Sums and Asymptotics

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 9
- Maximum Substring Sum
- Computing Sums
- Asymptotics: Big-Theta, Big-Oh and Big-Omega
- Integration Method

Maximum Substring Sum

- Look at this sequence of numbers:

$$
1,-1,-1,2,3,4,-1,-1,2,3,-4,1,2,-1,-2,1
$$

- What is the largest sum of 7 consecutive numbers?

$$
2+3+4-1-1+2+3=12
$$

- This is known as the max substring sum
- More generally, compute the maximum substring sum for

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n-1}, a_{n}
$$

- where n measures the size/length of the input

Maximum Substring Sum, cont'd

- Can you come up with an algorithm for max substring sum?

1. Iterate over all pairs (i, j) of start and end positions.

- Brute-force but effective and easy to analyze
- How many loops do we have?
- 3 loops: one loop for each of i and j, and 1 loop to calculate sum

2. Iterate over all starting positions i and ending positions $j>i$.

- More efficient than 1
- How many loops do we have?
- 2 loops: one loop each over all i and all j

3. Divide and conquer

- Divide array into two halves and recursively calculate max in each half
- Also look at max sum that contains the middle

4. Suppose you are keeping track of the current cumulative sum

- What happens if a sum is negative (assuming positive numbers exist)?
- Should reset sum to next number
- If current sum is larger than the largest so far, set largest to current

Maximum Substring Sum, cont'd

- Different algorithms have different runtimes (check book exercises for specific algorithms)
- three-loop version: $T_{1}=2+\sum_{i=1}^{n}\left[2+\sum_{j=1}^{n}\left(5+\sum_{k=i}^{j} 2\right)\right]$
- What does $\sum_{i=1}^{n}$ mean?
- Sum all entries, increasing i by 1 each time
- two-loop version: $T_{2}(n)=2+\sum_{i=1}^{n}\left(3+\sum_{j=i}^{n} 6\right)$
- A recursive algorithm:

$$
T_{3}(n)= \begin{cases}3 & n=1 \\ 2 T_{3}\left(\frac{1}{2} n\right)+6 n+9 & n>1(\text { even }) \\ T_{3}\left(\frac{1}{2}(n+1)\right)+T_{3}\left(\frac{1}{2}(n-1)\right)+6 n+9 & n>1(\text { odd })\end{cases}
$$

- A fast algorithm: $T_{4}(n)=5+\sum_{i=1}^{n} 10$
- But which one is fastest?
- Let's plug in some values of n and see what happens

n	1	2	3	4	5	6	7	8	9	10
$T_{1}(n)$	11	29	58	100	157	231	324	438	575	737
$T_{2}(n)$	11	26	47	74	107	146	191	242	299	362
$T_{3}(n)$	3	27	57	87	123	159	195	231	273	315
$T_{4}(n)$	15	25	35	45	55	65	75	85	95	105

- Which algorithm is best?
- Clearly, T_{1} is worse than T_{2} but hard to compare T_{2} and T_{3}
- T_{4} seems best on most inputs
- We need:
- Simple formulas for $T_{1}(n), \ldots, T_{4}(n)$: we need to compute sums and solve recurrences.
- A way to compare runtime-functions that captures the essence of the algorithm.

Computing Sums: Tool 1: Constant Rule

- $S_{1}=\sum_{i=1}^{10} 3$

$$
=3+3+3+3+3+3+3+3+3+3=3 \times 10
$$

- $S_{2}=\sum_{i=1}^{10} j$

$$
=j+j+j+j+j+j+j+j+j+j=j \times 10
$$

- $S_{3}=\sum_{i=1}^{10} i$

$$
\begin{aligned}
& =1+2+3+4+5+6+7+8+9+10 \\
& =\frac{1}{2} \times 10 \times 11
\end{aligned}
$$

- The index of summation is i in these examples.
- Constants (independent of summation index) can be taken outside the sum.

$$
\begin{aligned}
& S_{1}=\sum_{i=1}^{10} 3=3 \sum_{i=1}^{10} 1=3 \times 10 \\
& S_{2}=\sum_{i=1}^{10} j=j \sum_{i=1}^{10} 1=j \times 10
\end{aligned}
$$

Computing Sums: Tool 2: Addition Rule

$$
\begin{aligned}
S & =\sum_{i=1}^{5}\left(i+i^{2}\right) \\
& \left.=\left(1+1^{2}\right)+\left(2+2^{2}\right)+\left(3+3^{2}\right)+\left(4+4^{2}\right)+\left(5+5^{2}\right) \quad \text { [rearrange terms }\right] \\
& =(1+2+3+4+5)+\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}\right) \\
& =\sum_{i=1}^{5} i+\sum_{i=1}^{5} i^{2}
\end{aligned}
$$

- The sum of terms added together is the addition of the individual sums

$$
\sum_{i}(a(i)+b(i)+\cdots)=\sum_{i} a(i)+\sum_{i} b(i)+\cdots
$$

Computing Sums: Tool 3: Common Sums

$$
\begin{aligned}
& \sum_{i=k}^{n} 1=n-k+1 \\
& \sum_{i=1}^{n} f(x)=n f(x) \\
& \sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r} \quad[r \neq 1] \\
& \sum_{i=1}^{n} i=\frac{1}{2} n(n+1) \\
& \sum_{i=1}^{n} i^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& \sum_{i=1}^{n} i^{3}=\frac{1}{4} n^{2}(n+1)^{2}
\end{aligned}
$$

Computing Sums: Tool 3: Common Sums, cont'd Rensselaer

$$
\begin{aligned}
& \sum_{i=0}^{n} 2^{i}=2^{n+1}-1 \\
& \sum_{i=0}^{n} \frac{1}{2^{i}}=2-\frac{1}{2^{n}} \\
& \sum_{i=1}^{n} \log i=\log n!
\end{aligned}
$$

Computing Sums: Example

$$
\begin{array}{rlrl}
\sum_{i=1}^{n}\left(1+2 i+2^{i+2}\right) & = & \\
& =\sum_{i=1}^{n} 1+\sum_{i=1}^{n} 2 i+\sum_{i=1}^{n} 2^{i+2} & & \\
& =\sum_{i=1}^{n} 1+2 \sum_{i=1}^{n} i+4 \sum_{i=1}^{n} 2^{i} & & \text { [addition rule] } \\
& =n+2 \times \frac{1}{2} n(n+1)+4 \times\left(2^{n+1}-1-1\right) & & \text { [common sums] } \\
& =n+n(n+1)+2^{n+3}-8 & \text { [algebra] }
\end{array}
$$

Computing Sums: Tool 3: Nested Sum Rule

- To compute a nested sum, start with the innermost sum and proceed outward

$$
\begin{aligned}
S_{1} & =\sum_{i=1}^{3} \sum_{j=1}^{3} 1 \\
& =\sum_{j=1}^{3} 1+\sum_{j=1}^{3} 1+\sum_{j=1}^{3} 1=3+3+3=9
\end{aligned}
$$

- Note that the j variables are local to each sum (same as in a loop in your code)

$$
\begin{aligned}
S_{2} & =\sum_{i=1}^{3} \sum_{j=1}^{i} 1 \\
& =\sum_{j=1}^{1} 1+\sum_{j=1}^{2} 1+\sum_{j=1}^{3} 1=1+2+3=6
\end{aligned}
$$

- More generally
- Using the fact that $\sum_{j=1}^{i} 1=i$:

$$
S(n)=\sum_{i=1}^{n} \sum_{j=1}^{i} 1=\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)
$$

$$
\begin{aligned}
T_{2}(n) & =2+\sum_{i=1}^{n}\left(3+\sum_{j=i}^{n} 6\right) \\
& =2+3 \sum_{i=1}^{n} 1+\sum_{i=1}^{n} \sum_{j=i}^{n} 6 \\
& =2+3 n+\sum_{i=1}^{n} \sum_{j=i}^{n} 6 \\
& =2+3 n+6 \sum_{i=1}^{n} \sum_{j=i}^{n} 1 \\
& =2+3 n+6 \sum_{i=1}^{n}(n-i+1) \\
& =2+3 n+6(n+(n-1)+\cdots+1) \\
& =2+3 n+6 \times \frac{1}{2} n(n+1) \\
& =2+6 n+3 n^{2}
\end{aligned}
$$

[sum rule]
[constant rule]
[common sum]
[constant rule]
[innermost sum]
[common sum]
[common sum]
[algebra]

Practice: Compute a Formula for the Sum:

$\sum_{i=1}^{n} \sum_{j=1}^{i} \boldsymbol{i j}$

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{i} i j & =\sum_{i=1}^{n} \sum_{j=1}^{i} i j \\
& =\sum_{i=1}^{n} i \sum_{j=1}^{i} j \\
& =\sum_{i=1}^{n} i \frac{1}{2} i(i+1) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(i^{3}+i^{2}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} i^{3}+\sum_{i=1}^{n} i^{2} \\
& =\frac{1}{8} n^{2}(n+1)^{2}+\frac{1}{12} n(n+1)(2 n+1) \\
& =\frac{1}{12} n+\frac{3}{8} n^{2}+\frac{5}{12} n^{3}+\frac{1}{8} n^{4}
\end{aligned}
$$

[innermost sum]
[constant rule]
[common sum]
[algebra, constant rule]
[sum rule]
[common sums]
[algebra]

Summary of Max Substring Sum Algorithms

- Runtimes

$$
\begin{aligned}
& \boldsymbol{T}_{\mathbf{1}}(\boldsymbol{n})=2+\frac{31}{6} n+\frac{7}{2} n^{2}+\frac{1}{3} n^{3} \\
& \boldsymbol{T}_{\mathbf{2}}(\boldsymbol{n})=2+6 n+3 n^{2} \\
& 3 n\left(\log _{2} n+1\right)-9 \leq \boldsymbol{T}_{\mathbf{3}}(\boldsymbol{n}) \leq 12 n\left(\log _{2} n+3\right)-9 \\
& \boldsymbol{T}_{\mathbf{4}}(\boldsymbol{n})=5+10 n \\
& -\left(\text { "simple" formulas for } T_{1}(n), \ldots, T_{4}(n)\right)
\end{aligned}
$$

- So, which algorithm is best?
- Computers solve problems with big inputs. We care about large n.
- Compare runtimes asymptotically in the input size n. That is $n \rightarrow \infty$
- Ignore additive and multiplicative constants (minutia). We care about growth rate.
- Algorithm 4 is linear in $n, \frac{T_{4}(n)}{n} \rightarrow$ constant.

Asymptotically Linear Functions: ©(n), big-Theta-of- n

- We say an algorithm runs in "big-Theta-of-n" time, i.e.,

$$
\left.\begin{array}{l}
T \in \Theta(\boldsymbol{n}) \text {, if there are positive constants } c, C \text { for which } \\
\qquad \cdot \boldsymbol{n} \leq T(\boldsymbol{n}) \leq C \cdot \boldsymbol{n}
\end{array}\right] \begin{array}{lll}
\frac{T(n)}{n} \underset{n \rightarrow \infty}{ }\left\{\begin{array}{lll}
\infty & T \in \omega(n), & " T>n " \\
\text { constant }>0 & T \in \Theta(n), & " T=n " \\
0 & T \in o(n), & " T<n "
\end{array}\right.
\end{array}
$$

- Linear means in $\Theta(n)$:

$$
2 n+7, \quad 2 n+15 \sqrt{n}, \quad 10^{9} n+3, \quad 3 n+\log n, \quad 2^{\log _{2} n+4}
$$

- Not linear means not in $\Theta(n)$:

$$
10^{-9} n^{2}, \quad 10^{9} \sqrt{n}+15, \quad n^{1.0001}, \quad n^{0.9999}, \quad n \log n, \quad \frac{n}{\log n^{\prime}}, 2^{n}
$$

- Other runtimes frequently appearing in practice log linear loglinear quadratic cubic super-polynomial exponential factorial BAD $\Theta(\log n) \Theta(n) \Theta(n \log n) \quad \Theta\left(n^{2}\right) \quad \Theta\left(n^{3}\right) \quad \Theta\left(n^{\log n}\right) \quad \Theta\left(2^{n}\right) \quad \Theta(n!) \quad \Theta\left(n^{n}\right)$

General Asymptotics: $\boldsymbol{\Theta}(f)$, big-Theta-of- f

- Sometimes, we want to measure performance w.r.t. a specific function f

$$
\frac{T(f)}{f(n)} \underset{n \rightarrow \infty}{ }\left\{\begin{array}{lll}
\infty & T \in \omega(f), & " T>f " \\
\text { constant }>0 & T \in \Theta(f), & " T=f " \\
0 & T \in o(f), & " T<f "
\end{array}\right.
$$

$$
\begin{array}{ccccc}
T \in o(f) & T \in O(f) & T \in \Theta(f) & T \in \Omega(f) & T \in \omega(f) \\
" T<f " & " T \leq f " & " T=f " & " T \geq f " & " T>f " \\
& T(n) \leq C f(n) & c f(n) \leq T(n) \leq C f(n) & c f(n) \leq T(n)
\end{array}
$$

- Examples:
- For polynomials, growth rate is the highest order

$$
\begin{aligned}
\Theta\left(2 n^{2}\right) & =n^{2} \\
\Theta\left(n^{2}+n \sqrt{n}\right) & =\Theta\left(n^{2}\right) \\
\Theta\left(n^{2}+\log ^{256} n\right) & =\Theta\left(n^{2}\right) \\
\Theta\left(n^{2}+n^{1.99} \log ^{256} n\right) & =\Theta\left(n^{2}\right)
\end{aligned}
$$

- One application of big-Theta reasoning
- You can approximate an integral with the upper and lower integration method

- Theorem [Integration Bound]. For a monotonically increasing function f,

$$
\int_{m-1}^{n} f(x) d x \leq \sum_{i=m}^{n} f(i) \leq \int_{m}^{n+1} f(x) d x
$$

- (If f is monotonically decreasing, the inequalities are reversed.)

Integration for Quickly Getting Asymptotic Behavior

- Integer Powers. Set $f(x)=x^{k}$:

$$
\begin{aligned}
\sum_{i=1}^{n} i^{k} & \approx \int_{0}^{n} x^{k} d x \\
\int_{0}^{n^{n}} x^{k} d x & =\frac{n^{k+1}}{k+1} \\
\frac{n^{k+1}}{k+1} & \in \Theta\left(n^{k+1}\right)
\end{aligned}
$$

Integration for Quickly Getting Asymptotic Behavior, cont'd

- Stirling's Approximation for $\ln \boldsymbol{n}!$. Set $f(x)=\ln x$:

$$
\begin{aligned}
\ln n! & =\sum_{i=1}^{n} \ln i \leq \int_{1}^{n+1} \ln x d x \\
\int_{1}^{n+1} \ln x d x & = \\
& =[x \ln (x)-x]_{1}^{n+1} \\
& =(n+1) \ln (n+1)-n
\end{aligned}
$$

- So finally:

$$
((n+1) \ln (n+1)-n) \in \Theta(n \ln n)
$$

Integration for Quickly Getting Asymptotic Behavior, cont'd

- Analyzing a recurrence. $T_{1}=1 ; T_{n}=T_{n-1}+n \sqrt{n}-\ln n$
- First, unfold the recurrence:

$$
\begin{aligned}
T_{n} & =T_{n-1}+n \sqrt{n}-\ln n \\
T_{n-1} & =T_{n-2}+(n-1) \sqrt{n-1}-\ln (n-1) \\
\vdots & \vdots \\
T_{3} & =T_{2}+3 \sqrt{3}-\ln 3 \\
T_{2} & =T_{1}+2 \sqrt{2}-\ln 2
\end{aligned}
$$

- Sum all terms together (note that all T_{n-1}, \ldots, T_{1} terms cancel out)

$$
\begin{aligned}
T_{n} & =1+2 \sqrt{2}+\cdots+n \sqrt{n}-(\ln 2+\ln 3+\cdots+\ln n) \\
& =\sum_{i=1}^{n} i \sqrt{i}-\sum_{i=1}^{n} \ln i
\end{aligned}
$$

- Why does the $2^{\text {nd }}$ sum start counting from 1 ?
- We know that $\sum_{i=1}^{n} i \sqrt{i} \in \Theta\left(n^{5 / 2}\right)$
- and $\sum_{i=1}^{n} \ln i=\ln n!\in \Theta(n \ln n)$
- What does that mean for $T(n)=\sum_{i=1}^{n} i \sqrt{i}-\sum_{i=1}^{n} \ln i$?

$$
T(n) \in \Theta\left(n^{5 / 2}\right)
$$

