Quiz 1

60 Minutes

Last Name: _____

RIN: _____

Section:

NO COLLABORATION or electronic devices. Any violations will result in an F. No questions allowed during the test unless you think there is a mistake.

GOOD LUCK!

Circle at most one answer per question. **10 points** for each correct answer.

You **MUST** show **CORRECT** work to get credit. Correct answers with no explanation will get a 0.

Final Score: ____ / 200

- 1. What is a simpler expression for the set $A = \{n \mid n = 12k + 3m, k \in \mathbb{N}, m \in \mathbb{N}\}$?
 - $\begin{array}{|c|c|c|c|c|} \hline A &= \{n \mid n = 3k, k \in \mathbb{N} \} \\ \hline B & A = \{n \mid n = 12 + 3k, k \in \mathbb{N} \} \\ \hline C & A = \{n \mid n = 12 + 3k, k \in \mathbb{Z} \} \\ \hline D & A = \{n \mid n = 15 + 3k, k \in \mathbb{N} \} \end{array}$
 - E None of the above.
- 2. How did we use the principle of well-ordering to prove that $\sqrt{2}$ is irrational?
 - A We used it to assume $\sqrt{2}$ is rational.
 - B We used it to conclude $\sqrt{2}$ has a factor of 3.
 - C We used it to list the set of all pairs (p,q) such that $\sqrt{2} = p/q$.
 - D We did not use the principle of well-ordering.
 - E None of the above.
- 3. What is the value of the expression $(p \land \neg p) \to (\neg p \land q)$?
 - A Depends on the value of p.
 - B Depends on the value of q.
 - C Always true.
 - D Always false.
 - E None of the above.
- 4. IF you are in FOCS, THEN you must have taken CS1 AND you must have taken DS. Suppose you have not taken CS1. What do we know?
 - A You are not in FOCS.
 - B You are in DS.
 - C The value of "you are in FOCS" depends on the value of "you have taken DS".
 - D The value of "you have taken DS" depends on the value of "you are in FOCS".
 - E None of the above.
- 5. How many rows are there in the truth table of $(p \land q) \lor (\neg p \land q) \lor q$?
 - A 2 B 3
 - C 4
 - D 8
 - E 16

- 6. Suppose I want to prove $p \to q$. Which of the following proof techniques will work?
 - A Assume p and show that it leads to a contradiction.
 - B Assume q is false and show that p must be false.
 - C Assume q is false and show it leads to a contradiction.
 - D Use derivations to show that if q is false, then p must be false.
 - E All of the above.
- 7. What is the negation of the claim: $\forall x \in \mathbb{Z} : \exists y \in \mathbb{N} : x > y$?

 - C $\forall x \in \mathbb{N} : \exists y \in \mathbb{Z} : x > y$
 - $\boxed{\mathbf{D}} \ \exists x \in \mathbb{Z} : \forall y \in \mathbb{N} : x \leq y$
 - E None of the above.
- 8. Suppose $p, q \in \mathcal{P}$ are prime (\mathcal{P} is the set of all prime numbers). Which of the following is true?
 - A $\forall p, q \in \mathcal{P} : pq 1$ is prime.
 - B $\forall p, q \in \mathcal{P} : pq 1$ is not prime.
 - C $\exists p, q \in \mathcal{P} : pq 1$ is prime.
 - D $\forall p, q \in \mathcal{P} : p + q$ is prime.
 - **E** None of the above.
- 9. Suppose I try to prove $n^2 \leq 2^n, \forall n \geq 1$ using induction. What goes wrong?
 - A The base case is false.
 - B I need more base cases.
 - C | I cannot prove $P(n) \rightarrow P(n+1), \forall n \ge 1$.
 - D I cannot prove $P(n+1) \to P(n), \forall n \ge 1$.
 - E Nothing goes wrong because the claim is true.

10. How would you disprove the claim: $\forall m \in \mathbb{N} : \exists n \in \mathbb{N} : m^2 = n$?

- A Show that $m^2 \neq n$ for all natural numbers m and n.
- B Show that $m^2 \neq n$ for all integers m and n.
- C Find some $m, n \in \mathbb{N}$ for which $m^2 \neq n$.
- D Find some $m \in \mathbb{N}$ for which $m^2 \neq n$ for all $n \in \mathbb{N}$.
- E None of the above.

- 11. Consider the recurrence $T_0 = 1, T_n = T_{n-2} + 2$. What is T_{179} ?
 - A 178
 - B 179
 - C 180
 - D It is not defined.
 - E None of the above.
- 12. Consider the set S defined as follows: (1) Base case: $1 \in S$; (2) Constructor: $x \in S \to x + 2 \in S$. Which of the following <u>cannot</u> be the set S?
 - A All odd natural numbers.
 - B All odd integers.
 - C All natural numbers.
 - $D \mathbb{N} \cap \{n \mid n = 2k 3, k \in \mathbb{N}\}.$
 - $\boxed{\mathbf{E}} \ \mathbb{N} \cap \{n \mid n = 2k, k \in \mathbb{N}\}.$
- 13. Define the predicate $P(n): 3n^2 \le n^3$. For which n is P(n) true?
- 14. Which of the following proof techniques can be used to prove $n \leq 3^{n/3}, \forall n \geq 0$? Suppose $P(n): n \leq 3^{n/3}$.
 - A Show P(0) and P(1) are true and show that $P(1) \land \cdots \land P(n) \to P(n+1), \forall n \ge 0$.
 - B Show that $P(n) \to P(n+1), \forall n \ge 0$.
 - C Show that $P(0) \wedge P(1) \wedge \cdots \wedge P(n) \rightarrow P(n+1), \forall n \ge 0.$
 - D Define $Q(n) = P(0) \wedge P(1) \wedge \cdots \wedge P(n)$ and show that $Q(n) \to Q(n+1), \forall n \ge 0$.
 - E None of the above.
- 15. What can we say about this claim: $\exists x \in \mathbb{R} : \forall y \in \mathbb{R} : xy = y$?
 - A True
 - B False
 - $\overline{\mathbf{C}}$ Depends on the value of x
 - D Depends on the value of y
 - E None of the above.

- 16. What is another expression for the set $A \cap \overline{(A \cap B)}$?
- 17. What is a formal way to say "Every positive real distance is realized by some points on the plane"?

$$\begin{array}{l} \mathbf{A} \quad \exists x \in \mathbb{R} : \forall x_1, x_2, y_1, y_2 \in \mathbb{R} : x = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ \mathbf{B} \quad \exists x \in \mathbb{R} : \exists x_1, x_2, y_1, y_2 \in \mathbb{R} : x = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ \mathbf{C} \quad \forall x \in \mathbb{R} \cap \{z \mid z > 0, z \in \mathbb{R}\} : \forall x_1, x_2, y_1, y_2 \in \mathbb{R} : x = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ \mathbf{D} \quad \forall x \in \mathbb{R} \cap \{z \mid z > 0, z \in \mathbb{R}\} : \exists x_1, x_2, y_1, y_2 \in \mathbb{R} : x = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ \mathbf{E} \quad \text{None of the above.} \end{array}$$

18. Let $A_n = 2A_{n-1} - 1$ and $A_0 = 2$. What is a general formula for A_n for $n \ge 1$?

- $\begin{array}{c|c} A & A_n = 2n 1 \\ \hline B & A_n = 2n + 1 \\ \hline C & A_n = 2^n \\ \hline D & A_n = 2^n + 1 \\ \hline E & \text{None of the above.} \end{array}$
- 19. Suppose I create a new type of rooted tree, called perfect binary tree (PBT), as follows:
 - (1) The tree with one vertex is a PBT. [base case]
 - (2) If PBTs T_1 and T_2 with roots r_1 and r_2 have the same structure, then linking r_1 and r_2 to a new root r gives a new PBT with root r. [constructor]
 - ③ No other tree is a PBT. [minimality]

What do we know about PBTs (recall RBT stands for a rooted binary tree)?

- A The number of vertices of any PBT is some number n such that $n = 2^k 1, k \in \mathbb{N}$.
- B The sets of all PBTs and all RBTs are the same.
- C All RBTs are PBTs.
- D All PBTs have an even number of vertices.
- **E** None of the above.
- 20. Suppose a rooted binary tree has 8 vertices in its left subtree (ignoring the root). How many vertices are in the right subtree (ignoring the root) if the tree has 17 links in total?

A 9 B 10 C 11

```
D 12
```

E | It cannot be determined.

Scratch