
Sums and Asymptotics

1

Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 9

2

Overview

• Maximum Substring Sum

• Computing Sums

• Asymptotics: Big-Theta, Big-Oh and Big-Omega

• Integration Method

3

Maximum Substring Sum

• Look at this sequence of numbers:
1,−1,−1, 2, 3, 4, −1, −1, 2, 3, −4, 1, 2, −1, −2,1

• What is the largest sum of 7 consecutive numbers?
2 + 3 + 4 − 1 − 1 + 2 + 3 = 12

– This is known as the max substring sum

• More generally, compute the maximum substring sum for
𝑎1, 𝑎2, 𝑎3, 𝑎4, … , 𝑎𝑛−1, 𝑎𝑛

– where 𝑛 measures the size/length of the input

4

Maximum Substring Sum, cont’d

• Can you come up with an algorithm for max substring sum?

1. Iterate over all pairs (𝑖, 𝑗) of start and end positions.

• Brute-force but effective and easy to analyze

• How many loops do we have?

• 3 loops: one loop for each of 𝑖 and 𝑗, and 1 loop to calculate sum

2. Iterate over all starting positions 𝑖 and ending positions 𝑗 > 𝑖.

• More efficient than 1

• How many loops do we have?

• 2 loops: one loop each over all 𝑖 and all 𝑗

3. Divide and conquer

• Divide array into two halves and recursively calculate max in each half

• Also look at max sum that contains the middle

4. Suppose you are keeping track of the current cumulative sum

• What happens if a sum is negative (assuming positive numbers exist)?

• Should reset sum to next number

• If current sum is larger than the largest so far, set largest to current
5

Maximum Substring Sum, cont’d

• Different algorithms have different runtimes (check book exercises for specific
algorithms)

– three-loop version: 𝑇1 = 2 + σ𝑖=1
𝑛 2 + σ𝑗=1

𝑛 5 + σ𝑘=𝑖
𝑗

2

• What does σ𝑖=1
𝑛 mean?

• Sum all entries, increasing 𝑖 by 1 each time

– two-loop version: 𝑇2 𝑛 = 2 + σ𝑖=1
𝑛 3 + σ𝑗=𝑖

𝑛 6

– A recursive algorithm:

𝑇3 𝑛 =

3 𝑛 = 1

2𝑇3
1

2
𝑛 + 6𝑛 + 9 𝑛 > 1 (𝑒𝑣𝑒𝑛)

𝑇3
1

2
𝑛 + 1 + 𝑇3

1

2
𝑛 − 1 + 6𝑛 + 9 𝑛 > 1 (𝑜𝑑𝑑)

– A fast algorithm: 𝑇4 𝑛 = 5 + σ𝑖=1
𝑛 10

• But which one is fastest?

6

Evaluate Runtimes

• Let’s plug in some values of 𝑛 and see what happens

• Which algorithm is best?

– Clearly, 𝑇1 is worse than 𝑇2 but hard to compare 𝑇2 and 𝑇3
– 𝑇4 seems best on most inputs

• We need:

– Simple formulas for 𝑇1 𝑛 ,… , 𝑇4(𝑛): we need to compute sums and
solve recurrences.

– A way to compare runtime-functions that captures the essence of the
algorithm. 7

𝑛 1 2 3 4 5 6 7 8 9 10

𝑇1(𝑛) 11 29 58 100 157 231 324 438 575 737

𝑇2(𝑛) 11 26 47 74 107 146 191 242 299 362

𝑇3(𝑛) 3 27 57 87 123 159 195 231 273 315

𝑇4(𝑛) 15 25 35 45 55 65 75 85 95 105

Computing Sums: Tool 1: Constant Rule

• 𝑆1 = σ𝑖=1
10 3

= 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 3 × 10

• 𝑆2 = σ𝑖=1
10 𝑗

= 𝑗 + 𝑗 + 𝑗 + 𝑗 + 𝑗 + 𝑗 + 𝑗 + 𝑗 + 𝑗 + 𝑗 = 𝑗 × 10

• 𝑆3 = σ𝑖=1
10 𝑖

= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

=
1

2
× 10 × 11

• The index of summation is 𝑖 in these examples.

• Constants (independent of summation index) can be taken outside the sum.

𝑆1 =෍

𝑖=1

10

3 = 3෍

𝑖=1

10

1 = 3 × 10

𝑆2 =෍

𝑖=1

10

𝑗 = 𝑗෍

𝑖=1

10

1 = 𝑗 × 10

8

Computing Sums: Tool 2: Addition Rule

𝑆 =෍

𝑖=1

5

𝑖 + 𝑖2

= 1 + 12 + 2 + 22 + 3 + 32 + 4 + 42 + 5 + 52 [rearrange terms]

= 1 + 2 + 3 + 4 + 5 + 12 + 22 + 32 + 42 + 52

=෍

𝑖=1

5

𝑖 +෍

𝑖=1

5

𝑖2

• The sum of terms added together is the addition of the individual sums

෍

𝑖

𝑎 𝑖 + 𝑏 𝑖 + ⋯ =෍

𝑖

𝑎 𝑖 +෍

𝑖

𝑏 𝑖 + ⋯

10

Computing Sums: Tool 3: Common Sums

෍

𝑖=𝑘

𝑛

1 = 𝑛 − 𝑘 + 1

෍

𝑖=1

𝑛

𝑓(𝑥) = 𝑛𝑓(𝑥)

෍

𝑖=0

𝑛

𝑟𝑖 =
1 − 𝑟𝑛+1

1 − 𝑟
[𝑟 ≠ 1]

෍

𝑖=1

𝑛

𝑖 =
1

2
𝑛 𝑛 + 1

෍

𝑖=1

𝑛

𝑖2 =
1

6
𝑛 𝑛 + 1 2𝑛 + 1

෍

𝑖=1

𝑛

𝑖3 =
1

4
𝑛2 𝑛 + 1 2

11

Computing Sums: Tool 3: Common Sums, cont’d

෍

𝑖=0

𝑛

2𝑖 = 2𝑛+1 − 1

෍

𝑖=0

𝑛
1

2𝑖
= 2 −

1

2𝑛

෍

𝑖=1

𝑛

log 𝑖 = log 𝑛!

12

Computing Sums: Example

෍

𝑖=1

𝑛

1 + 2𝑖 + 2𝑖+2 =

= σ𝑖=1
𝑛 1 + σ𝑖=1

𝑛 2𝑖 + σ𝑖=1
𝑛 2𝑖+2 [addition rule]

= σ𝑖=1
𝑛 1 + 2σ𝑖=1

𝑛 𝑖 + 4σ𝑖=1
𝑛 2𝑖 [constant rule]

= 𝑛 + 2 ×
1

2
𝑛 𝑛 + 1 + 4 × 2𝑛+1 − 1 − 1 [common sums]

= 𝑛 + 𝑛 𝑛 + 1 + 2𝑛+3 − 8 [algebra]

13

Computing Sums: Tool 3: Nested Sum Rule

• To compute a nested sum, start with the innermost sum and proceed outward

𝑆1 =෍

𝑖=1

3

෍

𝑗=1

3

1

=෍

𝑗=1

3

1 +෍

𝑗=1

3

1 +෍

𝑗=1

3

1 = 3 + 3 + 3 = 9

– Note that the 𝑗 variables are local to each sum (same as in a loop in your code)

𝑆2 =෍

𝑖=1

3

෍

𝑗=1

𝑖

1

=෍

𝑗=1

1

1 +෍

𝑗=1

2

1 +෍

𝑗=1

3

1 = 1 + 2 + 3 = 6

• More generally

– Using the fact that σ𝑗=1
𝑖 1 = 𝑖:

𝑆 𝑛 =෍

𝑖=1

𝑛

෍

𝑗=1

𝑖

1 =෍

𝑖=1

𝑛

𝑖 =
1

2
𝑛(𝑛 + 1)

14

Computing a formula for 𝑻𝟐

𝑇2 𝑛 = 2 + σ𝑖=1
𝑛 3 + σ𝑗=𝑖

𝑛 6 [sum rule]

= 2 + 3σ𝑖=1
𝑛 1 + σ𝑖=1

𝑛 σ𝑗=𝑖
𝑛 6 [constant rule]

= 2 + 3𝑛 + σ𝑖=1
𝑛 σ𝑗=𝑖

𝑛 6 [common sum]

= 2 + 3𝑛 + 6σ𝑖=1
𝑛 σ𝑗=𝑖

𝑛 1 [constant rule]

= 2 + 3𝑛 + 6σ𝑖=1
𝑛 (𝑛 − 𝑖 + 1) [innermost sum]

= 2 + 3𝑛 + 6 𝑛 + 𝑛 − 1 +⋯+ 1 [common sum]

= 2 + 3𝑛 + 6 ×
1

2
𝑛 𝑛 + 1 [common sum]

= 2 + 6𝑛 + 3𝑛2 [algebra]

15

Practice: Compute a Formula for the Sum:

σ𝒊=𝟏
𝒏 σ𝒋=𝟏

𝒊 𝒊𝒋

σ𝑖=1
𝑛 σ𝑗=1

𝑖 𝑖𝑗 = σ𝑖=1
𝑛 σ𝑗=1

𝑖 𝑖𝑗 [innermost sum]

= σ𝑖=1
𝑛 𝑖 σ𝑗=1

𝑖 𝑗 [constant rule]

= σ𝑖=1
𝑛 𝑖

1

2
𝑖(𝑖 + 1) [common sum]

=
1

2
σ𝑖=1
𝑛 𝑖3 + 𝑖2 [algebra, constant rule]

=
1

2
σ𝑖=1
𝑛 𝑖3 + σ𝑖=1

𝑛 𝑖2 [sum rule]

=
1

8
𝑛2 𝑛 + 1 2 +

1

12
𝑛(𝑛 + 1)(2𝑛 + 1) [common sums]

=
1

12
𝑛 +

3

8
𝑛2 +

5

12
𝑛3 +

1

8
𝑛4 [algebra]

16

Summary of Max Substring Sum Algorithms

• Runtimes

𝑻𝟏 𝒏 = 2 +
31

6
𝑛 +

7

2
𝑛2 +

1

3
𝑛3

𝑻𝟐 𝒏 = 2 + 6𝑛 + 3𝑛2

3𝑛 log2 𝑛 + 1 − 9 ≤ 𝑻𝟑 𝒏 ≤ 12𝑛 log2 𝑛 + 3 − 9

𝑻𝟒 𝒏 = 5 + 10𝑛

– (“simple” formulas for 𝑇1 𝑛 , … , 𝑇4(𝑛))

• So, which algorithm is best?

– Computers solve problems with big inputs. We care about large 𝑛.

– Compare runtimes asymptotically in the input size 𝑛. That is 𝑛 → ∞

– Ignore additive and multiplicative constants (minutia). We care about growth
rate.

• Algorithm 4 is linear in 𝑛,
𝑇4 𝑛

𝑛
→ constant.

17

Asymptotically Linear Functions: 𝚯(𝒏),
big-Theta-of-𝑛

• We say an algorithm runs in “big-Theta-of-𝑛” time, i.e.,

𝑇 ∈ Θ(𝒏), if there are positive constants 𝑐, 𝐶 for which
𝑐 ⋅ 𝒏 ≤ 𝑇 𝒏 ≤ 𝐶 ⋅ 𝒏

𝑇 𝑛

𝑛 𝑛→∞
ቐ
∞ 𝑇 ∈ 𝜔 𝑛 , "𝑇 > 𝑛"
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > 0 𝑇 ∈ Θ 𝑛 , "𝑇 = 𝑛"
0 𝑇 ∈ 𝑜 𝑛 , "𝑇 < 𝑛"

• Linear means in Θ(𝑛):

2𝑛 + 7, 2𝑛 + 15 𝑛, 109𝑛 + 3, 3𝑛 + log𝑛, 2log2 𝑛+4

• Not linear means not in Θ(𝑛):

10−9𝑛2, 109 𝑛 + 15, 𝑛1.0001, 𝑛0.9999, 𝑛 log 𝑛,
𝑛

log 𝑛
, 2𝑛

• Other runtimes frequently appearing in practice

log linear loglinear quadratic cubic super-polynomial exponential factorial BAD

Θ(log 𝑛) Θ(𝑛) Θ(𝑛 log 𝑛) Θ 𝑛2 Θ 𝑛3 Θ 𝑛log 𝑛 Θ 2𝑛 Θ 𝑛! Θ 𝑛𝑛

18

General Asymptotics: 𝚯(𝒇), big-Theta-of-𝑓

• Sometimes, we want to measure performance w.r.t. a specific function 𝑓

𝑇 𝑓

𝑓(𝑛) 𝑛→∞
ቐ

∞ 𝑇 ∈ 𝜔 𝑓 , "𝑇 > 𝑓"

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > 0 𝑇 ∈ Θ 𝑓 , "𝑇 = 𝑓"

0 𝑇 ∈ 𝑜 𝑓 , "𝑇 < 𝑓"

𝑇 ∈ 𝑜 𝑓 𝑇 ∈ 𝑂 𝑓 𝑇 ∈ Θ 𝑓 𝑇 ∈ Ω 𝑓 𝑇 ∈ 𝜔 𝑓

"𝑇 < 𝑓" "𝑇 ≤ 𝑓" "𝑇 = 𝑓" "𝑇 ≥ 𝑓" "𝑇 > 𝑓"

𝑇 𝑛 ≤ 𝐶𝑓(𝑛) 𝑐𝑓 𝑛 ≤ 𝑇 𝑛 ≤ 𝐶𝑓(𝑛) 𝑐𝑓 𝑛 ≤ 𝑇 𝑛

• Examples:

– For polynomials, growth rate is the highest order

Θ 2𝑛2 = 𝑛2

Θ 𝑛2 + 𝑛 𝑛 = Θ 𝑛2

Θ 𝑛2 + log256 𝑛 = Θ 𝑛2

Θ 𝑛2 + 𝑛1.99 log256 𝑛 = Θ 𝑛2

19

The Integration Method

• One application of big-Theta reasoning

– You can approximate an integral with the upper and lower integration method

• Theorem [Integration Bound]. For a monotonically increasing function 𝑓,

න
𝑚−1

𝑛

𝑓 𝑥 𝑑𝑥 ≤ ෍

𝑖=𝑚

𝑛

𝑓 𝑖 ≤ න
𝑚

𝑛+1

𝑓 𝑥 𝑑𝑥

– (If f is monotonically decreasing, the inequalities are reversed.)

21

Integration for Quickly Getting Asymptotic

Behavior

• Integer Powers. Set 𝑓 𝑥 = 𝑥𝑘:

෍

𝑖=1

𝑛

𝑖𝑘 ≈ න
0

𝑛

𝑥𝑘𝑑𝑥

න
0

𝑛

𝑥𝑘𝑑𝑥 =
𝑛𝑘+1

𝑘 + 1

𝑛𝑘+1

𝑘 + 1
∈ Θ 𝑛𝑘+1

22

Integration for Quickly Getting Asymptotic

Behavior, cont’d

• Stirling’s Approximation for 𝐥𝐧 𝒏!. Set 𝑓 𝑥 = ln 𝑥:

ln 𝑛! =෍

𝑖=1

𝑛

ln 𝑖 ≤ න
1

𝑛+1

ln 𝑥 𝑑𝑥

න
1

𝑛+1

ln 𝑥 𝑑𝑥 =

= 𝑥 ln 𝑥 − 𝑥 1
𝑛+1

= 𝑛 + 1 ln 𝑛 + 1 − 𝑛

• So finally:

𝑛 + 1 ln 𝑛 + 1 − 𝑛 ∈ Θ 𝑛 ln 𝑛

24

Integration for Quickly Getting Asymptotic

Behavior, cont’d

• Analyzing a recurrence. 𝑇1 = 1; 𝑇𝑛 = 𝑇𝑛−1 + 𝑛 𝑛 − ln𝑛

– First, unfold the recurrence:
𝑇𝑛 = 𝑇𝑛−1 + 𝑛 𝑛 − ln𝑛

𝑇𝑛−1 = 𝑇𝑛−2 + 𝑛 − 1 𝑛 − 1 − ln 𝑛 − 1
⋮

𝑇3 = 𝑇2 + 3 3 − ln 3

𝑇2 = 𝑇1 + 2 2 − ln 2

– Sum all terms together (note that all 𝑇𝑛−1, … , 𝑇1 terms cancel out)

𝑇𝑛 = 1 + 2 2 +⋯+ 𝑛 𝑛 − ln 2 + ln 3 + ⋯+ ln𝑛

=෍

𝑖=1

𝑛

𝑖 𝑖 −෍

𝑖=1

𝑛

ln 𝑖

• Why does the 2nd sum start counting from 1?

– We know that σ𝑖=1
𝑛 𝑖 𝑖 ∈ Θ 𝑛5/2

– and σ𝑖=1
𝑛 ln 𝑖 = ln 𝑛! ∈ Θ(𝑛 ln 𝑛)

• What does that mean for 𝑇 𝑛 = σ𝑖=1
𝑛 𝑖 𝑖 − σ𝑖=1

𝑛 ln 𝑖?

𝑇 𝑛 ∈ Θ 𝑛5/2
25

	Slide 1: Sums and Asymptotics
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Maximum Substring Sum
	Slide 5: Maximum Substring Sum, cont’d
	Slide 6: Maximum Substring Sum, cont’d
	Slide 7: Evaluate Runtimes
	Slide 8: Computing Sums: Tool 1: Constant Rule
	Slide 10: Computing Sums: Tool 2: Addition Rule
	Slide 11: Computing Sums: Tool 3: Common Sums
	Slide 12: Computing Sums: Tool 3: Common Sums, cont’d
	Slide 13: Computing Sums: Example
	Slide 14: Computing Sums: Tool 3: Nested Sum Rule
	Slide 15: Computing a formula for bold italic cap T sub bold 2
	Slide 16: Practice: Compute a Formula for the Sum: sum from bold italic i. equals bold 1 to bold italic n of sum from bold italic j equals bold 1 to bold italic i. of bold italic i. bold italic j
	Slide 17: Summary of Max Substring Sum Algorithms
	Slide 18: Asymptotically Linear Functions: bold cap theta open paren bold italic n close paren , big-Theta-of-n
	Slide 19: General Asymptotics: bold cap theta open paren bold italic f close paren , big-Theta-of-f
	Slide 21: The Integration Method
	Slide 22: Integration for Quickly Getting Asymptotic Behavior
	Slide 24: Integration for Quickly Getting Asymptotic Behavior, cont’d
	Slide 25: Integration for Quickly Getting Asymptotic Behavior, cont’d

