction on string-length, any string v can be derived from A. The base cases are v = ε, 0, 1. If v = 0x,
then x is shorter and A ∗⇒x (induction hypothesis), so A ⇒ AA ⇒ 0A ∗⇒ 0x. Similarly if v = 1x. Therefore, any
string of the form v1 can be derived as follows: S ⇒ A1 ∗⇒ v1 (derivation of v from A).

(c) (i) 1: S → A00A
2: A → ε | 0 | 1 | AA

(ii) All derivations start S ⇒ A00A followed by a derivations from each A, therefore the final string contains 00
because it is v00w where A ∗⇒ v and A ∗⇒w.
(iii) In (b) we showed that any string can be derived from A so any string of the form v00w can be derived from
S by S ⇒ A00A ∗⇒ v00w (derivations of v and w from the A’s).

(d) (i) 1: S → ε | 1S0
(ii) Induction on the length of the derivation. Every derivation starts S ⇒ 1S0 followed by a shorter derivation on
the RHS S, which by the induction hypothesis gives 1•k0•k. Therefore the full derivation gives 1•k+10•k+1

(iii) Induction on string-length. Suppose S ∗⇒ 1•n0•n then S ⇒ 1S0 ∗⇒ 1 •1•n0•n •0 is a derivation of 1•n+10•n+1.
(e) (i) 1: S → AB (S is composed of two types of strings, A and B)

2: A → ε | 1A0 (A generates 1•k0•k as in part (e))
3: B → ε | 1B (B generates 1•ℓ as in part (a))

(ii) S is a string derived from A followed by one derived from B. In (e,ii) we showed that all derivations from A
yield 1•k0•k. In (a,ii) we showed that all derivations from B yield 1•ℓ. So, all derivations from S yield 1•k0•k1•ℓ.
(iii) In (e,iii) we showed that every string of the form 1•k0•k can be derived from A. In (a,iii) we showed that every
string of the form 1•ℓ can be derived from B. Therefore every string of the form 1•k0•k1•ℓ can be derived from S.

(f) (i) The basic palindromes are ε, 0, 1. All other palindromes either start and end in 0 (with a palindrome in between)
or they start and end in 1 (with a palindrome in between). This observation suggests the grammar

1: S → ε | 0 | 1 | 0S0 | 1S1

sol – 73



30. Solutions to Quizes & Exercises

(ii) Induction on the length of the derivation. For the derivation, which starts 0S0 (the same logic applies if it
starts 1S1), suppose ultimately that the middle S yields x (via a shorter derivation). By the induction hypothesis,
x is palindrome, and so the final string 0x0 is a palindrome because (0x0)r = 0xr0 = 0x0.
(iii) Induction on length. If w is a (non-basic) palindrome, w = 0x0 or w = 1x1 where x is shorter. Therefore
S ∗⇒x by the induction hypothesis and S ⇒ 0S0 ∗⇒ 0x0 (or S ⇒ 1S1 ∗⇒ 1x1) is a derivation of w.

Exercise 25.6.
(a) ∗0∗: 1: S0 → A0A

2: A → ε | 0 | 1 | AA
∗1∗: 1: S1 → B1B

2: B → ε | 0 | 1 | BB
Union (∗0∗ or ∗1∗): 1: S → S0 | S1

2: S0 → A0A
3: A → ε | 0 | 1 | AA
4: S1 → B1B
5: B → ε | 0 | 1 | BB

(b) 0•k1•k+ℓ0•ℓ = 0•k1•k •1•ℓ0•ℓ, so L is the concatenation of 0•k1•k with 1•ℓ0•ℓ.

0•k1•k: 1: A → ε | 0A1 1•ℓ0•ℓ: 1: B → ε | 1B0 Concatenation 0•k1•k+ℓ0•ℓ: 1: S → AB
2: A → ε | 0A1
3: B → ε | 1B0

(c) A CFG for L on the right with start variable A, we wish to construct a grammar for L∗.
The idea is to first construct A•i for i ≥ 0 and use the grammar for L to independently
derive each A into a string from L. A CFG for A•i is

1: S → ε | SA.

In the grammar on the right (bottom), the first rule generates a concatenation of A’s and
the remaining rules from L independently derive each A into a string from L. In our case
the grammar for L is 1: A → ε | 0A1 , therefore the grammar for L∗ is

1: S → ε | SA
2: A → ε | 0A1

,

You should derive some strings within this grammar and verify they are all in L∗.

1: A → . . .
2:
...

1: S → ε | SA
2: A → . . .
3:
...

(d) We observe that strings not containing 00 are any concatenation of the strings in {1, 01} terminated by 0 or ε.
That is, L = {1, 01}∗ •{ε, 0}. The set {1, 01} is generated by 1: A → 1 | 01 and the set {ε, 0} is generated by
1: B → ε | 0 . Therefore,

{1, 01}∗ : 1: X → ε | XA
2: A → 1 | 01

{1, 01}∗ •{ε, 0} : 1: S → XB
2: X → ε | XA
3: A → 1 | 01
4: B → ε | 0

We can also use the recursive approach to derive the CFG. Let S represent a string in L. Either S is empty or
begins with 1 or 0. If S begins with 1, then it can be followed by any string in L, generically represented by S. If
S starts with 0, then it either ends or follows with a 1 and then any string in S. Therefore a grammar for L is

1: S → ε | 0 | 1S | 01S

For yet another approach to constructing a CFG for L, see Problem 25.12

Exercise 25.7.
(a) Let us walk through a systematic procedure for converting a CFG into Chomsky Normal Form. Our grammar is

1: S → ε | 0S1S | 1S0S . First, we make sure that the start variable does not appear on the RHS of any rule. To
do this, we change the start variable and add a new rule from the new start variable to the old one:

1: S → X
2: X → ε | 0X1X | 1X0X

This trivial change does not alter the derivable strings. All derivations start S → X and proceed as before.
Now remove all rules which take a variable to ε: if a variable A may transition to ε, remove that transition and
replace every occurrence of the variable on the RHS of a rule with a new instance of the rule that replaces A with
ε. Note that every instance of A must be replaced “independently”. For example X → 0X1X gets replaced by
X → 0X1X | 01X | 0X1 | 01, which captures all possible ways of replacing the X’s with ε. Our grammar becomes:

1: S → ε | X
2: X → 0X1X | 01X | 0X1 | 01 | 1X0X | 10X | 1X0 | 10
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Now replace each terminal with a corresponding terminal variable (for example T0 for 0 and T1 for 1) and add a
rule from each terminal variable to its corresponding terminal:

1: S → ε | X
2: X → T0XT1X | T0T1X | T0XT1 | T0T1 | T1XT0X | T1T0X | T1XT0 | T1T0

3: T0 → 0
4: T1 → 1

Every rule (except for the rules to terminals) now has the form

<variable>→ string of <variables>.

Now reduce rules with more than two variables on the RHS. The rule A1 → A2A3 · · ·Ak becomes

A1 → A2B1; B1 → A3B2; B2 → A4B3; · · · Bk−2 → Ak−1Ak

When you combine all the rules above, it becomes the single rule A1 → A2A3 · · ·Ak. In general, you can pick
any consecutive variables on the RHS and reduce it to a new variable, while providing a new rule from the new
variable to the pair. For our grammar let us use A0 → T0X and A1 → T1X, then the rule for X becomes

X → T0T1 | T1T0 | A0A1 | T0A1 | A0T1 | A1A0 | T1A0 | A1T0

Our grammar becomes

1: S → ε | X
2: X → T0T1 | T1T0 | A0A1 | T0A1 | A0T1 | A1A0 | T1A0 | A1T0

3: A0 → T0X
4: A1 → T1X
5: T0 → 0
6: T1 → 1

Finally, for rules that take a variable to a single variable (e.g. S → X), replace the variable on the RHS by the
entire rule for that variable. Our grammar in Chomsky Normal Form is

1: S → ε | T0T1 | T1T0 | A0A1 | T0A1 | A0T1 | A1A0 | T1A0 | A1T0

2: X → T0T1 | T1T0 | A0A1 | T0A1 | A0T1 | A1A0 | T1A0 | A1T0

3: A0 → T0X
4: A1 → T1X
5: T0 → 0
6: T1 → 1

(b) Every application of a production rule increases the length of the hybrid string by 1 (starting from S of length 1).
Every application of a terminal rule keeps the length of the hybrid string fixed. Since the final string has length
n, this means there must be n − 1 steps which increase the length by 1 and n steps which convert variables to
terminal for a total of 2n−1 steps. This argument works because no rule decreases the length of the hybrid string.

(c) For a grammar in Chomsky Normal Form and an input string w of length n, try all derivations of length 2n− 1. If
w resulted from one of these (possibly exponentially many) derivations, then w ∈ L, otherwise w 6∈ L. Note that
this is a relatively inefficient procedure to test for membership in a CFL, but a finite one.

Pop Quiz 25.8.Though the derivations are different, the final parse trees (boxed beside each derivation) are identical.

S ⇒ S ⇒
S + S

S ⇒
S + S

2

S

S + S

2 2

S

S

+

S

2 2

S ⇒ S ⇒
S + S

S ⇒
S + S

2

S

S + S

2 2

S

S

+

S

2 2

Exercise 25.9.
(a) Change the order of some of the transitions to get a different derivation.

S ⇒ S + P
⇒ P + P
⇒ T + P
⇒ T + P × T
⇒ T + T × T
∗⇒ 2 + 2× 2

S

S + P

P P × T

T T

22

T

2

We get a different derivation but the same parse tree.
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(b) Grammar in (25.5)

S ⇒ P ⇒ P × T ⇒ T × T ⇒ (S)× T ⇒ (S)× (S)⇒ (S + P )× (S)⇒ (P + P )× (S)⇒ (T + P )× (S)
⇒ (T + T )× (S)⇒ (T + T )× (S + P )⇒ (T + T )× (S + P × T )⇒ (T + T )× (P + P × T )
⇒ (T + T )× (T + P × T )⇒ (T + T )× (T + T × T )
∗⇒ (2 + 2)× (2 + 2× 2)

Grammar in (25.3)

S ⇒ S × S ⇒ (S)× S ⇒ (S)× (S)⇒ (S + S)× (S)⇒ (S + S)× (S + S)⇒ (S + S)× (S + S × S)
∗⇒ (2 + 2)× (2 + 2× 2)

At the end of both derivations, every variable transitions to 2. The derivation for the unambiguous grammar in
(25.5) is much longer, the price of unambiguous parse trees (additional information is embedded in the rules).

(c) (i) For emphasis we give 3 different derivations with different parse trees.
S ⇒ SS
⇒ SSS
∗⇒ 111

S

S S

S S

111

S ⇒ SS
⇒ SSS
∗⇒ 111

S

SS

S S

11 1

S ⇒ SS
⇒ SSS
⇒ SSSS
∗⇒ 1ε11

S

S S

S SS S

11ε1

At the end of each derivation, every variable transitions to a terminal in some order. In case of ambiguity we
identify in bold the variable that is transitioning.

(ii) To remove the ambiguity, we give just one way to add a 1 to the string, S → ε | 1S.

Pop Quiz 25.10. S ⇒ 0S0⇒ 01S10⇒ 011S110⇒ 011#110

Exercise 25.11.

(a)

q0 q2

q1

q3 q4

e

{ε
}{
∅
} →

{}

{0}{∅} →
{push(0)}

{1}{∅} →
{push(1)}

{#}{0, 1,∅} →
{}

{ε}{0, 1,∅} →
{}

{1}{0,∅} →
{}

{0}{1,∅} →
{}

{#}{∅} → {}

{0}{0, 1} → {push(0)}
{1}{0, 1} → {push(1)}
{ε}{0, 1} → {}

{0}{0} → {pop()}
{1}{1} → {pop()}

{ε}{∅} → {}

{0
,
1
,
#
}{

∅
}
→

{}

{#}
{0,

1}
→

{}

{ε}{∅} → {}

{0, 1, #, ε}{0, 1,∅} → {}

(b) Left of the head is the substring processed and to the right the substring remaining. The stack is to the left of the
state (the top of the stack is rightmost in black). Denote our PDA by M . The traces for the strings are:

∅ | q0 |⊲0110ε
M7→ ∅0 | q1 | 0⊲110ε
M7→ ∅01 | q1 | 01⊲10ε
M7→ ∅011 | q1 | 011⊲0ε
M7→ ∅0110 | q1 | 0110⊲ε
M7→ ∅0110 | q1 | 0110ε⊲
stop, reject

∅ | q0 |⊲01#01ε
M7→ ∅0 | q1 | 0⊲1#01ε
M7→ ∅01 | q1 | 01⊲#01ε
M7→ ∅01 | q3 | 01#⊲01ε
M7→ ∅01 | e | 01#0⊲1ε
M7→ ∅01 | e | 01#01⊲ε
M7→ ∅01 | e | 01#01ε⊲
stop, reject

∅ | q0 |⊲01#10ε
M7→ ∅0 | q1 | 0⊲1#10ε
M7→ ∅01 | q1 | 01⊲#10ε
M7→ ∅01 | q3 | 01#⊲10ε
M7→ ∅0 | q3 | 01#1⊲0ε
M7→ ∅ | q3 | 01#10⊲ε
M7→ ∅ | q4 | 01#10ε⊲
stop, accept

Exercise 25.12.
(a) L1 is the concatenation of 0•n1•n (context free, S → ǫ | 0S1) with 0•m (context free, S → ǫ | 0S). Since CFLs are

closed under concatenation, L1 is a CFL. Similarly, L2 is the concatenation of 0•m with 0•n1•n and also a CFL.

(b) L1 ∩ L2 = {0•n1•n0•n | n ≥ 0} = L. If CFLs are closed under intersection, then, since L1 and L2 are CFLs,
L = L1 ∩ L2 is a CFL. This contradicts L not being a CFL. Therefore, CFLs are not closed under intersection.
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(c) Assume CFLs are closed under complement. So, L1 and L2 are CFLs. CFLs are closed under union, so L1 ∪L2 is

a CFL. This means L1 ∪ L2 is a CFL (closure under complement). But

L1 ∪ L2 = L1 ∩ L2 = L1 ∩ L2 (= L).
(The first step uses A ∪B = A ∩ B.) Since L is not a CFL, CFLs are not closed under complement. (Note, we

have proved, more generally, that closure under union and complement implies closure under intersection.)

Chapter 26

Pop Quiz 26.1. On 0110, the TM halts with no at step 1 because there is no # in the input.
01#10 101#10 10#101

* 0 1 # 1 0 ␣

* 0 1 # 1 0 ␣
✓

* 0 1 # 1 0 ␣
✓

halt, no

* 1 0 1 # 1 0 ␣

* 1 0 1 # 1 0 ␣
✓

* 1 0 1 # 1 0 ␣
✓ ✓

* 1 0 1 # 1 0 ␣
✓ ✓

* 1 0 1 # 1 0 ␣
✓ ✓ ✓

* 1 0 1 # 1 0 ␣
✓ ✓ ✓ ✓

* 1 0 1 # 1 0 ␣
✓ ✓ ✓ ✓

* 1 0 1 # 1 0 ␣
✓ ✓ ✓ ✓ ✓

* 1 0 1 # 1 0 ␣
✓ ✓ ✓ ✓ ✓

halt, no

* 1 0 # 1 0 1 ␣

* 1 0 # 1 0 1 ␣
✓

* 1 0 # 1 0 1 ␣
✓ ✓

* 1 0 # 1 0 1 ␣
✓ ✓

* 1 0 # 1 0 1 ␣
✓ ✓ ✓

* 1 0 # 1 0 1 ␣
✓ ✓ ✓ ✓

* 1 0 # 1 0 1 ␣
✓ ✓ ✓ ✓

* 1 0 # 1 0 1 ␣
✓ ✓ ✓ ✓

* 1 0 # 1 0 1 ␣
✓ ✓ ✓ ✓

halt, no

Pop Quiz 26.2.

(a) q r
{0}{0}{R}

From q if you read 0, transition to r, write 0 and move right.

(b) q r
{0}{}{R}

From q if you read 0, transition to r, and move right.

(c) q r
{✓
0}{}{}

From q if you read marked 0, transition to r.

(d) q r
{0}{✓}{}

From q if you read 0, mark it and transition to r.

(e) q r
{0}{✓}{R}

From q if you read 0, mark it, transition to r and move right.

(f) q r
{0|1}{✓

1}{L}
From q if you read 0 or 1, write marked 1, transition to r and move left.

(g) q r
{✓
0|✓1}{0|1}{L}

From q unmark a marked bit, transition to r and move left. We are being lazy. There are really
two separate instructions, which we combined into a single instruction.

(h) q r
{✓}{0}{L}

From q if marked, write 0 (unmarked), transition to r and move left.

(i) q r
{✓}{}{L}

From q if marked, transition to r and move left.

(j) q r
{0}{␣}{L}

From q if 0, erase, transition to r and move left.

(k) q r
{␣}{#}{L}

From q if blank, write #, transition to r and move left.

(l) q r
{✓}{ ✓

0}{}
From q if marked, write marked 0 and transition to r.
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Pop Quiz 26.3. The error state is a halting state, so there are no more
transitions. To combine the automata, simply identify the step 2 states
in the automata for Step 1 and Step 2, and “snap” the automata together
by merging the step 2 states. The result is shown on the right.

q0 q1

step 2E

{#}{}{R}

{␣}{}{}
{␣}{}{}

{∗,0,1}{}{R} {0,1}{}{R}

{#
}{

}{
}

step 3
{∗}{}{}

{␣,0,1,#}{}{L}

Pop Quiz 26.4. At the end of each step the machine transitions to a success state which is the starting point for the
next step. Merging the automaton from the previous pop quiz with the automaton for step 3 at the state step 3 gives

q0 q1

step 2E

{#}{}{R}

{␣}{}{}
{␣}{}{}

{∗,0,1}{}{R} {0,1}{}{R}

{#
}{

}{
}

step 3
{∗}{}{}

{␣,0,1,#}{}{L}

step 4

z4

o4step 5

{0
}{

✓
}{
R}

{1}{
✓}{R}

{#}{}{R}

{∗,✓}{}{R}

Merging the states z4 and o4 with the step-4 machine gives

q0 q1

step 2E

{#}{}{R}

{␣}{}{}
{␣}{}{}

{∗,0,1}{}{R} {0,1}{}{R}

{#
}{

}{
}

step 3
{∗}{}{}

{␣,0,1,#}{}{L}

z4

o4step 5

{0
}{

✓
}{
R}

{1}{
✓}{R}

{#}{}{R}

{∗,✓}{}{R}

z5

o5

E step 2

{#}{}{R}

{#}{}{R}

{0,1}{}{R} {✓}{}{R}

{0,1}{}{R} {✓}{}{R}

{0,␣}{}{}

{1,␣}{}{}

{1
}{

✓
}{

}

{0}{
✓
}{}

Filling in step 5 gives the final Turing machine.

q0 q1

step 2E

{#}{}{R}

{␣}{}{}
{␣}{}{}

{∗,0,1}{}{R} {0,1}{}{R}

{#
}{

}{
}

step 3
{∗}{}{}

{␣,0,1,#}{}{L}

z4

o4step 5

{0
}{

✓
}{
R}

{1}{
✓}{R}

{#}{}{R}

{∗,✓}{}{R}

z5

o5

E step 2

{#}{}{R}

{#}{}{R}

{0,1}{}{R} {✓}{}{R}

{0,1}{}{R} {✓}{}{R}

{0,␣}{}{}

{1,␣}{}{}

{1
}{

✓
}{

}

{0}{
✓
}{}

E

A

{␣}
{}{

}

{0,1}{}{}

{✓}{}{R}
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(a) → q0 → q0 → q0 → q0 → q1 → q1 → q1
→ step 2→ step 2→ step 2→ step 2→ step 2→ step 2→ step 2
→ step 3→ step 3→ z4 → z4 → z5 → step 2→ step 2→ step 2→ step 2→ step 2
→ step 3→ step 3→ step 3→ o4 → o5 → o5
→ step 2→ step 2→ step 2→ step 2→ step 2→ step 2
→ step 3→ step 3→ step 3→ step 3→ step 5→ step 5→ step 5→ A

(b) → q0 → q0 → q0 → q0 → q1 → q1 → q1
→ step 2→ step 2→ step 2→ step 2→ step 2→ step 2→ step 2
→ step 3→ step 3→ z4 → z4 → z5 → e

(c) → q0 → q0 → q0 → q1 → q1 → q1
→ step 2→ step 2→ step 2→ step 2→ step 2→ step 2→ step 3→ step 3→ z4 → z5
→ step 2→ step 2→ step 2→ step 2→ step 3→ step 3→ step 5→ step 5→ e

(d) → q0 → q0 → q0 → q0 → q1 → q1
→ step 2→ step 2→ step 2→ step 2→ step 2→ step 2→ step 3→ step 3
→ z4 → z4 → z5 → step 2→ step 2→ step 2→ step 2→ step 2
→ step 3→ step 3→ step 3→ o4 → o5 → o5 → e

Exercise 26.5. Step 1 and 2 are very similar to our Turing machine which solved w#w. Instead, we are now looking
for two #’s and a specific format of 0’s and 1’s. A DFA solves this problem, ending in step 3 if it succeeds.

q0 q1 q2

step 2E

{#}{}{R} {#}{}{R}

{1,␣}{}{}
{␣

}{
}{

}

{∗,0}{}{R} {1}{}{R} {0}{}{R}

{0
,␣
}{

}{
}

{1,
#}{

}{}

step 3
{∗}{}{}

{␣,0,1,#}{}{L}

In Step 3 you are looking for the first unmarked 0; if you find it, mark it and move to #:

q0 q1 q2

step 2E

{#}{}{R} {#}{}{R}

{1,␣}{}{}
{␣

}{
}{

}

{∗,0}{}{R} {1}{}{R} {0}{}{R}

{0
,␣
}{

}{
}

{1,
#}{

}{}

step 3
{∗}{}{}

{␣,0,1,#}{}{L}

q3

step 4

step 6

{∗,✓}{}{R}

{#
}{

}{
R}

{0}{✓}{R}
{0}{}{R}

{#}{}{R}

Note, in state step 3 we did not show what to do if the input is 1; and in state q3 we did not show what to do for 1
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and ␣. This is because the TM already verified the input format so a 1 or ␣ is not possible. Now for step 4.

q0 q1 q2

step 2E

{#}{}{R} {#}{}{R}

{1,␣}{}{}
{␣

}{
}{

}

{∗,0}{}{R} {1}{}{R} {0}{}{R}

{0
,␣
}{

}{
}

{1,
#}{

}{}

step 3
{∗}{}{}

{␣,0,1,#}{}{L}

q3

step 4

step 6

{∗,✓}{}{R}

{#
}{

}{
R}

{0}{✓}{R}
{0}{}{R}

{#}{}{R}

q4

step 5

{✓}{}{R}

{#}{}{L}
{✓
1}{1}{L}

{#}{}{L}
{1}

{✓}{R
}

(State q4 is responsible for moving right while unmarking the 1’s.) In step 6 you are just checking for no unmarked
right 0. In step 5 you are moving right to mark a 0. We implement both steps together. The final TM is:

q0 q1 q2

step 2E

{#}{}{R} {#}{}{R}

{1,␣}{}{}
{␣

}{
}{

}

{∗,0}{}{R} {1}{}{R} {0}{}{R}

{0
,␣
}{

}{
}

{1,
#}{

}{}

step 3
{∗}{}{}

{␣,0,1,#}{}{L}

q3

step 4

step 6

{∗,✓}{}{R}

{#
}{

}{
R}

{0}{✓}{R}
{0}{}{R}

{#}{}{R}

q4

step 5

{✓}{}{R}

{#}{}{L}
{✓
1}{1}{L}

{#}{}{L}
{1}

{✓}{R
}

E

A

q5

{␣}{}{}

{0}{}{}

{␣}{}{}

{1,#,✓0}{}{R}

{1,✓,#}{}{R}

{0
}{

✓
}{
L
}

{✓
0,1,#}{}{L}

{✓
1}{}{R}

Exercise 26.6.
(a) Using a Turing machine for a regular language is using a sledgeham-

mer on a thumb-tack. Our TM is a glorified DFA: q0 q1

E

A
{0}{}{R}

{␣}{}{}

{∗,1}{}{R} {0}{}{R}

{1}{}{R}

{␣
}{

}{
}
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(b) A simple solution inserts # between the two w’s and uses the Turing machine for w#w.

1: If the first symbol is ␣, accept (empty input).
2: Return to ∗.
3: Move right to the first unmarked bit and mark it.

If you come to ␣ (equal number of unmarked bits right of ␣):
mark it with #, return to ∗, unmarking any marked bits, and goto Step 5.

4: Move right to the first unmarked bit before ␣.
If none exists (odd-length string) reject.
Erase and copy the bit to the blank on its right; goto Step 2.

5: Use the Turing machine that solves w#w.
accept or reject using the output of this Turing machine.

On the right is the Turing machine in action up to the point where it invokes the Turing
machine that solves w#w. The entire purpose of this Turing machine is to insert the punctu-
ation character at the midpoint of the input, and can be viewed as a preprocessing machine
which reconfigures the input into a format that be used by some other Turing machine. This
concept should be familiar to computer scientists: using someone else’s program to solve a
task, but reconfiguring your input so that their program will accept the input. This approach
is modular by leads to program (Turing machine) bloat.

Our second approach directly solves ww which gives a more compact Turing machine.

* 0 1 0 1 ␣

* 0 1 0 1 ␣
✓

* 0 1 0 ␣ 1 ␣
✓

* 0 1 0 ␣ 1 ␣
✓

* 0 1 ␣ 0 1 ␣
✓ ✓

* 0 1 ␣ 0 1 ␣
✓ ✓

* 0 1 # 0 1 ␣
✓ ✓

* 0 1 # 0 1 ␣

1: If the first symbol is ␣, accept (empty input).
2: Return to ∗.
// Mark the first half with ✓ and the second with ✘

3: Move right to the first unmarked bit and mark it ✓.
If none exists (you come to ✘), goto Step 5.

4: Move right to the last unmarked bit and mark it ✘.
If none exists (the first right symbol is ␣ or ✘) reject.

(the input has an odd number of bits)
Otherwise, after marking, goto Step 2.

After the loop involving steps 3 and 4, the input string is partitioned into two halves: the
first is marked with ✓ and the second with ✘. We now compare ✓ bits with ✘ bits.

5: Return to ∗
// Match each ✓-bit with a corresponding ✘-bit

6: Move right to the first bit marked ✓.
If none exists (you come to ␣) accept
Otherwise remember the bit and unmark it.

7: Move right to the first bit marked ✘.
If the bit does not match the bit remembered, reject.
If it is a match, unmark the bit and goto Step 5.

It is now just a matter of constructing the machine-level instructions for each step and
snapping them together. Let’s do it for our second approach which directly solves ww.
First, we do steps 1–3. The notation ∗ means any symbol that is not ∗. Step 3 transitions
to either step 4 or 5.

q0 step 2 step 3

step 4

step 5

A

{∗}{}{R}

{
␣}

{
}
{
}

{0,1}{}{L}

{∗}{}{L}

{∗}{}{R}

{✓}{}{R}

{
0
,1

}
{

✓
}
{
R}

{∗}{}{}

Now for steps 4 and 5.

* 0 1 0 1 ␣

* 0 1 0 1 ␣
✓

* 0 1 0 1 ␣
✓

* ␣
✘

* 0 1 0 1 ␣
✓

* ␣
✘

* 0 1 0 1 ␣
✓ ✓

* ␣
✘

* 0 1 0 1 ␣
✓ ✓

* ␣
✘ ✘

* 0 1 0 1 ␣
✓ ✓

* ␣
✘ ✘

* 0 1 0 1 ␣
✓

* ␣
✘ ✘

* 0 1 0 1 ␣
✓

* ␣
✘

* 0 1 0 1 ␣
✓

* ␣
✘

* 0 1 0 1 ␣* ␣
✘

* 0 1 0 1 ␣

* 0 1 0 1 ␣

* 0 1 0 1 ␣
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q0 step 2 step 3

step 4

step 5

A

{∗}{}{R}

{
␣}

{
}
{
}

{0,1}{}{L}

{∗}{}{L}

{∗}{}{R}

{✓}{}{R}

{
0
,1

}
{

✓
}
{
R}

{∗}{}{}

q1

q2

E

step 6

{0,1}{}{R} {✘,␣}{}{R}

{0,1}{}{R}

{✘,␣}{}{L}

{0,1}{✘}{L} {∗}{}{L}

{∗}{}{R}

Lastly, we must implement step 6 and 7 to match bits marked ✓ with bits marked ✘.

q0 step 2 step 3

step 4

step 5

A

{∗}{}{R}

{
␣}

{
}
{
}

{0,1}{}{L}

{∗}{}{L}

{∗}{}{R}

{✓}{}{R}

{
0
,1

}
{

✓
}
{
R}

{∗}{}{}

q1

q2

E

step 6

{0,1}{}{R} {✘,␣}{}{R}

{0,1}{}{R}

{✘,␣}{}{L}

{0,1}{✘}{L} {∗}{}{L}

{∗}{}{R}

z7

o7

A E

{0,1}{}{R}

{
✓ 0
}{

0}
{R

}

{ ✓
1 }{1}{

R}

{␣}{}{}

{✘}{}{R}

{ ✘
1 }{}{}

{✘}{}{R}

{
✘ 0
}{

}{
}

{✘
0}{0}

{}

{✘
1}{1}{}

Practice. Construct the TM which preprocesses the string into w#w and cascade it with our TM for w#w.

Pop Quiz 26.7.

* 0 0 # 1 1 1 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

* 0 0 # 1 1 1 # ␣ ␣ ␣ ␣ ␣ ␣ ␣

* 0 0 # 1 1 1 # ␣ ␣ ␣ ␣ ␣ ␣ ␣

* 0 0 # 1 1 1 # ␣ ␣ ␣ ␣ ␣ ␣ ␣
✓

* 0 0 # 1 1 1 # ␣ ␣ ␣ ␣ ␣ ␣ ␣
✓

* 0 0 # 1 1 1 # ␣ ␣ ␣ ␣ ␣ ␣ ␣
✓ ✓

* 0 0 # 1 1 1 # 0 ␣ ␣ ␣ ␣ ␣ ␣
✓ ✓

* 0 0 # 1 1 1 # 0 ␣ ␣ ␣ ␣ ␣ ␣
✓ ✓

Exercise 26.8.
(a) (i) The Turing machine copies the bits over one by one.

1: Move right to the first ␣ and write #.
2: Return to ∗.
3: Move right to first non-marked before #.

Remember and mark the bit.
If, instead, you reach #, return to ∗ unmarking all the ✓ and halt.

4: Move right to first ␣, write the remembered bit and goto step 2.

(ii) L = {w#w | w ∈ Σ∗}.
(b) (i) We use a ✘ to simulate the punctuation #.

1: Move right to the first ␣ and mark with ✘.
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2: Return to ∗.
3: Move right to first non-marked before ✘.

Remember and mark the bit with ✓.
If you reach ✘, unmark the bit, return to ∗ unmarking all the ✓ and halt.

4: Move right to first ␣, write the remembered bit and goto step 2.

(ii) L = {ww | w ∈ Σ∗}.
(c) (i) Write a 1 for every zero and repeat for every zero.

1: Move right to the first ␣ and mark with #.
2: Return to ∗.
3: Move right to first non ✘-marked 0 and mark with ✘.

If you reach #, return to ∗ unmarking all 0’s and halt.
4: Return to ∗.
5: Move right to first non ✓-marked 0 and mark with ✓

If you reach #, return to ∗ unmarking ✓s (leaving the ✘s) and goto step 3.
6: Move right to first ␣ and write 0.
7: Move left to first ✓ and goto step 5.

(ii) L = {0•n#1•n2 | n ≥ 0}.
(d) (i) Mark and replace the first with the last bit and vice versa and continue.

1: Move right to the first non-marked bit. Mark it and remember it.
If you reach ␣, return to ∗, erasing all marks and halt.

2: Move right to the last non-marked bit.
If there is none, return to ∗, erasing all marks and halt.
Otherwise, remember it, replace it with the bit from step 1 and mark it.

3: Move left to the first marked bit.
Replace the bit with the bit remembered in step 2 and goto step 1.

(ii) L = {w#wr | w ∈ Σ∗}.
Pop Quiz 26.9. (a) → q0 → E (b) → q0 → q1 → A (c) → q0 → q0 → q1 → q0 → q1 → · · · (infinite loop).

Pop Quiz 26.10. Yes. Every decider trivially recognizes its language so every decidable language is also recognizable.

Exercise 26.11. Let M be a decider for L. Assume states, symbols and instructions are suitably punctuated.
1: Process each state. Check for a valid instruction telling the machine what to do if in that state for every symbol.
2: for each state, marking it when you process it do
3: for each symbol, marking it when you process it do
4: Find the instruction begining with the state and symbol and verify that it is a valid instruction.

Our TM verifies if the input is a valid TM. Compare with a compiler which verifies that an input program is valid.

Chapter 27

Pop Quiz 27.1.
(a) To correctly grade, the TA must check if the program prints “Hello World!”. If yes, Goldbach’s conjecture is false.

If no, Goldbach’s conjecture is true. Either way, the TA resolves an open conjecture and gains fame.
(b) Run the ultimate debugger on the student’s submission. If the debugger says the program halts, then Goldbach’s

conjecture is false. If the debugger says the program does not halt (runs forever), Goldbach’s conjecture is true.
(c) Before entering the mess, you may ask: can a program (confused) run another program (auto-grade) on itself.

The answer is yes, a nontrivial result called the Recursion Theorem. We won’t get into that. Lets see what happens.

confused first runs auto-grade on the program confused (this must halt with yes or no ).
If auto-grade says no , it means confused does not print “Hello World!”; but in this case, by definition confused
replaces the output file with “Hello World!” and halts. That is confused does print “Hello World!”: a contradiction.
If auto-grade says yes , it means confused does print “Hello World”; but then confused erases the output file
which means it does not print “Hello World”. Again, a contradiction.

confused is a paradoxical program which must halt by construction, since auto-grade is a decider. But if
confused halts, then it must either print “Hello World” or not, and both lead to contradiction, so the program
confused cannot exist. But confused exists if auto-grade exists, therefore auto-grade cannot exist. Some-
thing is FISHY here. If auto-grade does not exist, then what are the TA’s using to grade the CS1 assignments?
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Exercise 27.2. When we mark a vertex, we also mark the edges containing this vertex. This requires a lot of
zig-zagging (we supress the details). Note: the encoding 〈G〉 contains all the punctuation.

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓

Marking node “1” in the edges requires zig-zagging. The
TM cannot just “remember” the label “1” and mark in in
the edges, because the TM cannot “remember” labels. The
TM has a finite number of states with which to “remember”
things. The vertex labels are arbitrary, and there can be
arbitrarily many of them since the graph can have any fi-
nite size. Vertex label “1” is really “00000001” (ascii code).
What happens is that the TM marks the position of the
vertex label and remembers the first bit in the label (mark-
ing it). Then the TM moves right to the edges looking for
a vertex with that first bit. If it finds one, it marks the bit
and then zig-zags to match and mark all bits.

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓

* ␣
✘

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓

* ␣
✘

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓

* ␣
✘ ✘

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓

* ␣
✘ ✘ ✘

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓ ✓ ✓ ✓

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓ ✓ ✓ ✓

* ␣
✘

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓ ✓ ✓ ✓

* ␣
✘ ✘

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓ ✓ ✓ ✓

* ␣
✘ ✘ ✘ ✘

* ␣

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* ␣
✘

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* ␣
✘ ✘

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* ␣
✘ ✘

* 1 ; 2 ; 3 ; 4 # 1 , 2 ; 2 , 3 ; 1 , 3 ; 3 , 4 ␣
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Continuing, if all bits match, the vertex is marked as
matched. If some bit does not match, the vertex is marked
as non-matched and it need not be checked again. After
processing the vertex, all edge vertices that were marked as
non-matched are unmarked. In our figure, we skipped the
steps when no match is found. At the end of this phase, the
TM is ready to scan the edges for an unmarked vertex.
The head moves right to mark with ✘ the first unmarked
vertex in the edges, also finding and marking this vertex
in the node-list. Now, the TM marks all locations in the
edges where the newly marked vertex occurs. Lastly, the
head returns to ∗ changing every ✘ to ✓. Again, the TM is
ready to scan the edges for another unmarked vertex. For
the remaining steps we suppress the zig-zagging and only
show the high-level of what happens.
Next, the TM marks an unmarked vertex among the edges
(in this case vertex “3”), and repeats the dance of marking
the vertex, and then all edges in which the vertex appears.
Finally, the TM gets to vertex “4”, and when all is said and
done, the TM returns to ∗ to perform one last scan of the
vertices. In the last scan, the TM looks for an unmarked
vertex, in which case the graph is disconnected. Here, all
vertices are marked, and the graph is connected.
We went through the details in some of their gore to show
you that a TM can indeed solve problems which we are ac-
customed to writing programs to solve. The TM can indeed
solve all the nice problems we are used to seeing solved by
a computer. The TM is a good model of a computer.

Exercise 27.3. No, because if w 6∈ L1 but w ∈ L2, we need a TM M that will halt with accept. However, because
M1 is a recognizer for L1, in step 1 it may not halt which means the construction for M will not halt.

Recognizable languages are closed under union, but we need a more sophisticated construction for M . Essentially M
must interleave M1 and M2, so M runs one step of M1 and then one step of M2 and so on. You can fill in the details.

Pop Quiz 27.4. (See also Exercise 27.2.) The TM can only remember finitely many things using its states. Since M
on the other hand can an arbitrary number of states, the TM cannot “remember” the state. It marks the state, and
must zig-zag to match bit-by-bit to the transition instruction (depending on the tape symbol at ).

Pop Quiz 27.5. A TM M can take as input any binary string w. In particular, w can be the binary encoding of M
itself. So, M(〈M〉) is valid and the language Ldiag is a well defined computing problem. Either D ∈ Ldiag or D 6∈ Ldiag.

If 〈D〉 ∈ Ldiag, D(〈D〉) = no . But, since D is a decider for Ldiag, D(〈D〉) = yes . This contradiction means
〈D〉 6∈ Ldiag. If 〈D〉 6∈ Ldiag, D(〈D〉) = yes . But, since D is a decider for Ldiag, it means D(〈D〉) = no . This
contradiction means 〈D〉 ∈ Ldiag. So D is not in Ldiag and its not outside Ldiag. It can’t exist.
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Exercise 27.6. Recall that L(U) = {w | U(w) = halt and accept}. U is not a decider for L(U) because U may
infinitely loop on no -strings. This Demonic fixed TM is Utm: L(Utm) = Ltm, which we know is undecidable.

Exercise 27.7. Let Atm be a decider for Ltm.
We sketch a TM for the diabolical program in Pop
Quiz 27.1 (right). Run Atm on D with empty input
to resolve Goldbach’s conjecture. The conjecture
is false if and only if Atm accepts.
Atm is general and doesn’t exist. D is special and
exists. Either D halts or it doesn’t. We can prove
or disprove Goldbach’s conjecture by analyzing D.

D = Diabolical student’s Turing Machine

input: empty tape.

1: Write 4 (in binary) on the tape.
2: Test if the number on the tape is a sum of two primes.

If not, accept;
otherwise add 2 to the number on tape and repeat step

2.

Pop Quiz 27.8. In our reduction terminology, (building a bike) ≤r (building a car).

(a) (i) Cars are harder so we must be able to build bikes. (ii) We don’t know. Cars could be much harder.
(b) (i) We don’t know. Maybe we can’t build anything. (ii) No way. Forget hard things if you can’t do simple things.

Exercise 27.9.
(a) Lempty = {〈M〉 |M is a TM and L(M) = ∅}.

Suppose Etm decides Lempty. We sketch a decider Htm for
Lhalt that uses Etm. Since Lhalt is undecidable, this is a
contradiction, which proves that Etm does not exist.
There are several interesting points in Htm.

(i) The inputs 〈M〉 and w, are “hard-coded” into M ′.
(ii) You can define a TM, in this case M ′, inside a TM.
(iii) M ′ accepts every input providing M halts on w.
(iv) Htm never actually runs M ′ or M on w; it only

encodes M ′ into its description 〈M ′〉.

Htm = Decider for Lhalt that uses Etm

input: 〈M〉#w, where M is a TM and w its input.

1: Modify M to M ′

M ′ = Modified version of M

input: w′

1: Run M on w.
2: accept

2: Obtain 〈M ′〉, the encoding of M ′.
3: Run Etm(〈M ′〉) and accept iff Etm rejects.

First Htm always halts, so it is a decider, because Etm is a decider and always halts. Second, L(M ′) = ∅ if and
only if M does not halt on w, therefore Htm is a decider for Lhalt, which is the contradiction we desire.

(b) Leq = {〈M1〉#〈M2〉 |M1 and M2 are TM’s and L(M1) = L(M2)}.
Suppose EQtm is decider for Leq. We construct a decider Etm for Lempty. Let M∗ be a TM that immediately halts
and rejects on every input. So L(M∗) = ∅. Now let Etm(〈M〉) = EQtm(〈M〉#〈M∗〉). Etm accepts if and only if
L(M) = L(M∗) = ∅. Therefore Etm decides Lhalt, a contradiction, and so EQtm does not exist.

Exercise 27.10. The start domino must have the same first bit on top and bottom. The only possibility is d1,

d1 =
10

101

The next domino’s top first bit must be 1 and the remaining bits on top and bottom must match. That only leaves
d3,

d1d3 =
10

101

101

011
=

10101

101011

We have an extra 1 on the bottom so again, the next domino is d3. The argument repeats – you never get rid of the
extra 1 on the bottom. The only solution is d1d3d3d3 · · · , which is infinite. This instance of PCP has no solution.

Exercise 27.11. A domino is a pair n,m, n 1’s on top and m on the bottom. For input n1, n2, . . . , nℓ#m1,m2, . . . ,mℓ.
We give an algorithm to decide the problem. We encourage the reader to sketch the TM.
1: If ni > mi for all i or ni < mi for all i then reject.
2: accept

The algorithm tests if the top values are either all less than or all greater than the bottom values. It must halt.

We prove the decision is always correct. First suppose ni > mi (resp. ni < mi) for all i. Then the top string will always
be longer (resp. shorter) than the bottom string, and so it is not possible to have a match and reject is correct.

Now suppose ni ≤ mi for some i and nj ≥ mj for some j. The decision is accept. We show this is correct by finding a
domino sequence with matching top and bottom strings. If nk = mk for any k then dk is a solution. So, w.l.o.g., assume
n1 < m2 and n2 > m1. Consider d•(n2−m2)

1 d
•(m1−n1)
2 . The number of top-1s is n1(n2−m2)+n2(m1−n1) = m1n2−n1m2.

The number of bottom-1s is m1(n2 −m2) +m2(m1 − n1) = m1n2 − n1m2. These match.

Exercise 27.12.
(a) Use a second tape as the counter. Every time the TM M executes a transition instruction, it first moves right on

the counter tape and writes 1, then it performs its instruction. So, for every instruction, the counter tape will have
a 1. If a single tape TM is desired, merge the second tape with the first using the trick in Example 27.1.
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(b) Each step touches at most one new tape-slot, so at most n tape-slots are touched.
(c) First, come back to ∗. For every 1 on the counter move L one step. Now, for every 1 on the counter tape, move R

twice, each time erasing the tape (if you come to ∗, move R). All slots within n of ∗ are now erased.

Exercise 27.13. The homework should require programs to halt in a given number of steps (CPU-cycles or time).
Determining if a TM prints “Hello World!” and halts within a given number of steps is decidable. Simply simulate the
machine for that number of steps. If it halts, examine the tape for “Hello World!”. If it does not halt, reject.

Exercise 27.14.
(a) Let M and M recognize L and L respectively. We sketch a

decider for L. First, we show a failed attempt. One of M ,
M accept because either w ∈ L or w ∈ L. However, in step
1, M may infinite-loop (M is only a recognizer). In this case
D also infinite-loops and so is not a decider.

D = Flawed Decider for L that uses M and M

input: w (the input to M or M)

1: Run M on w; if M accepts, then accept.
2: Run M on w; if M accepts, then reject.

The solution is to interleave the running of M with M , and if either
accepts at any point in the interleaved execution, then perform the
appropriate action. To implement the interleaving, use a second tape.
Each time you switch machines, you switch tapes. Now, since one of
M , M must halt, D also halts. If w ∈ L, then M halts and accepts,
so D also accepts; If w 6∈ L, then M halts and accepts, so D rejects.
That is, D is a decider for L and L is decidable.

D = Decider for L that uses M and M

input: w (the input to M or M)

1: Run M for one step on w;
if M accepts, then accept.

2: Run M for one step on w;
if M accepts, then reject.

3: goto step 1.

(b) In (a) we proved: if L and L are recognizable then L is decidable. The contrapositive (which is equivalent) is:

if L is undecidable then it is not the case that L and L are recognizable.

This is exactly what was to be proved.
(c) Ltm recognized by Utm. Ltm is undecidable, therefore by (b) Ltm is unrecognizable.

Lhalt is recognizable (simulate and accept if the machine halts), but undecidable. So, by (b), Lhalt is unrecognizable.

Fact: Every undecidable problem L provides at least one unrecognizable problem (L or L).

Chapter 28

Exercise 28.1. At any stage, Mhalf ignores marked bits and proceeds as if the only bits present are the unmarked
bits.
(a) First, let k = ℓ. In the first scan. an equal number of 0’s and 1’s are marked, leaving fewer unmarked 0’s and the

same number of unmarked 1’s. By strong induction on the number of unmarked 0’s, all unmarked bits get marked.

Suppose k 6= ℓ. We use strong induction on the number of unmarked bits. If the number of unmarked bits is odd,
there is nothing to prove, hence base case with one unmarked bit is trivial. Suppose the number of unmarked bits
at the first scan is even. The number of unmarked 0’s and 1’s are both even or both odd. Consider each case.
(i) Both even: Suppose there are 2k unmarked 0’s and 2ℓ unmarked 1’s, with ℓ 6= k. After one scan, marking every
other 0 and 1, there will be k unmarked 0’s and ℓ unmarked 1’s, with k 6= ℓ. Since there are fewer unmarked bits,
by the induction hypothesis, an odd number of unmarked bits will occur and the algorithm will reject.
(ii) Both odd: Suppose there are 2k + 1 unmarked 0’s and 2ℓ + 1 unmarked 1’s, with ℓ 6= k. After one scan,
marking every other 0 and 1, there will be k unmarked 0’s and ℓ unmarked 1’s, with k 6= ℓ. Again, by the induction
hypothesis, at some point there will be an odd number of unmarked bits and the algorithm will reject.

In both cases, an odd number of unmarked bits occur proving the claim for n+1. So, the claim holds for all n ≥ 1.
(b) We give the sketch and analyze the runtime. Fix-

ing the size of the input, the worst case runtime
is for 0•n#1•n, because otherwise the algorithm
exits early with a reject. For 0•n#1•n, steps 1,2
and 3 can all be accomplished in a single scan of
the input, that is Θ(n) steps. Abusing notation a
little, the runtime is given by

number of executions of steps 2 and 3×Θ(n).

M = Efficient Turing Machine that solves {0•n#1•n}
input: Binary string w.
1: Check the input has the correct format and return to ∗.
2: Check the number of unmarked bits is even.

If not, reject.
If there are no unmarked bits, accept.

3: Mark every other unmarked 0 and every other unmarked 1.
goto step 2.

If the number of unmarked zeros is 2k or 2k+1 before step 3 is executed, then the number of unmarked zeros after
step 3 is 2k (see part (b)). That is, each time step 3 is executed, the number of unmarked 0’s drops by a factor
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of at least 2. If step 3 is executed m times, then the number of unmarked 0’s is at most n/2m, which will be less
than one if 2m > n. If the number of unmarked 0’s is less than one, the machine exits. This means the machine
exits after

⌊
1 + log2 n

⌋
steps and the worst case runtime is

⌊ 1 + log2 n ⌋ ×Θ(n) ∈ Θ(n log n).

Pop Quiz 28.2. log n,
√
n, n, n2 log n are all fast, upper bounded by n3 which is fast with λ = 8, because (2n)3 ≤ 8n3.

(log2 n)
log2 n, nlog2 n, 2

√
n, 2n are all not-fast because for n ≥ 220, they are all at least (log2 n)

log2 n, and we show, by
contradiction, that (log2 n)

log2 n is not fast. Suppose (log2 n)
log2 n is fast. So there is a function f(n) for which

(log2 n)
log2 n ≤ f(n) and f(2n) ≤ λf(n).

Because f is fast, f(2k) ≤ λf(2k−1) ≤ λ2f(2k−2) ≤ · · · ≤ λk−1f(2). Since f is an upper bound, f(2k) ≥ kk. Choose
any k > max(λ, f(2)). Then

f(2k) ≥ kk > kk−1 · k > λk−1f(2),
which contradicts f(2k) ≤ λk−1f(2). Therefore, (log2 n)

log2 n is not fast.

fast log n
√
n n n2 log n

not fast (log2 n)
log2 n nlog2 n 2

√
n 2n

Exercise 28.3. Let n = 2k, so k = log2 n. f(2k) = 2kf(2k−1)

= 2k2k−1f(2k−2)
= · · ·
= 2k2k−1 · · · 21f(20)
= 2k+(k−1)+···+1f(1)

= 2k(k+1)/2f(1)

= (2k)(k+1)/2f(1)

=
√
nlog2 n+1f(1).

Pop Quiz 28.4. Our algorithm assumes the input does not contain ␣ symbols.

1: Move to the end of the input and mark the last symbol.
2: Shift all marked symbols 1 step right

repeat, moving right, until you come to two blank symbols.
3: Move left to the first unmarked symbol.

Mark the symbol and got to step 2.
If you come to ∗, unmark all symbols.

We illustrate with input 0#0 on the right. For an input of size n, step 1 takes Θ(n) steps.
In steps 2 and 3, for k marked symbols, the work done is approximately 2k steps to shift
the marks and 2k steps to come back to an unmarked symbol, for a total of about 4k.
The number of marked symbols goes from 1 to n, and so the runtime is of this loop is

n∑

k=1

4k = 2n(n+ 1) ∈ Θ(n2).

The total run time is in Θ(n+ n2) which is in Θ(n2).

* 0 # 0 ␣ ␣ ␣ ␣ ␣
✓

* 0 # ␣ 0 ␣ ␣ ␣ ␣␣
✓

* 0 # ␣ 0 ␣ ␣ ␣ ␣␣
✓ ✓

* 0 ␣ # ␣ 0 ␣ ␣ ␣␣
✓ ✓

* 0 ␣ # ␣ 0 ␣ ␣ ␣␣
✓ ✓ ✓

* ␣ 0 ␣ # ␣ 0 ␣ ␣
✓ ✓ ✓

Pop Quiz 28.5. If Mtwo has implemented t steps, the heads are at most 2t slots right of their beacon (∗ or ** ). So,
move L until you find the beacon (at most 2t moves) and then move R until you find the head (another at most 2t
moves). The total number of steps is at most 4t ∈ O(t).

We assumed that the head is always right of the beacon (start point). Alternatively, in Mone, we can implement left
and right boundary markers, LB and RB, which mark the left most and right most points touched. You only need to
update LB if you move L from LB and similarly update RB if you move R from RB. Now, to find the head, move to one of
the boundary markers and then in the other direction until you reach the head. Again, this would be in O(t) steps.

Exercise 28.6.
(a) By Pop Quiz 28.4, step 1 takes O(n2) steps. All operations in Mone are constant time except for switch, which

runs in O(n) steps because Mtwo runs in Θ(n) steps (see Pop Quiz 28.5).
So, step 4 is O(n) steps and it’s done n times for O(n2) steps. Similarly for step 5. The total is O(n2) steps.

(b) The proof is analogous to (a). Reconfiguring the tape into odd and even slots requires O(n2) steps. Now, Mone

simulates each step of Mtwo, with the added complication of switch. In the worst case Mone must switch at every
step of Mtwo, which is at most t(n) switch’s. Each switch requires O(t(n)) steps (Pop Quiz 28.5), so the number
of steps spent switching is t(n)×O(t(n)) ∈ O(t(n)2) (abuse of O-notation). Once the switch is done, Mone simply
implements Mtwo’s instruction in O(1) steps, so it takes O(t(n)) steps to implement all Mtwo’s instructions.
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The total runtime is in O(n2 + t(n) + t(n)2). Notice that if Mtwo is trivial and immediately rejects, then the
overhead to reconfigure the tape, n2, dominates. Assuming Mtwo is non-trivial and at least examines its input,
then t(n) ≥ n in which case t(n)2 dominates and n2 + t(n) + t(n)2 ∈ O(t(n)2), completing the proof.

If you had a k-tape machine, the only difference in the analysis is that

(i) The overhead to reconfigure the tape into k interleaved tapes is kn2.
(ii) The switch takes O(kt(n)) steps.
(iii) An instruction of Mk on Mone takes O(k) steps (e.g. move R becomes move k steps R).

The runtime is O(kn2 + kt(n) + kt(n)2) ∈ O(kt(n)2) ∈ O(t(n)2) (since k is a constant).

Exercise 28.7.To prove a problem is decidable, we must sketch a Turing Machine for it.
(a) The idea is to try all permutations

of the vertices, sketched to the right.
The algorithm has non-trivial steps,
e.g. listing every permutation of the
vertices. If there is one vertex it is
easy. If there are n, you can solve the
problem “recursively”: for each vertex
v, list the permutations of the other
n− 1 vertices and prepend v to each.

M = Decider for hamiltonian-path

input: Encoding of a graph, 〈G〉.
1: Check that the input has the correct graph-format and return to ∗.
2: List every permutation of the vertices to the right of the graph input

(with a punctuation character # to separate each permutation).
3: Process each permutation vi1vi2 · · · vin

Check that consecutive vertices (vik , vik+1) are an edge.
If every edge exists accept; otherwise try the next permutation.

4: If you didn’t accept for any permutation, reject

(b) The idea in the sketch is to try all subsets of
the vertices of size

⌈
n/2

⌉
. Again, you may

wonder how to list out every
⌈

n
2

⌉
-subset.

This would be equivalent to listing out all
binary strings of n bits with exactly

⌈
n
2

⌉

1’s. Again it can be done recursively, listing
the binary strings with n − 1 bits and

⌈
n
2

⌉

1’s and then prepending 0, plus the binary
strings with n− 1 bits and

⌈
n
2

⌉
− 1 1’s and

then prepending 1.

M = Decider for clique

input: Encoding of a graph, 〈G〉.
1: Check the input is a graph and return to ∗.
2: List every

⌈
n
2

⌉
-subset of the vertices to the right of the graph

input (with a punctuation character # to separate each subset).
3: Process each subset of the nodes: vi1vi2 · · · vi⌈n/2 ⌉

Check every pair of vertices (u, v) in the subset is an edge.
If every edge exists accept; otherwise try the next subset.

4: If you didn’t accept for any subset, reject

We did not get into some of the algorithmic details of our deciders, and it is clear that we have taken a very lazy
approach to solving the problem. Essentially, try all possibilities, and if one works accept. If none work reject.
These deciders take a very long time, but they always halt. For hamiltonian-path, the number of permutations is n!
which is super-exponential. For clique, the number of subsets is

(
n

n/2

)
. For n even,

( n
n
2

)

=
n(n− 1)(n− 2) · · · (n+ 1− n

2
)

n
2
(n
2
− 1)(n

2
− 2) · · · (n

2
− (n

2
− 1))

= 2× 2
n− 1

n− 2
× 2

n− 2

n− 4
· · · × 2

n− (n
2
− 1)

n− (n− 2)
≥ 2n/2.

So, the number of subsets is super-polynomial. Neither of our TMs have polynomial runtime.

Exercise 28.8.
(a) Try every factor p from 2 to n − 1. If none

work, reject. Otherwise output the factor.
The ✘ marks p. Each time p fails, it incre-
ments by 1 in step 4. Step 5 tests if p divides
n. We analyze the runtime of Munary.

1: One scan, in Θ(n).
2: n zig-zags of Θ(2n) steps for Θ(n2).
3: As we are already at #, this is O(1) steps.
4: O(n) to find the ✘; this step is repeated

at most n times, for O(n2) in total.
5: p zig-zags repeated about n/p times for

p× 2(n+ p)× n/p ∈ Θ(n2) steps.

Step 5 is run at most n times, once for each
p, which is O(n3) steps.

Munary=Transducer to compute a factor of n.

input: 1•n. Assume n ≥ 2.
1: Check the input format and place a # at the end.
2: Copy the input 1•n to the right of the #.
3: Mark the first 1 after the # (p = 1) with an ✘.
4: Move the ✘ one step R (p← p+ 1).

If ␣ is to the right of ✘, you came to p = n. reject.
5: Mark an unmarked left 1 for each right 1 from # up to ✘.

if you run out of left 1’s (p does not divide n),
erase all left marks and goto step 4.
if there are no left 1’s which remain unmarked (p divides n),

erase all 1’s after the ✘ and accept.
if left 1’s remain unmarked (continue “dividing” by p),

repeat step 5.

Step 5 dominates, so the worst case runtime is in O(n3), polynomial in n. One can make this algorithm more
efficient, for example only test factors up to

√
n. Making algorithms more efficient is the dominant goal of an

algorithms course. Our concern was to get a polynomial runtime, any polynomial.
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(b) We use a particularly lazy approach. First
compute the unary representation of wn and
then run the algorithm from part (a) on this
unary representation.
Step 1 is non-trivial, converting binary to
unary. Let wn = bk−1bk−2 · · · b1b0 be the
k bits of wn, where bk−1 = 1. Going from
i = 0 to k − 1, if bi=1, you add 2i−1 1’s to
the unary representation.

Mbinary=Transducer to compute a factor of n.

input: wn, n in binary. Assume n ≥ 2.
1: Compute wn in unary and write 1•n to the left of ∗.
2: Run the TM Munary on the left of ∗ (replacing L↔ R).
3: If Munary rejects, reject.
4: If Munary accepts,

Compute the binary wp for the unary p from Munary.
Copy wp to the right of wn. Erase the tape left of ∗.

We encourage the reader to construct a TM for binary-to-unary conversion. The details are not essential here.
Since wn = bk−1bk−2 · · · b1b0 and bk−1 = 1, n ≥ 2k−1 = 2|wn|−1. We know that Munary uses at least n ≥ 2|wn|−1

steps, which is a lower bound on the runtime of Mbinary. The additional steps like the binary to unary conversion
can only add more to the runtime. Hence, the runtime of Mbinary is at least exponential, which is non-polynomial.

We emphasize the difference between the natural parameter in the problem, n, and the length of the input to the TM.
Runtimes refer to the length of the input. In (a), the natural parameter and the length of the input are comparable,
equal to n and so a polynomial TM will have runtime which is polynomial in n (the length of the input).

In (b), the input is wn, which is the binary representation of n. This input has length log2 n, and so a polynomial
TM for the problem with the input formatted in binary must have a runtime that is polynomial in log2 n (for example
log132 n would work). Our runtime in (b) is at least 2log2 n−1 which is not polynomial in log2 n.

You may also be astounded by the stupidity of our algorithm in (b). Yes, it is stupid, but not far off from reality.
Nobody has found a factoring-algorithm that is a polynomial in log2 n. So our simple algorithm is not that far off from
the best we know. Be the first to find an algorithm which is polynomial in log2 n and fame will come.

Chapter 29

Pop Quiz 29.1.
(a) yes : For A = {5, 11}, sum(A) = 16 ≥ 15 = 1

2
sum(S)

(b) no : It is not obvious how to prove a no-answer. The simplest “proof” is to
list out all the possible subset-sums. We used the simple program on the right
to create this list of possible subset-sums. The idea is to start with 0, and add
each value in S to the current possible subset-sums (removing duplicates). The
possible subset-sums are:

0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30.

Observe that 15 is not one of the possible subset-sums.
(c) yes : sum(S) = 30 and 3 + 6 + 6 = 15 (also 2 + 11 + 2 = 15).

X=SubsetSum(S)
//S = {s1, . . . , sn}
1: X = {0};
2: for i = 1 to |S| do
3: XS ← {};
4: for j = 1 to |X| do
5: add si +xj to XS;

6: X ← X ∪XS;
7: return X;

Exercise 29.2.
(a) 001101.
(b) The evidence would be an encoding of all subsets. The certifier would check each subset’s sum to verify that it does

not work. Since there are exponentially many subsets, the evidence is exponential and the runtime is exponential.
(c) Let n be the number of elements in the input S. Assume that the runtime of the certifier (given the input) is a

polynomial p(n). To solve a problem with input S, run the certifier with every possible setting for the certificate
(n-bit string). If any certificate verifies to yes then accept. If no certificate verifies to yes then reject.

There are 2n possible certificates, so the runtime is 2np(n), not polynomial. (The input-length is related to n.)

Exercise 29.3.
(a) Easier to prove yes . The evidence is the subset; the proof checks that the subset-sum is k.
(b) Easier to prove yes . The evidence is the clique; the proof checks that there are at least k clique-vertices and there

is an edge between every pair of vertices in the clique.
(c) Easier to prove yes . The evidence is an assignment of colors to every vertex; the proof checks that there are at

most k different colors and that every edge has two vertices of different colors.
(d) Easier to prove no . The evidence is integers p, q; the proof checks p, q > 1 and pq = n.

The yes -answer can also be proved quickly because the AKS-test (proved in 2002) shows that IsPrime ∈ P. If you
can solve a problem in polynomial time, you can prove either answer in polynomial time. Still, no is much easier.

(e) Easier to prove yes . The evidence is an isomorphism f from G1 to G2; the proof checks that the number of
vertices and edges match and for each edge (u, v) ∈ G1, (f(u), f(v)) ∈ G2.
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Pop Quiz 29.4. The valid inputs have length 1
2
n(n− 1) = 0, 1, 3, 6, 10, 15, 21, 28, 36, . . ..

(a) 12 is not a valid input length. (b) 1

2

3

4

5

6

7

Pop Quiz 29.5. We may use multi-tape TMs because a polynomial multi-tape TM can be simulated by a polynomial
single-tape TM. The first phase checks that e has at least k 1’s.
1: Initialize a second tape with one 1.
2: Mark the rightmost unmarked bit of k as the current bit. If there are no bits of k to mark this first phase is a

success.
3: If the marked bit is 0, goto step 2.

If the marked bit is 1, Mark as many unmarked 1’s in e as there are 1’s on the second tape.
If you run out of 1’s in e, reject.

4: Double the number of 1’s on the second tape and goto step 2.

In the algorithm above the number of 1’s on the second tape is 2i−1 when bit i of k is processed. The head on the
main tape just moves right along the evidence e, marking 1’s, making at most n steps in total. The expensive step
is doubling the number of 1’s on the second tape. If there are 2i−1 1’s then adding another 2i−1 1’s takes Θ((2i−1)2)
steps. Let ℓ be the number of bits in k, then the work in doubling is in Θ(

∑ℓ
i=1 2

2i−2) = Θ( 1
3
(4ℓ)). Since k ≤ n, it

means 2ℓ ≤ n and so the total time spent in step 4 is in Θ(n2).

Assume phase 1 succeeds. In phase 2 the algorithm ensures that an edge is present between every pair of vertices in
the clique. Equivalently, for every edge not present, we ensure that pair of vertices are not both present in e. Our
algorithm needs to mark each edge while simultaneously keeping track of which pair vertices in e that edge connects.

On the right, we illustrate the algorithm keeping track of the node-pairs as it walks
through the edgdes on

1: Mark the first edge e1 and the first two vertices in e.
2: If the last edge marked is 0, reject if both marked vertices are 1.
3: Mark the next edge. If there are no more, accept
4: Update the vertex marks and goto step 2.

To update the vertex marks, move the ✘ one right.
If the ✘ cannot move right,

move the ✓ one right and the ✘ to the right of the ✓.

Walking through the edges one step at a time is 1
2
n(n− 1) steps. For each edge, you

move right to the ✘ and update it. Finding the ✘ is O(|〈G〉|) since |〈G〉| dominates the
size of the input, and updating is O(n). So, there are 1

2
n(n−1) steps each taking O(n2)

time, for a total of O(n4) time, which dominates the runtime of the entire algorithm.
The runtime is in O(n4). The input size is in Θ(n2), so it’s a quadratic algorithm.

✓

1010110101 # 11 #
✘

1
✘

1010
✓

1
✓

010110101 # 11 #
✘

11
✘

010
✓

1
✓

0
✓

10110101 # 11 #
✘

110
✘

10
✓

1
✓

0
✓

1
✓

0110101 # 11 #
✘

1101
✘

0
✓

1
✓

0
✓

1
✓

0
✓

110101 # 11 # 1
✘

1
✘

010
✓

1
✓

0
✓

1
✓

0
✓

1
✓

10101 # 11 # 1
✘

10
✘

10
✓

1
✓

0
✓

1
✓

0
✓

1
✓

1
✓

0101 # 11 # 1
✘
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✘

0
✓

1
✓

0
✓

1
✓

0
✓

1
✓

1
✓

0
✓

101 # 11 # 11
✘

0
✘

10
✓

1
✓

0
✓

1
✓

0
✓

1
✓

1
✓

0
✓

1
✓

01 # 11 # 11
✘

01
✘

0
✓

1
✓

0
✓

1
✓

0
✓

1
✓

1
✓

0
✓

1
✓

0
✓

1 # 11 # 110
✘

1
✘

0

Exercise 29.6.
(a) Coloring: The evidence e is a set of colors, 1, 2, . . . , ℓ and a color assignment to each vertex. Since ℓ ≤ n, we

need log2 n bits to encode each color and ℓ log2 n ≤ n log2 n bits to encode all the colors. The color assignments to
each vertex also requires at most n log2 n bits. So the |e| is polynomial. The certifier checks that the number of
colors ℓ is at most k. Then the certifier processes each edge (u, v) and verifies that the colors assigned to u and v
are different. The certifier is polynomial because it does polynomially many things, each taking polynomial time.

(b) Any problem in P has a polynomial decider. The certifier is just this polynomial decider with no evidence e = ε.
Any polynomial time decider is a polynomial time verifier of yes .

Pop Quiz 29.7. The second automaton is the first one with yes and no states switched. Yet, strings accepted by
the first automaton are not necessarily rejected by the second and vice versa.

first automaton second automaton
ε 0 1 00 01 10 11 ε 0 1 00 01 10 11

no yes yes yes yes no yes yes yes no yes yes yes yes

For the complement, you can’t just swap accept and reject states. For example, if (say) 2 of 4 computation paths accept,
when you exchange yes and no states, 2 of 4 computation paths still accept, so you accept. There is asymmetry
between accept and reject. To accept, one path must accept. To reject, all paths must reject. To solve the complement
language, you first get an equivalent DFA using subset states (Exercise 24.7), and then flip yes and no states.
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Pop Quiz 29.8. The deterministic instruction is:
“If in q1 and bit 0 is read, transition to q3, write ‘1’ and move R.”
The non-deterministic instruction is:
“If in q1 and bit 0 is read, transition to one of the states q0, q1, q3
(which?), write 0 or 1 (which?), and move R or L (which?).”
The non-deterministic machine gets to try all of these choices, so there
are 2 × 2 × 3 = 12 possible choices. The computation splits into 12
possible branches as shown on the right.
In keeping with the tradition for non-deterministic automata, the non-
deterministic TM will accept if any one of these branches accepts.

state: q0
input: 0

write
✓

0; state q0; move R

write
✓

0; state q1; move R

write
✓

0; state q3; move R

write
✓

0; state q0; move L

write
✓

0; state q1; move L

write
✓

0; state q3; move L

write 1; state q0; move R

write 1; state q1; move R

write 1; state q3; move R

write 1; state q0; move L

write 1; state q1; move L

write 1; state q3; move L

Pop Quiz 29.9. (a) y = (1 ∧ 0) ∧ (1 ∧ 1) = 0 ∧ 1 = 0. (b) Yes. x1x2 = 01.

Exercise 29.10.
(a) Given input w and evidence e of length p(n), the certifier M runtime is t(n), a polynomial in n. By Theorem 29.4

in time poly(t(n)), we construct a circuit of size poly(t(n)) which is fed into the black-box. The runtime of the
black-box is polynomial in the size of its input, therefore, the runtime of the black-box is poly(poly(t(n))). So,

total runtime = time to create circuit + time to run the black-box = poly(t(n)) + poly(poly(t(n))),

which is polynomial because a polynomial evaluated on a polynomial is a polynomial.

(b) We must construct different certifier circuits for each evidence length from 0, 1, . . . , p(n). So, we need to run the
black-box p(n) times, for each of the p(n) circuits, which essentially multiplies the polynomial running time by
p(n). Since the product of polynomials is a polynomial, the runtime remains polynomial.

Note that if you wish to only use the black-box just once, you can take each of the p(n) circuits and send them
through a massive p(n)-way or. Feed this gigantic circuit (which is only about p(n) times bigger than the one in
(a)) into the black-box. If the black-box says the circuit is satisfiable, then one of the smaller circuits is satisfiable.
If the black-box says the circuit is not satisfiable, then none of the smaller circuits is satisfiable.

Exercise 29.11.
(a) We give two different types of and circuits, illustrating the constructions for ℓ = 8.

x1 x2 x3 x4 x5 x6 x7 x8

∧ ∧ ∧ ∧ ∧ ∧ ∧

and

x1 x2 x3 x4 x5 x6 x7 x8

∧ ∧ ∧ ∧
∧ ∧

∧

and

In both circuits, the number of and-gates used is ℓ− 1. The number of gates used is called the size of the circuit,
so the sizes of our circuits are ℓ−1. A circuit is a directed graph. The depth of a circuit is the length of the longest
path. The main difference between our two circuits is the depth. On the left, the depth is ℓ − 1, linear in ℓ. You
should convince yourself that the circuit on the right has depth

⌈
log2 ℓ

⌉
, logarithmic in ℓ.

Processor-chips are implemented using gates, starting with building blocks like multi-input-and, adders, multipliers,
sorters, etc. Designing circuits to accomplish tasks while minimizing size and depth are important considerations
for efficienct chip-design. Circuit complexity theorists study the minimum size and depth requirements for certain
basic operations which are primitives of more complex operations. We know quite impressive designs for many
basic operations, but surprisingly little about the best one can do, even for basic operations.

(b) We begin with the primitive task of moving a 1 all the way to the left. To
simplify, consider n = 2 (two input bits). On the left is a circuit for 2 input
bits. Verify the input-output table on the right to confirm that this circuit
shifts the 1 to the left. This circuit also sorts two input-bits. Let us denote
this circuit as the bubble-left (bl) “gate”. The 1 in the input bubbles “up” to
the left. We now combine bl-gates to build a circuit that shifts a 1 (if there
is a 1) all the way to the left of an n-bit string. This is a shift-l circuit.

x1

∨

y1

x2

∧

y2 input output
x1 x2 y1 y2
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Suppose we have a shift-l circuit for n− 1 bits. For the n bits x1, . . . , xn, apply the shift-l circuit to x2, . . . , xn.
Now, if there is a 1 in x2, . . . , xn, it will be on the left, at position x2. Applying the bl-gate to x1 and the output
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at the x2 position will move the 1 at the x2-position to the left. Here is an illustration for a 4-bit input.

shift-l(4)

x1

y1

x2

y2

x3

y3

x4

y4

shift-l(3)

bl

x1

y1

x2

y2

x3

y3

x4

y4

shift-l(2)

bl

bl

x1

y1

x2

y2

x3

y3

x4

y4

= =

In the second step, we recursively applied the construction to shift-l(3). Observe that shift-l(2) is just a bl-gate,
and so shift-l(4) is just a cascade from right to left of 3 bl-gates. In general, shift-l(n) is a cascade from right
to left of n− 1 bl-gates. Since a bl-gate consists of two ∧/∨ gates, shift-l(n) uses 2n− 2 gates. The proof is by
induction. The base case is shift-l(2) which is just a bl-gate that uses 2 ∧/∨ gates. For the induction, assume
shift-l(n) uses 2n − 2 gates; by our construction, shift-l(n + 1) adds one bl-gate to shift-l(n), adding 2 ∧/∨
gates, resulting in a total of 2n gates. The two important properties of shift-l(n) that we need are:

Lemma 30.9. Let (y1, . . . , yn) = shift-l(n)(x1, . . . , xn). Then,

(i) (y1, . . . , yn) and (x1, . . . , xn) have the same number of 1’s;
(ii) if (x1, . . . , xn) contains a 1, then y1 = 1.

In words, shift-l(n) outputs a permutation of its input with at least one 1 having “bubbled-up” all the way to the
left. Tinker and confirm that shift-l(4) on 0111 gives 1011. The proof of the lemma is by induction.
Proof. The base case is shift-l(2) for which the claim is true by inspecting the input-output table for the
bl-gate. Suppose the claim holds for shift-l(n) and consider shift-l(n + 1) applied to (x1, x2, . . . , xn+1) in two
steps. First apply shift-l(n) to (x2, . . . , xn+1) to get (y′

2, y3, . . . , yn+1). Now apply the bl-gate to (x1, y
′
2) to

get (y1, y2). By the induction hypothesis, both operations preserve the bits, so the result is a permutation. We
prove the contrapositive of (ii). If y1 = 0, then, from the input-output table of the bl-gate, the only possibility is
x1 = y′

1 = 0. If y′
1 = 0, then by the induction hypothesis there were no 1’s in (x2, . . . , xn+1), for if there were 1’s,

the application of shift-l(n) would make y′
1 = 1. Thus, if y1 = 0, then x1 = x2 = · · · = xn+1 = 0, that is there are

no 1’s in the input (the contrapositive of property (ii)). Therefore, properties (i) and (ii) hold for shift-l(n+ 1),
and the lemma follows by induction.
We now use shift-l(n) to construct the sorter. The idea is simple. Repeatedly shift
a 1 to the left. Eventually, all the 1’s will be on the left. This idea is illustrated on
the right for 4 inputs. For an n-bit input, the number of gates in the sorter is

2 + 4 + · · ·+ 2(n− 1) = 2
n−1∑

i=1

i = n(n− 1) ∈ Θ(n2).

It is helpful to see how the sorter works on input 0111.

0111 1011 1101 1110
shift-l(4) shift-l(3) shift-l(2)

We need all the layers of shift-l, because intermediate outputs may not be sorted.

shift-l(4)

shift-l(3)

shift-l(2)

x1

y1

x2

y2

x3

y3

x4

y4

Observe that in each application of shift-l, a 1 “bubbles-up” to the left. You may have seen bubble-sort in earlier
programming courses. Here is circuit version of bubble-sort. We now prove the sorter works.

Theorem 30.10. Our construction produces a sorter using Θ(n2) ∧/∨ gates.

Proof. The proof is by induction, based on the observation that our sort(n)
circuit is composed of a shift-l(n) circuit followed by a sort(n−1) circuit applied
to the last n − 1 outputs of the shift-l(n) circuit, as illustrated for n = 4 on the
right. The shift-l(n) circuit moves a 1 to the left, which becomes the output y1.
By the induction hypothesis, we assume that sort(n− 1) works, which means that
its output is 1’s followed by 0’s, which become the outputs y2, . . . , yn. Therefore
the full output y1, . . . , yn is 1’s followed by zeros, which is sorted as required.

shift-l(4)

sort(3)

x1

y1

x2

y2

x3

y3

x4

y4

One

of the undesirable features of our sorter is that its depth is in Θ(n). You may now try to find a sorting circuit with
smaller depth.

Pop Quiz 29.12.
(a) The first three bits after sorting are 1, so the and after the sorter outputs 1. It suffices to show that every input

to the and in the clique-verifier is 1: C1,2 = C1,3 = C1,4 = C1,5 = 1 because x1 = 0; C2,3 = 1 because e2,3 = 1;
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C2,4 = 1 because e2,4 = 1; C2,5 = 1 because x5 = 0; C3,4 = 1 because e3,4 = 1; C3,5 = C4,5 = 1 because x5 = 0.
The output being 1 means that 01110 is a clique of size at least 3 in the graph 1010110101.

(b) Each circuit Ci,j uses 2 gates, and there are 1
2
n(n− 1) of those for a total of n(n− 1) gates, where n is the number

of vertices. (we usually exclude not-gates from the size of a circuit. If you counted not-gates, it is not a big deal.)
The and in the clique-verifier therefore needs 1

2
n(n− 1)− 1 gates, so the size of our clique verifier is 3

2
n(n− 1)− 1.

The sorter uses n(n− 1) gates and the and after the sorter uses k − 1 gates. So the total number of gates used is
5
2
n(n− 1) + k − 2 ∈ Θ(n2).

The input size is in Ω(n2), so the verifier size is linear in the input size. For n = 5 and k = 3, our formula evaluates
to 51 gates. (If you counted not-gates, your should get 71 gates.)

Exercise 29.13. We mimic the Clique-verifier. The only difference is the primitive circuit
Ci,j which ensured the “clique-condition”. Here, we must ensure the “independent set-
condition”. For the clique-condition, the circuit Ci,j verified that if vertices i, j are in the
clique, then edge ei,j is in the graph. For the independent set-condition, it is the opposite:
if vertices i, j are in the independent set, then edge ei,j is not in the graph. That is, for the
IndSet problem, Ci,j computes ei,j ∨ xi ∨ xj (as opposed to ei,j ∨ xi ∨ xj for the Clique
problem). Equivalently, we want Ci,j to compute ei,j ∧ xi ∧ xj . We give a circuit which im-
plements this independent set-condition on the right. The rest of the circuit, including the
size-verifier, is identical to that for Clique.

Ci,j

ei,j xi xj

∧

∧

¬

Pop Quiz 29.14. We use direct proof to prove, for every L ∈ NP,
if L∗ is polynomialy solvable, then L is polynomialy solvable.

Suppose L∗ is polynomialy solvable and consider any L ∈ NP. Since (29.3) is t, it means CircuitSat is polynomialy
solvable. Since CircuitSat is NP-complete (claim in (29.2)), it means L is polynomialy solvable.

Pop Quiz 29.15.
(a) There is nothing to prove because 1 means t and 0 means f.
(b) Suppose u = v, so u = v = 0 or u = v = 1. In both cases, (u ∨ v) and (u ∨ v) are t, u = v → (u ∨ v) ∧ (u ∨ v).

Now suppose (u ∨ v) ∧ (u ∨ v) is t. If u = 1, then for (u ∨ v) to be t, v = 1 so u = v. If u = 0, then for (u ∨ v) to
be t, v = 0 so u = v. In both cases v = u, therefore (u ∨ v) ∧ (u ∨ v)→ u = v.
You may wonder how we got this equivalent logical expression to u = v. So, we take this
opportunity to introduce two fundamental representations of Boolean functions in computer
science: the disjunctive normal form (DNF) which is an or of ands and the conjunctive normal
form (CNF) which is an and of ors. Both representations are based on the truth-table for
u = v shown on the right.

u v u = v?

0 0 t
0 1 f
1 0 f
1 1 t

For u = v to be t, either u = 0 and v = 0 or u = 1 and v = 1. That is,
u = v is equivalent to (u ∧ v) ∨ (u ∧ v) (DNF)

For u = v to be f, either u = 0 and v = 1 or u = 1 and v = 0. That is,
u = v is equivalent to (u ∧ v) ∨ (u ∧ v)

This means u = v is equivalent to (u ∧ v) ∨ (u ∧ v). We now use De Morgan’s laws for negation, namely

A ∨B
eqv≡ A ∧B and A ∧B

eqv≡ A ∨B to get
u = v is equivalent to (u ∨ v) ∧ (u ∨ v) (CNF)

(c) Suppose u = v ∨ w. There are four cases corresponding to (v, w) being (0, 0), (0, 1), (1, 0), (1, 1). In each case
(u ∨ v) ∧ (u ∨ w) ∧ (u ∨ v ∨ w) is t.
Now suppose (u ∨ v) ∧ (u ∨w) ∧ (u ∨ v ∨w) is t. If u = 1, then for (u ∨ v ∨w) to be t, (v ∨w) must be t, that is
u = v ∨ w. If u = 0, then for (u ∨ v) to be t, v = 0 and for (u ∨ w), w = 0. So v ∨ w = 0, i.e. u = v ∨ w.
It is a useful exercise to recover this logical expression for u = v∨w from its truth-table using the CNF construction.

(d) This follows from (c) because u = v ∧ w if and only if u = v ∧ w
eqv≡ v ∨ w. So, we get the expression in (c) with

u, v, w replaced by u, v, w.
Pop Quiz 29.16. clause 1 clause 2 clause 3 clause 4

y x x z → (x, y, z) = (f,t, f);
y x z z → (x, y, z) = (f,t, f);
z x x y → (x, y, z) = (f, f,t);
z z x y → (x, y, z) = (f, f,t);

Exercise 29.17. Only problems in NP can be NP-complete. So when trying to show that a problem is NP-complete,
you should always verify first that the problem is in NP.
(a) We know Clique ∈ NP. For the NP-complete problem L∗, we choose IndSet. We show that IndSet is polynomialy

reducible to Clique. Recall the complement graph G to a graph G. The complement graph is obtained from the
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original graph by removing all existing edges and adding all other edges:

(u, v) is an edge in G↔ (u, v) is not an edge in G.

An independent set in the graph is a clique in the complement graph and vice versa. Therefore, G has an
independent set of size k if and only if the complement graph has a clique of size k. If we have a black-box which
polynomialy solves Clique, we can solve IndSet by using the black-box on the complement graph. Therefore,

Theorem 30.11 (Clique is NP-complete). If Clique ∈ P, then IndSet ∈ P.

(b) First, VertexCover is in NP: check each edge to verify in polynomial time whether a set is a vertex cover – every
edge should have at least one end in the vertex cover; all that remains is to check the size of the vertex cover. So,
a yes -instance of VertexCover can be polynomialy verified given the evidence, which is the vertex cover.

We polynomially reduce from the NP-complete problem L∗ = IndSet to VertexCover. Assume a graph has n
vertices V = {v1, . . . , vn}, and let S ⊆ V be a subset of the vertices. The complement of S is S = V − S.

Lemma 30.12. S is an independent set of size k if and only if S is a vertex cover of size n− k.

Proof. Suppose S is an independent set of size k. Consider any edge e. If both endpoints of e are in S then S is
not an independent set (there cannot be an edge between any two vertices in S). Therefore at least one endpoint
of e is in S. Since e is arbitrary, every edge has at least one endpoint in S, and so S is a vertex cover of size n− k.

Suppose S is a vertex cover of size n− k. Now consider any pair of vertices in S. If there is an edge between these
two vertices, then that edge does not have an endpoint in S, contradicting S being a vertex cover. Therefore no
pair of vertices in S is adjacent and so S is an independent set of size k.

Given a black-box to solve VertexCover, we solve IndSet with size k by running the black-box on the same
graph with size n− k (seeking a vertex cover of size at most n− k). Lemma 30.12 assures us that this works.

Theorem 30.13 (VertexCover is NP-complete). If VertexCover ∈ P, then IndSet ∈ P.

Exercise 29.18.
(a) This is an NP-completeness reduction from a general problem (Clique) to a restriction of the problem to special

cases (in BigClique, k must be large). We need to show that if we have a polynomial black-box that solves
BigClique we can polynomialy solve Clique.

Consider any instance G, k of Clique and suppose G has n vertices v1, . . . , vn. We cannot use our black-box to
solve this problem because k may be too small. Our solution is to convert this clique problem to another equivalent
one with a large k. Construct a new graph G′ by adding n new vertices w1, . . . , wn to G. Also add edges from
every w-vertex to every other vertex in G′. Clearly, it takes polynomial time to construct G′ from G.

Given a k-clique in G, its vertices plus all the w-vertices are a (k+n)-clique in G′. Further, every (k+n)-clique in
G′ contains at least k v-vertices which are all connected to each other and so contain a k-clique in G. Therefore,

Lemma 30.14. G contains a k-clique if and only if G′ contains a (k + n)-clique.

Here is an algorithm for Clique. First construct G′. Now run the black-box on G′ with k′ = k+n (which is larger
than half the vertices in G′). Output the answer yes / no from the black-box. The Lemma ensures correctness.

(b) We use a polynomial black-box for FreqItems to polynomialy solve Clique.2 Hence, FreqItems is NP-complete.
Given inputs G = (V,E) and k to Clique, construct an input to FreqItems (binary matrix A, popularity n and
basket-size ℓ). Run the black-box on this input to FreqItems. The answer tells if G has a k-clique.

Customers are vertices in G and items are edges in G. Each vertex (customer) buys an edge (item) if the customer
is not an end point of the edge. Here is an example. The input to Clique is on the left; A is on the right.

G; k = 4 A;n = 2, ℓ = 6

1

2 3

4

5 6

(1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (3, 4) (4, 6)

1

2

3

4

5

6

cu
st

om
er

s
(n

od
es

)

items (edges)

0 0 0 0 1 1 1 1

0 1 1 1 0 0 1 1

1 0 1 1 0 1 0 1

1 1 0 1 1 0 0 0

1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 0

We highlighted a solution to FreqItems with a basket of size ℓ = 6 bought by n = 2 customers. The other 4
customers (nodes) must form a 4-clique in G because the 6 edges in our basket (bought by two customers) have

2FreqItems is more general than BalancedBipartiteClique which is the NP-complete problem GT24 in the Garey &
Johnson book Computers and Intractability. A more general problem cannot be easier.
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endpoints among the 4 customers who did not buy the edges. The maximum number of edges in a group of 4
vertices is 6, which can only be so if every edge is present. That is, those 4 vertices are a 4-clique.

For a general instance of Clique, we construct an instance A of FreqItems as we described. Now run our black-
box on A with n = |V |−k and ℓ = 1

2
k(k− 1) to get the answer to the instance of Clique. The next lemma proves

the answer is correct. Further, since the black-box is polynomial, the entire solution to Clique is polynomial.

Lemma 30.15. There is a k-clique in G = (V,E) if and only if the instance A of FreqItems that we constructed
has a basket of size 1

2
k(k − 1) which is bought by |V | − k customers.

Proof. Suppose there is a k-clique in G = (V,E). In A, the 1
2
k(k − 1) edges in the k-clique is a basket of edges

which is bought by each of the |V | − k vertices (customers) not in the clique.

Suppose A has a basket of size 1
2
k(k − 1) which is bought by |V | − k customers. Those 1

2
k(k − 1) edges in the

basket only connect to the k customers who did not by the basket. Therefore, those k customers are a subgraph
with 1

2
k(k − 1) edges, which can only be the case if every edge is present, and they form a k-clique in G.

Let us summarize the general methodology for proving a problem is NP-complete.

To show L is NP-complete using the NP-complete problem L∗

1: Start with a general instance I∗ of L∗.
2: Construct an instance I of L from I∗, in polynomial time.
3: Show that I∗ ∈ L∗ if and only if I ∈ L.
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