
Proofs with Recursion

1

Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 8

2

Overview

• Two Types of Questions About Recursive Sets

• Matched Parentheses

• Structural Induction

– ℕ

– Palindromes

– Arithmetic Expressions

• Rooted Binary Trees (RBT)

3

Two Types of Questions About a Recursive Set

• Recursive definition of a set 𝒜:
0 ∈ 𝒜
𝑥 ∈ 𝒜 → 𝑥 + 4 ∈ 𝒜

• What is 𝒜?
𝒜 = 0,4,8,12,16, …

• (𝑖) What is in 𝒜? Is some feature common to every element of 𝒜? Is
everything in 𝒜 even?

𝑥 ∈ 𝒜 → 𝑥 is even (T)

• 𝑖𝑖 Is everything with some property in 𝒜? Is every even number in 𝒜?

𝑥 is even → 𝑥 ∈ 𝒜 (F)

• Very, very different statements!

– Every leopard has 4 legs

– Is everything with 4 legs a leopard?

4

Structural Induction

• Structural induction shows every member of a recursive set has a property,
question (𝑖)

• Consider the evolution of orcs

– (Because computer scientists have nothing better to do)

– The first two orcs had blue eyes

– When two orcs mate, if they both have blue eyes, then the child has blue eyes

– Do all orcs have blue eyes?

– When could a green-eyed orc have arisen?

• Structural Induction

– The ancestors have a trait

– The trait is passed on from parents to children

– Conclusion: Everyone today has that trait

5

Matched Parentheses ℳ

• Recursive definition of ℳ

𝜀 ∈ ℳ [basis]

𝑥, 𝑦 ∈ ℳ → 𝑥 • 𝑦 ∈ ℳ [constructor]

• The strings in ℳ are the matched (in the arithmetic sense) parentheses. For
example:

[] (set 𝑥 = 𝜀, 𝑦 = 𝜀 to get 𝜀 𝜀 = [])

[[]] (set 𝑥 = [], 𝑦 = 𝜖)

[][] (set 𝑥 = 𝜀, 𝑦 = [])

• Let’s list the strings in ℳ as they are created
ℳ = {𝜀, [], [] , [][], [] [], … , 𝑠𝑛, … }

• To get 𝑠𝑛, we apply the constructor to two prior (not necessarily distinct) strings.

6

Strings in ℳ Are Balanced

• Balanced means the number of opening and closing parentheses are equal

• The constructor,
𝑥, 𝑦 ∈ ℳ → [𝑥] • 𝑦 ∈ ℳ

– adds one opening and closing parenthesis

• If the “parent” strings 𝑥 and 𝑦 are balanced, then the child [𝑥] • 𝑦 is balanced.

• (Orcs inherit blue eyes. Here, parents pass along balance to the children.)

• Just as all orcs will have blue eyes, all strings in ℳ will be balanced.

8

Proof: Strings in ℳ are Balanced

ℳ = {𝜀, [], [] , [][], [] [], … , 𝑠𝑛, … }
= 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛, …

• What is the 𝑃(𝑛)?

– 𝑃(𝑛): string 𝑠𝑛 is balanced, i.e., the number of ‘[’ equals the number of ‘]’

9

Proof: Strings in ℳ are Balanced, cont’d

ℳ = 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛, …

• 𝑃(𝑛): string 𝑠𝑛 is balanced, i.e., the number of ‘[’ equals the number of ‘]’

– But is that the only property?

– Every ‘[‘ is eventually followed by a corresponding ‘]’

• Proof. [Strong induction on 𝑛]

1. [Base case] 𝑃(1) claims that 𝑠1 = 𝜀 is balanced. True.

2. [Induction step] Show that 𝑃 1 ∧ ⋯∧ 𝑃 𝑛 → 𝑃(𝑛 + 1). Direct proof.

– Assume 𝑃 1 ∧ ⋯∧ 𝑃 𝑛 : 𝑠1, … , 𝑠𝑛 are all balanced

– Show 𝑃 𝑛 + 1 : 𝑠𝑛+1 is balanced

– 𝑠𝑛+1 is the child of two earlier strings: 𝑠𝑛+1 = [𝑠𝑘] • 𝑠𝑙 (constructor rule)

– 𝑠𝑘 , 𝑠𝑙 appeared earlier than 𝑠𝑛+1, so they are balanced (induction hypothesis)

– Therefore, 𝑠𝑛+1 is balanced (you add parentheses around a balanced string)

3. By induction, 𝑃(𝑛) is T ∀𝑛 ≥ 1

10

Proof: Strings in ℳ are Balanced, cont’d

• Question. Is every balanced string in ℳ?

– What about][?

• Exercise. Prove that [[] ∉ ℳ

11

Structural Induction Overview

• Strong induction with recursively defined sets is called structural induction

• Let 𝒮 be a recursive set. This means you have:

– Base cases 𝑠1, … , 𝑠𝑘 that are in 𝒮

– Constructor rules that use elements in 𝒮 to create a new element of 𝒮

• Let 𝑃(𝑠) be a property defined for any element 𝑠 ∈ 𝒮. To show 𝑃(𝑠) for every
element in 𝒮, you must show:

1. [Base cases] 𝑃 𝑠1 , 𝑃 𝑠2 , … , 𝑃(𝑠𝑘) are T

2. [Induction step] For every constructor rule, show:

• IF 𝑃 is T for the parents, THEN 𝑃 is T for children

3. By structural induction, conclude that 𝑃(𝑠) is T for all 𝑠 ∈ 𝒮

• MUST show for every base case

• MUST show for every constructor rule

• Structural induction can be used with any recursive set

12

Every Opening Parenthesis in ℳ is Matched

• Example string in ℳ: [[]] []

– Three opening and three closing parentheses

• Going from left to right:

[, opening = 1, closing = 0

[, opening = 2, closing = 0

], opening = 2, closing = 1

], opening = 2, closing = 2

[, opening = 3, closing = 2

], opening = 3, closing = 3

• Opening is always at least closing: parentheses are arithmetically matched

– Important Exercise. Prove this by structural induction

– Key step is to show that constructor preserves “matchedness”

• Question. Is every string of matched parentheses in ℳ?

• Hard Exercise. Prove this. (see Exercise 8.3)

13

Structural Induction on ℕ

• ℕ = {1,2,3, … } is a recursively defined set:
1 ∈ ℕ
𝑥 ∈ ℕ → 𝑥 + 1 ∈ ℕ

• Consider any property of the natural numbers, for example

𝑃(𝑛): 5𝑛 − 1 is divisible by 4

• Structural induction to prove 𝑃(𝑛) holds for every 𝑛 ∈ ℕ:

1. [Prove for all base cases] Only one base case 𝑃(1).

2. [Prove every constructor rule preserves 𝑃(𝑛)] Only one constructor:

• IF 𝑃 is T for 𝑥 (the parent), then 𝑃 is T for 𝑥 + 1 (the child).

3. By structural induction, 𝑃(𝑛) is T ∀𝑛 ∈ ℕ

• That’s just ordinary induction!

14

Palindromes 𝒫

• Here’s a nerdy palindrome: “Was it a rat I saw”

– The same sequence of letters forwards and backwards

• Binary sequences

01100 𝑅= 00110 (not a palindrome)

0110 𝑅 = 0110 (a palindrome)

• Recursive definition of palindromes 𝒫

– There are three base cases: 𝜀 ∈ 𝒫, 0 ∈ 𝒫, 1 ∈ 𝒫

– There are two constructor rules: 𝑖 𝑥 ∈ 𝒫 → 0 • 𝑥 • 0 ∈ 𝒫;
(𝑖𝑖)𝑥 ∈ 𝒫 → 1 • 𝑥 • 1 ∈ 𝒫

• Constructor rules preserves palindromicity:
0 • 0110 • 0 𝑅 = 001100
1 • 0110 • 1 𝑅 = 101101

• Therefore, we can prove by structural induction that all strings in 𝒫 are palindromes

• Hard Exercise. Prove that all palindromes are in 𝒫 (Exercise 8.7).

15

Arithmetic Expressions

• Fact known to all first-graders: ((1+1+1)×(1+1+1+1+1))=15

– i.e., value((1+1+1)×(1+1+1+1+1))=15

• A recursive set of well formed arithmetic expression strings 𝒜𝑂𝐷𝐷:

– One base case: 1 ∈ 𝒜𝑂𝐷𝐷

– There are two constructor rules: 𝑖 𝑥 ∈ 𝒜𝑂𝐷𝐷 → 𝑥 + 1 + 1 ∈ 𝒜𝑂𝐷𝐷;
(𝑖𝑖) 𝑥, 𝑦 ∈ 𝒜𝑂𝐷𝐷 → (𝑥 × 𝑦) ∈ 𝒜𝑂𝐷𝐷

– For example,
1 → (1 + 1 + 1) → (1 + 1 + 1 + 1 + 1)

1 × 1 ((1 × 1) + 1 + 1)

• The constructors add 2 to the parent or multiply the parents.

• If the parents have odd value, then so does the child.

• Constructors preserve “oddness” → all strings in 𝒜𝑂𝐷𝐷 have odd value

16

Rooted Binary Trees with 𝒏 ≥ 𝟏 Vertices Have

𝒏 − 𝟏 Edges

• The empty tree 𝜀 is an RBT.

• Disjoint RBTs 𝑇1, 𝑇2 give a new RBT by
linking their roots to a new root.

• 𝑃 𝑇 : if 𝑇 is a rooted binary tree with 𝑛 ≥ 1 vertices, then 𝑇 has 𝑛 − 1 links.

1. [Base case] 𝑃(𝜀) is vacuously T because 𝜀 is not a tree with 𝑛 ≥ 1 vertices.

2. [Induction step] Consider the constructors with parent RBTs 𝑇1 and 𝑇2
• Parents: 𝑇1 with 𝑛1 vertices and 𝑙1 edges and 𝑇2 with 𝑛2 vertices and 𝑙2

edges.

• Child: 𝑇 with 𝑛 vertices and 𝑙 edges.

• Case 1: 𝑇1 = 𝑇2 = 𝜀.

– Child is a single node with 𝑛 = 1, 𝑙 = 0 = 𝑛 − 1

• Case 2: 𝑇1 = 𝜀; 𝑇2 ≠ 𝜀.

– The child has one more node, 𝑛 = 𝑛2 + 1, and one more link:
𝑙 = 𝑙2 + 1

= 𝑛2 − 1 + 1 = 𝑛2 = 𝑛 − 1 [induction hypothesis]

17

Rooted Binary Trees with 𝒏 ≥ 𝟏 Vertices Have

𝒏 − 𝟏 Edges, cont’d

• The empty tree 𝜀 is an RBT.

• Disjoint RBTs 𝑇1, 𝑇2 give a new RBT by
linking their roots to a new root.

• 𝑃 𝑇 : if 𝑇 is a rooted binary tree with 𝑛 ≥ 1 vertices, then 𝑇 has 𝑛 − 1 links.

1. [Base case] 𝑃(𝜀) is vacuously T because 𝜀 is not a tree with 𝑛 ≥ 1 vertices.

2. [Induction step] Consider the constructors with parent RBTs 𝑇1 and 𝑇2
• Parents: 𝑇1 with 𝑛1 vertices and 𝑙1 edges and 𝑇2 with 𝑛2 vertices and 𝑙2

edges.

• Child: 𝑇 with 𝑛 vertices and 𝑙 edges.

• Case 3: 𝑇1 ≠ 𝜀; 𝑇2 = 𝜀. (Similar to Case 2.)
𝑛 = 𝑛1 + 1 𝐴𝑁𝐷
𝑙 = 𝑙1 + 1

= 𝑛1 − 1 + 1 = 𝑛1 = 𝑛 − 1 [induction hypothesis]

• Case 4: 𝑇1 ≠ 𝜀; 𝑇2 ≠ 𝜀.

– Now, 𝑛 = 𝑛1 + 𝑛2 + 1 and there are two new links, so
𝑙 = 𝑙1 + 𝑙2 + 2

= 𝑛1 − 1 + 𝑛2 − 1 + 2 = 𝑛1 + 𝑛2 = 𝑛 − 1 [induction hypothesis] 18

Rooted Binary Trees with 𝒏 ≥ 𝟏 Vertices Have

𝒏 − 𝟏 Edges, cont’d

• The empty tree 𝜀 is an RBT.

• Disjoint RBTs 𝑇1, 𝑇2 give a new RBT by
linking their roots to a new root.

• 𝑃 𝑇 : if 𝑇 is a rooted binary tree with 𝑛 ≥ 1 vertices, then 𝑇 has 𝑛 − 1 links.

1. [Base case] 𝑃(𝜀) is vacuously T because 𝜀 is not a tree with 𝑛 ≥ 1 vertices.

2. [Induction step] Consider the constructors with parent RBTs 𝑇1 and 𝑇2
• Parents: 𝑇1 with 𝑛1 vertices and 𝑙1 edges and 𝑇2 with 𝑛2 vertices and 𝑙2

edges.

• Child: 𝑇 with 𝑛 vertices and 𝑙 edges.

• Constructor always preserves property 𝑃.

3. By structural induction, 𝑃(𝑇) is true ∀𝑇 ∈ 𝑅𝐵𝑇.

19

Checklist for Structural Induction

• Analogy: if the first ancestors had blue eyes, and blue eyes are inherited from one
generation to the next, then all of society will have blue eyes.

• You have a recursively defined set 𝒮

• You want to prove a property 𝑃 for all members of 𝒮

• Does the property 𝑃 hold for the base cases?

• Is the property 𝑃 preserved by all the constructor rules?

• Structural induction is not how to prove all objects with property 𝑃 are in 𝒮

20

	Slide 1: Proofs with Recursion
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Two Types of Questions About a Recursive Set
	Slide 5: Structural Induction
	Slide 6: Matched Parentheses script cap M
	Slide 8: Strings in script cap M Are Balanced
	Slide 9: Proof: Strings in script cap M are Balanced
	Slide 10: Proof: Strings in script cap M are Balanced, cont’d
	Slide 11: Proof: Strings in script cap M are Balanced, cont’d
	Slide 12: Structural Induction Overview
	Slide 13: Every Opening Parenthesis in script cap M is Matched
	Slide 14: Structural Induction on double-struck cap N
	Slide 15: Palindromes script cap P
	Slide 16: Arithmetic Expressions
	Slide 17: Rooted Binary Trees with bold italic n greater than or equal to bold 1 Vertices Have bold italic n minus bold 1 Edges
	Slide 18: Rooted Binary Trees with bold italic n greater than or equal to bold 1 Vertices Have bold italic n minus bold 1 Edges, cont’d
	Slide 19: Rooted Binary Trees with bold italic n greater than or equal to bold 1 Vertices Have bold italic n minus bold 1 Edges, cont’d
	Slide 20: Checklist for Structural Induction

