Sums and Asymptotics

Reading

@ Rensselaer

e Malik Magdon-Ismail. Discrete Mathematics and Computing.
— Chapter 9

Overview ® Rensselaer

Maximum Substring Sum

Computing Sums

Asymptotics: Big-Theta, Big-Oh and Big-Omega

Integration Method

Maximum Substring Sum @) Rensselaer

* Look at this sequence of numbers:
1,-1,-1,2,3,4,—1,-1,2,3,—4,1,2,—-1,—-2,1

 What is the largest sum of 7 consecutive numbers?
2+3+4—-1—-14+2+3=12
— This is known as the max substring sum
* More generally, compute the maximum substring sum for
aq,ay, a3, A4y o, Ay, A
— where n measures the size/length of the input

Maximum Substring Sum, cont’d ®) Rensselaer

e Can you come up with an algorithm for max substring sum?

1. Iterate over all pairs (i, j) of start and end positions.
. Brute-force but effective and easy to analyze
. How many loops do we have?
. 3 loops: one loop for each of i and j, and 1 loop to calculate sum

2. lterate over all starting positions i and ending positions j > 1.
. More efficient than 1
. How many loops do we have?
. 2 loops: one loop each over all i and all j

3. Divide and conquer
. Divide array into two halves and recursively calculate max in each half
Also look at max sum that contains the middle

4. Suppose you are keeping track of the current cumulative sum
* What happens if a sum is negative (assuming positive numbers exist)?
Should reset sum to next number
. If current sum is larger than the largest so far, set largest to current

Maximum Su

bstring Sum, cont’d

@ Rensselaer

» Different algorithms have different runtimes (check book exercises for specific

algorithms)

— three-loop version: T; = 2 + Y1, l2 + Z}Ll (5 + Z{;zi 2)]

e What

e Sum all entries, increasing i by 1 each time

— two-loop version: T,(n) = 2 + Yi-,; (3 + X 6)

does).’ ; mean?

— A recursive algorithm:

T3(n) = 4

(3
1
2T; <§n> +6n+9

— Afast algorithm: T,(n) =5+ X}, 10

e But which one is fastest?

n=1

n > 1 (even)

T; <%(n+1)>+T3 <%(n—1)>+6n+9 n > 1 (odd)
\

Evaluate Runtimes

@ Rensselaer

* Let’s plug in some values of n and see what happens

n 1 2 3 4 5 6 7 8 9 10
T,(n) | 11 29 58 100 | 157 | 231 | 324 | 438 | 575 | 737
T,(n) | 11 26 47 74 107 | 146 | 191 | 242 | 299 | 362
T3(n) 3 27 57 87 123 | 159 | 195 | 231 | 273 | 315
T,(n) | 15 25 35 45 55 65 75 85 95 105

e Which algorithm is best?
— Clearly, T; is worse than T, but hard to compare T, and T;
— T, seems best on most inputs

* We need:

— Simple formulas for Ty (n), ..., T4(n): we need to compute sums and
solve recurrences.

— A way to compare runtime-functions that captures the essence of the
algorithm. 7

Computing Sums: Tool 1: Constant Rule @) Rensselaer

_ v'10
.Sl_Zi:13
=34+3+34+3+3+3+34+3+34+3=3x10
5 = %211'
=jtjtj+j+tj+j+j+j+j+j=jx10
* 53 = i121i
=14+2+4+34+4+5+6+7+8+9+10
1
==—x10x 11
2

The index of summation is i in these examples.

Constants (independent of summation index) can be taken outside the sum.

10 10
51=23=3Z1=3><10

L=1%) i1=01
52=zj=jz1=jx1o

=1 i=1

Computing Sums: Tool 2: Addition Rule

@ Rensselaer

S=Z(i+i2)

=(1+1?)+(24+2%)+(3+32)+(4+4%) +(5+52) [rearrange terms]
(14+2+3+4+5)+(12+22+32+42 +52)

5 5
2,1+ ,0

i=1 i=1

* The sum of terms added together is the addition of the individual sums

D @@+ bW+ = alD) + Y b@) + -

i

10

Computing Sums: Tool 3: Common Sums

@ Rensselaer

n

zl=n—k+1

i=k

D f@ =nf)

[

S

Il
[uny

;1=
r= [r + 1]

1
l=§n(n+1)

1
i? = gn(n +1D2n+1)

DI

~
1
=

1
i3 = an(n + 1)?

11

Computing Sums

: Tool 3: Common Sums, cont’d (®) Rensselaer

n

2 2i — pn+l 1
i=0

n

1 1

2 207 “ T
i=0

n
z logi = logn!

12

Computing Sums: Example

@ Rensselaer

n

2(1 +2i+2%%) =

i=1
=¥, 1+ X, 2 + X1, 22
=Yt 142" i+4Y", 2

[addition rule]

[constant rule]

=n+2X %n(n +1)+4 X% (2"*1 —-1- 1) [common sums]

=n+nn+1)+2"3 -8

[algebra]

13

Computing Sums: Tool 3: Nested Sum Rule

@ Rensselaer

* To compute a nested sum start with the innermost sum and proceed outward

>

:1:

UJ
w
w

]:
— Note that the j varia Ies are local to each sum (same as in a loop in your code)

EORE

i=1j
1

=) 1+
1]

1+ 1=3+3+3=9
1 1

1+
— =

-

w

N
w

]=

1+) 1=1+2+3=6
1 j=1

* More generally
— Using the fact that Zi 1=1i:

S(n)—ZZl—Z :—n(n+1)

=1 j=

14

Computing a formula for T, @) Rensselaer

T,(n) =2+ Y7, (3 + X0 6) [sum rule]
=2+3X 1+ X276 [constant rule]
=2+3n+ X126 [common sum]
=2+3n+ 6Z?=1Z}f‘=i 1 [constant rule]
=24+3n+6)yL n—-i+1) [innermost sum]
=2+3n+6(n+(n—1)+--+1) [common sum]
=2+3n+6X %n(n + 1) [common sum]

= 2 + 6n + 3n? [algebra]

15

Practice: Compute a Formula for the Sum:

NEPNIY

@ Rensselaer

?=1Z§':1ij: ?:123':10'
:Z Z] 1j
= 1i l(L + 1)
22 (i +)
= Zl 1l + X 1i

= Enz(n + 1)2

+ 1—12n(n +1)(2n+1)

1 3 5 1
—n+=-n*+—=n’+:-n*
12 ' 8 12 8

[innermost sum]

[constant rule]

[common sum]
[algebra, constant rule]
[sum rule]
[common sums]

[algebra]

16

Summary of Max Substring Sum Algorithms @) Rensselaer

e Runtimes 100

o]
o

T.(n) =2+ %n + %nz + §n3

T,(n) = 2 + 6n + 3n?

3n(log,n+1) -9 <T3(n) <12n(log,n+3) —9
T,(n) =5+ 10n 0
— (“simple” formulas for T; (n), ..., T4 (n))

.
o

(Running Time)/n
= :
=

)
o

* So, which algorithm is best?
— Computers solve problems with big inputs. We care about large n.
— Compare runtimes asymptotically in the input size n. Thatisn — oo
— Ignore additive and multiplicative constants (minutia). We care about growth
rate.

: - . T.
e Algorithm 4 is linear in n, % — constant.

17

Asymptotically Linear Functions: O(n),
big-Theta-of-n

@ Rensselaer

* We say an algorithm runs in “big-Theta-of-n” time, i.e.,

T € O(n), if there are positive constants ¢, C for which
c-n<Tm)<C-n

T(n) 0 T € w(n), "T >n"
— 2 constant >0 T € 0(n), "T =n"
n T € o(n), "T <n"

* Linear meansin O@(n):

2n+7, 2n+15yn, 10°n+3, 3n+logn, 2l0s2n*4

* Not linear means not in O(n):

107°n%, 10°/n + 15, nt0001 509999 " nlogn, —lozn, 2n
e Other runtimes frequently appearing in practice
log linear loglinear quadratic cubic super-polynomial exponential factorial BAD

®(logn) ©(n) O(nlogn) 0(n%) 0(n3) 0(nlos"n) e(2M) e(n!) 6(n")

18

@ Rensselaer

General Asymptotics: O(f), big-Theta-of-f

* Sometimes, we want to measure performance w.r.t. a specific function f

T(f) 0 T € a)(f), "T > f" w(f)

————><constant >0 T € O(f), "T = f" S

Fmm== o reof), T<Sf e~
Teo(f) Teo(f) T € 0(f) TeQf) TEew()
"T < f" "T < f" "T = f" "T = f" "T > f"

Tn) <Cf(n) cf(n)<T) <Cf(n) cf(n) <Tn)
* Examples:

— For polynomials, growth rate is the highest order
0(2n?) = n?
0(n? + nyn) = 0(n?)
0(n? +10g?56 n) = 0(n?)
0(n? + n191log?>¢n) = 0(n?)

19

The Integration Method ®) Rensselaer

* One application of big-Theta reasoning
— You can approximate an integral with the upper and lower integration method

) dx f(z) | /1n'+1 dr f(x)
f(x)

n+l1 0 1 2 3 ... n n+1

* Theorem [Integration Bound]. For a monotonically increasing function f,
n+1

dx <) < d
jm_lf(x) x < me(l) <[feodx

m

— (If fis monotonically decreasing, the inequalities are reversed.)

21

Integration for Quickly Getting Asymptotic
Behavior

@ Rensselaer

* Integer Powers. Set f(x) = x*

22

Integration for Quickly Getting Asymptotic
Behavior, cont’d

@ Rensselaer

« Stirling’s Approximation for Inn!. Set f(x) = Inx:
n+1

n
lnn!=ZlniSj In x dx
i=1 1

n+1
f Inxdx =
1

n+1

= [xIn(x) — x|
=(n+1)Inn+1)—n

e So finally:
((n + 1) In(n+1) — n) € O(nlnn)

24

Integration for Quickly Getting Asymptotic
Behavior, cont’d

@ Rensselaer

* Analyzing arecurrence. T, = 1;T,, =T,,_; + n/n—Inn
— First, unfold the recurrence:
T, =Tn_1 +nyn—Inn
Tp-1=Th,+(n—1)Vn—1—-In(n—-1)

Ts =T, +3V3—1n3
T, =T, +2V2—1n2
— Sum all terms together (note that all 7,,_4, ..., T; terms cancel out)
T, = 1+2\/_+ +n\/——(ln2+ln3+ -+ 1nn)

znf ZIHL

 Why does the 2"d sum start counting from 1?
— We know that Y, ivi € 8(n°/?)
—and Y’ Ini =Inn! € O(nlnn)
* What does that mean for T(n) = Y1, ivi — X1, Ini?
T(n) € ©(n>/?)

25

	Slide 1: Sums and Asymptotics
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Maximum Substring Sum
	Slide 5: Maximum Substring Sum, cont’d
	Slide 6: Maximum Substring Sum, cont’d
	Slide 7: Evaluate Runtimes
	Slide 8: Computing Sums: Tool 1: Constant Rule
	Slide 10: Computing Sums: Tool 2: Addition Rule
	Slide 11: Computing Sums: Tool 3: Common Sums
	Slide 12: Computing Sums: Tool 3: Common Sums, cont’d
	Slide 13: Computing Sums: Example
	Slide 14: Computing Sums: Tool 3: Nested Sum Rule
	Slide 15: Computing a formula for bold italic cap T sub bold 2
	Slide 16: Practice: Compute a Formula for the Sum: sum from bold italic i. equals bold 1 to bold italic n of sum from bold italic j equals bold 1 to bold italic i. of bold italic i. bold italic j
	Slide 17: Summary of Max Substring Sum Algorithms
	Slide 18: Asymptotically Linear Functions: bold cap theta open paren bold italic n close paren , big-Theta-of-n
	Slide 19: General Asymptotics: bold cap theta open paren bold italic f close paren , big-Theta-of-f
	Slide 21: The Integration Method
	Slide 22: Integration for Quickly Getting Asymptotic Behavior
	Slide 24: Integration for Quickly Getting Asymptotic Behavior, cont’d
	Slide 25: Integration for Quickly Getting Asymptotic Behavior, cont’d

