Quiz 3

60 Minutes

First Name: \qquad
Last Name: \qquad RIN: \qquad

NO COLLABORATION or electronic devices.
Any violations will result in an \mathbf{F}.
No questions allowed during the test unless you think there is a mistake.

GOOD LUCK!

Circle at most one answer per question.
10 points for each correct answer.

You MUST show CORRECT work to get credit. Correct answers with no explanation will get a 0 .

Final Score: ___ / 200

1. Consider the sets $A=\{0,1\}$ and $B=\{3,4,5\}$. Which function is an injection from A to B ?

A $f(0)=0, f(1)=1$
B $f(0)=3, f(1)=\{4.5\}$
C $f(0)=3, f(1)=4$
D $f(0)=3, f(1)=3$
E None of the above.
2. Consider the sets $A=\{0,1\}$ and $B=\{3,4,5\}$. Which function is a surjection from A to B ?

A $f(0)=0, f(1)=1$
B $f(0)=3, f(1)=\{4,5\}$
C $f(0)=3, f(1)=4$
D $f(0)=3, f(1)=3$
E None of the above.
3. Consider the real intervals $A=[0,1], B=[2,4]$. Which function is a bijection from A to B ?

4. Consider the set $A=\mathbb{N} \times \mathbb{N}$ of pairs of natural numbers. What do we know about A ?

A A is uncountable.
B A is countable.
(C A is finite.
D A has the same cardinality as the real interval $[0,1]$.
E None of the above.
5. Which of the following sets is not countable?

A The set of all natural numbers.
B The set of all rational numbers.
C The set of all C programs.
D The set of all Turing Machines.
E They are all countable.
6. How do we know there are functions we cannot compute?

A The set of all functions is infinite, but countable.
B The set of all programs is uncountable.
C The set of all programs is countable, but the set of all functions is uncountable.
D All functions can be computed.
E None of the above.
7. How many injections from $\{1,2\}$ to $\{1,2,3,4,5\}$ are there?

A	20
B	32
C	4
D	30
E	None of the above.

8. What is the relationship between regular expressions and regular languages?

A There exist regular languages which cannot be described with a regular expression.
B There exist non-regular languages which can be described with a regular expression.
C Regular languages is the set of languages that can be described with regular expressions.
D All languages are regular.
E None of the above.
9. Consider the language $\mathcal{L}=\{0,001\}^{*}$. Which string is not in \mathcal{L} ?

A 00
B 01
C 0000001
D 000000000001
E They are all in \mathcal{L}.
10. Consider the language $\mathcal{L}=\{01,10\}^{*}$. What do we know about \mathcal{L} ?

A \mathcal{L} contains all strings with the same number of 0 s and 1 s .
B \mathcal{L} contains all strings that start with a 0 or a 1 .
C \mathcal{L} contains all even-length strings.
D \mathcal{L} is finite.
E None of the above.
11. Consider the DFA on the right. What is the language decided by this machine?

A $\mathcal{L}=\{00\}$
B $\mathcal{L}=\{00\}^{*}$
C $\mathcal{L}=\{1\}$
D $\mathcal{L}=\{1,00\}$

E None of the above.
12. Consider the DFA in Question 11. Which state does the DFA terminate in for the input string 0010 ?

13. Consider the language $\mathcal{L}=\{0\}^{*}\{1\}^{*}\{10\}^{*}$. Which word is not in \mathcal{L} ?

A	0110
B	1110
C	0011
D	0100
E	They are all in \mathcal{L}.

14. Which of the following languages cannot be solved by a DFA?

A $\mathcal{L}=\{$ strings with at least five 1 s$\}$
B $\mathcal{L}=\{$ strings with at least five million 1s $\}$
C $\mathcal{L}=\{$ strings with no 1 s$\}$
D $\mathcal{L}=$ \{strings with same number of " 10 " and " 01 " substrings $\}$
E They are all regular languages.
15. Which of the following strings cannot be generated by the CFG: $S \rightarrow \varepsilon|1 S 0| 0 S 1$?

| A | 1001 |
| :--- | :--- | :--- |
| B | 0011 |
| C | 1100 |
| D | 1010 |
| E | None of the above. |

16. Which CFG generates all strings of even length?

A $S \rightarrow \varepsilon|1 S 0| 0 S 1$
B $S \rightarrow \varepsilon|1 S 0 S| 0 S 1 S$
(C $S \rightarrow \varepsilon|1 S 0| 0 S 1|0 S 0| 1 S 1$
D $S \rightarrow 1 S 0 S|0 S 1 S| 0 S 0 S \mid 1 S 1 S$
E None of the above.
17. Compare the two CFGs G_{1} and G_{2} below. What do we know about them?

A They generate the same languages.
B They can both generate the word 1010.
C They may produce different parse trees for the same word.

$$
\begin{aligned}
& G_{1}: A \rightarrow \varepsilon|1 A 0| 0 A 1|0 A 0| 1 A 1 \\
& G_{2}: B \rightarrow \varepsilon|1 B 0 B| 0 B 1 B|0 B 0 B| 1 B 1 B
\end{aligned}
$$

D They generate regular languages.
E All of the above.
18. What is the relationship between DFAs and pushdown automata (PDAs)?

A They can decide the same set of languages.
B DFAs can decide some languages that no PDA can decide.
C PDAs can decide some languages that no DFA can decide.
D They are the same model.
E None of the above.
19. Why are Turing Machines (TMs) more expressive than pushdown automata (PDAs)?

A TMs can have more discrete states.
B There are uncountably many TMs.
C TMs model the human brain.
D TMs have random memory access, which allows them to decide more computing problems.
E They are equally expressive.
20. Which statement is true about the language $\mathcal{L}=\left\{w w \mid w \in\{0,1\}^{*}\right\}$?

A A DFA can solve this language. A TM can solve this language.
B A DFA cannot solve this language. A TM can solve this language.
C A DFA can solve this language. A TM cannot solve this language.
D A DFA cannot solve this language. A TM cannot solve this language.
E None of the above.

Scratch

