Quiz 2

60 Minutes

First Name: .	
---------------	--

Last Name: _____

RIN: _____

NO COLLABORATION or electronic devices. Any violations will result in an F. No questions allowed during the test unless you think there is a mistake.

GOOD LUCK!

Circle at most one answer per question. **10 points** for each correct answer.

You **MUST** show **CORRECT** work to get credit. Correct answers with no explanation will get a 0.

Final Score: ____ / 200

- 1. Suppose a goody-bag contains 3 candies. Candies come in three colors: red, green and blue. How many types of goody-bags are there in total?
 - $\begin{array}{c}
 A & \binom{3}{2} \\
 B & 3! \\
 \hline
 C & \binom{5}{2} \\
 D & 5! \\
 \hline
 \end{array}$
 - E None of the above.
- 2. Suppose a goody-bag contains 3 candies. Candies come in three colors: red, green and blue. If all goody-bags are equally likely, how many goody-bags would I need to buy in order to guarantee I have a candy of each color?

- 3. Suppose FOCS has 10 students and every student tries to shake hands with as many other students as possible. How many handshakes need to occur in total to guarantee a repeat?

А	10
В	20
С	35
D	46
Е	91

4. Let X be a random variable and let the set of all outcomes be Ω . What is $\sum_{x \in X(\Omega)} \mathbb{P}[X = x]$?

А	0.5
В	1
\mathbf{C}	1.5
D	2
Е	None of the above.

5. Suppose $X(\Omega) = \{1, 2, 3\}$ and suppose $\mathbb{P}[X = 1 \lor X = 2] = 0.5$. What is $\mathbb{P}[X = 3]$?

Α	0.2
В	0.3
\mathbf{C}	0.4
D	0.5
Е	1

6. Suppose I toss three coins independently. What do we know?

B The probability that all coins match is 1/8.

C The probability of at least one H is 1.

- D The probability of at least one T is 1.
- E None of the above.
- 7. Suppose X_1 and X_2 are independent and uniform on $\{1, 2, 3, 4, 5\}$. What is $\mathbb{P}[X_1 + X_2 \leq 3]$?

- 8. Suppose X_1 and X_2 are independent and uniform on $\{1, 2, 3, 4, 5\}$. What is $\mathbb{E}[X_1 + X_2]$?
 - A
 3

 B
 4

 C
 5

 D
 6
 - E 7
- 9. Suppose X_1 is uniform on $\{1, 2, 3, 4, 5\}$. If $X_1 \ge 4$, then X_2 is uniform on $\{4, 5\}$; otherwise $X_2 = 5$. What is $\mathbb{E}[X_1 + X_2]$?
 - $\begin{array}{c|c} A & \frac{30}{5} \\ \hline B & \frac{33}{5} \\ \hline C & \frac{36}{5} \\ \hline D & \frac{39}{5} \\ \hline E & \frac{42}{5} \\ \end{array}$
- 10. Suppose Submitty had a bug and randomly shuffled Quiz 2 grades. Assuming there are 200 students and all grades are different, what is the expected number of students who get their correct grade in Submitty?

A 1B 10C 20D 50E None of the above.

- 11. Suppose the correct answer is not E on any of the 20 questions and you guess randomly among A-D. How many of the 20 questions do you expect to get right?
 - A 1
 B 2
 C 3
 D 4
 E 5
- 12. Suppose you answer A on all 20 questions. How many questions do you expect to get right?

E It cannot be determined from the given information.

- 13. Suppose it is sunny 1/10 of days in Troy. How much do you expect to wait until a sunny day?
 - A5 daysB10 days
 - C 15 days
 - D 20 days
 - E None of the above.
- 14. Suppose it is sunny 1/10 of days in Troy. Suppose it is always sunny in Philadelphia, except for the days when it is sunny in Troy. How many days is a Philadelphian expected to wait until a sunny day?
 - A 10/9
 B 9/10
 C 2
 D 3
 E None of the above.
- 15. You are in Troy now. If the weather is not sunny, you travel to Philadelphia tomorrow; if it's not sunny in Philadelphia tomorrow, you go back to Troy the day after (and will go back and forth on non-sunny days). How many days do you expect to wait until a sunny day (assuming same probabilities of sunny days as in Question 14)?

 A
 91/91
 B
 100/91
 C
 190/91
 D
 290/91
 E
 182/91

- 16. Suppose a covid test is correct 90% of the time and 10% of all people have covid. What is the probability that you have covid if you tested positive?
 - A 1/10
 B 9/10
 C 1/3
 D 1/2
 E None of the above.
- 17. Suppose a covid test is correct 90% of the time and 10% of all people have covid. What is the probability that you have covid if you tested positive two times independently?

18. Suppose the correct answer is uniform on $\{A, B, C, D, E\}$. What is the probability that at least 2 of the 20 questions have the same letter for the correct answer?

- 19. If each question had 26 choices, and the correct answer is uniform on $\{A, \ldots, Z\}$, what is the probability that at least 2 of the 20 questions have the same letter for the correct answer?

20. $X \sim B(p_1)$ and $Y \sim B(p_2)$ are independent Bernoulli random variables. What is $\mathbb{E}[XY]$?

Scratch