Proofs with Recursion

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 8

Overview

- Two Types of Questions About Recursive Sets
- Matched Parentheses
- Structural Induction
 - $-\mathbb{N}$
 - Palindromes
 - Arithmetic Expressions
- Rooted Binary Trees (RBT)

Two Types of Questions About a Recursive Set

- Recursive definition of a set A:
 - $0 \in \mathcal{A}$ $x \in \mathcal{A} \to x + 4 \in \mathcal{A}$

• What is \mathcal{A} ?

$$\mathcal{A} = \{0, 4, 8, 12, 16, \dots\}$$

(i) What is in A? Is some feature common to every element of A? Is everything in A even?

 $x \in \mathcal{A} \to x$ is even (T)

• (*ii*) Is everything with some property in A? Is every even number in A?

$$x \text{ is even} \rightarrow x \in \mathcal{A}$$
 (F)

- Very, very different statements!
 - Every leopard has 4 legs
 - Is everything with 4 legs a leopard?

Structural Induction

- Structural induction shows every member of a recursive set has a property, question (*i*)
- Consider the evolution of orcs
 - (Because computer scientists have nothing better to do)
 - The first two orcs had blue eyes
 - When two orcs mate, if they both have blue eyes, then the child has blue eyes
 - Do all orcs have blue eyes?
 - When could a green-eyed orc have arisen?
- Structural Induction
 - The ancestors have a trait
 - The trait is passed on from parents to children
 - Conclusion: Everyone today has that trait

• Recursive definition of ${\mathcal M}$

 $\varepsilon \in \mathcal{M}$ [basis] $x, y \in \mathcal{M} \to [x] \bullet y \in \mathcal{M}$ [constructor]

• The strings in ${\mathcal M}$ are the matched (in the arithmetic sense) parentheses. For example:

[] (set
$$x = \varepsilon, y = \varepsilon$$
 to get $[\varepsilon]\varepsilon = []$
[[]] (set $x = [], y = \varepsilon$)
[][] (set $x = \varepsilon, y = []$)

- Let's list the strings in \mathcal{M} as they are created $\mathcal{M} = \{\varepsilon, [], []], [][], []][], \dots, s_n, \dots\}$
- To get s_n , we apply the constructor to two prior (not necessarily distinct) strings.

Strings in ${\mathcal M}$ Are Balanced

- Balanced means the number of opening and closing parentheses are equal
- The constructor,

$$x, y \in \mathcal{M} \to [x] \bullet y \in \mathcal{M}$$

- adds one opening and closing parenthesis
- If the "parent" strings x and y are balanced, then the child [x] y is balanced.
- (Orcs inherit blue eyes. Here, parents pass along balance to the children.)
- Just as all orcs will have blue eyes, all strings in $\mathcal M$ will be balanced.

$$\mathcal{M} = \{\varepsilon, [], [[]], [][], [[]][], \dots, s_n, \dots\} \\ = \{s_1, s_2, s_3, \dots, s_n, \dots\}$$

• What is the P(n)?

- P(n): string s_n is balanced, i.e., the number of '[' equals the number of ']'

- $\mathcal{M} = \{s_1, s_2, s_3, \dots, s_n, \dots\}$
- P(n): string s_n is balanced, i.e., the number of '[' equals the number of ']'
 - But is that the only property?
 - Every '[' is eventually followed by a corresponding ']'
- *Proof*. [Strong induction on *n*]
- 1. **[Base case]** P(1) claims that $s_1 = \varepsilon$ is balanced. True.
- 2. [Induction step] Show that $P(1) \land \dots \land P(n) \rightarrow P(n+1)$. Direct proof.
 - Assume $P(1) \land \dots \land P(n): s_1, \dots, s_n$ are all balanced
 - Show P(n + 1): s_{n+1} is balanced
 - s_{n+1} is the child of two *earlier* strings: $s_{n+1} = [s_k] \bullet s_l$ (constructor rule)
 - s_k , s_l appeared earlier than s_{n+1} , so they are balanced (induction hypothesis)
 - Therefore, s_{n+1} is balanced (you add parentheses around a balanced string)
- 3. By induction, P(n) is $T \forall n \ge 1$

Proof: Strings in \mathcal{M} are Balanced, cont'd

- Question. Is every balanced string in *M*?
 What about][?
- **Exercise**. Prove that [[] $\notin \mathcal{M}$

Structural Induction Overview

- Strong induction with recursively defined sets is called *structural induction*
- Let S be a recursive set. This means you have:
 - Base cases s_1, \ldots, s_k that are in $\mathcal S$
 - Constructor rules that use elements in $\mathcal S$ to create a new element of $\mathcal S$
- Let P(s) be a property defined for any element s ∈ S. To show P(s) for every element in S, you must show:
 - 1. [**Base cases**] $P(s_1), P(s_2), ..., P(s_k)$ are T
 - 2. [Induction step] For every constructor rule, show:
 - IF *P* is T for the parents, THEN *P* is T for children
 - 3. By structural induction, conclude that P(s) is T for all $s \in S$
- MUST show for every base case
- MUST show for every constructor rule
- Structural induction can be used with any recursive set

Every Opening Parenthesis in ${\mathcal M}$ is Matched

- Example string in \mathcal{M} : [[]][]
 - Three opening and three closing parentheses
- Going from left to right:
 - [, opening = 1, closing = 0
 - [, opening = 2, closing = 0
 -], opening = 2, closing = 1
 -], opening = 2, closing = 2
 - [, opening = 3, closing = 2
 -], opening = 3, closing = 3
- Opening is always at least closing: parentheses are arithmetically matched
 - Important Exercise. Prove this by structural induction
 - Key step is to show that constructor preserves "matchedness"
- Question. Is every string of matched parentheses in \mathcal{M} ?
- Hard Exercise. Prove this. (see Exercise 8.3)

Structural Induction on \mathbb{N}

- $\mathbb{N} = \{1, 2, 3, ...\}$ is a recursively defined set:
 - $1 \in \mathbb{N}$ $x \in \mathbb{N} \to x + 1 \in \mathbb{N}$
- Consider any property of the natural numbers, for example $P(n): 5^n 1$ is divisible by 4
- Structural induction to prove P(n) holds for every $n \in \mathbb{N}$:
 - 1. [**Prove for all base cases**] Only one base case P(1).
 - 2. [Prove every constructor rule *preserves* P(n)] Only one constructor:
 - IF P is T for x (the parent), then P is T for x + 1 (the child).
 - 3. By structural induction, P(n) is $T \forall n \in \mathbb{N}$
- That's just ordinary induction!

Palindromes \mathcal{P}

- Here's a nerdy palindrome: "Was it a rat I saw"
 - The same sequence of letters forwards and backwards
- Binary sequences

 $(01100)^{R} = 00110$ (not a palindrome) $(0110)^{R} = 0110$ (a palindrome)

- Recursive definition of palindromes ${\mathcal P}$
 - There are three base cases: $\varepsilon \in \mathcal{P}$, $0 \in \mathcal{P}$, $1 \in \mathcal{P}$
 - There are two constructor rules: $(i)x \in \mathcal{P} \to 0 \bullet x \bullet 0 \in \mathcal{P}$;

$$(ii)x \in \mathcal{P} \rightarrow 1 \bullet x \bullet 1 \in \mathcal{P}$$

- Constructor *rules* preserves palindromicity: $(0 \cdot 0110 \cdot 0)^R = 001100$ $(1 \cdot 0110 \cdot 1)^R = 101101$
- Therefore, we can prove by structural induction that all strings in ${\mathcal P}$ are palindromes
- Hard Exercise. Prove that all palindromes are in \mathcal{P} (Exercise 8.7).

Arithmetic Expressions

- Fact known to all first-graders: ((1+1+1) × (1+1+1+1+1))=15
 i.e., value((1+1+1)×(1+1+1+1))=15
- A recursive set of well formed arithmetic expression strings A_{ODD} :
 - − One base case: $1 \in \mathcal{A}_{ODD}$
 - There are two constructor rules: (i) $x \in \mathcal{A}_{ODD} \rightarrow (x + 1 + 1) \in \mathcal{A}_{ODD}$; (ii) $x, y \in \mathcal{A}_{ODD} \rightarrow (x \times y) \in \mathcal{A}_{ODD}$
 - For example,

$$1 \to (1+1+1) \to ((1+1+1)+1+1) \\ (1 \times 1) \qquad ((1 \times 1)+1+1)$$

- The constructors add 2 to the parent or multiply the parents.
- If the parents have odd value, then so does the child.
- Constructors preserve "oddness" \rightarrow all strings in \mathcal{A}_{ODD} have odd value

Rooted Binary Trees with $n \ge 1$ Vertices Have n-1 Edges

- The empty tree ε is an RBT.
- Disjoint RBTs T_1 , T_2 give a new RBT by linking their roots to a new root.

Rensselaer

- P(T): if T is a rooted binary tree with $n \ge 1$ vertices, then T has n 1 links.
 - 1. [Base case] $P(\varepsilon)$ is vacuously T because ε is not a tree with $n \ge 1$ vertices.
 - 2. [Induction step] Consider the constructors with parent RBTs T_1 and T_2
 - Parents: T₁ with n₁ vertices and l₁ edges and T₂ with n₂ vertices and l₂ edges.
 - Child: T with n vertices and l edges.
 - <u>Case 1</u>: $T_1 = T_2 = \varepsilon$.
 - Child is a single node with n = 1, l = 0 = n 1
 - <u>Case 2</u>: $T_1 = \varepsilon$; $T_2 \neq \varepsilon$.
 - The child has one more node, $n = n_2 + 1$, and one more link: $l = l_2 + 1$
 - $= n_2 1 + 1 = n_2 = n 1$ [induction hypothesis]

Rooted Binary Trees with $n \ge 1$ Vertices Have n-1 Edges, cont'd

- The empty tree ε is an RBT.
- Disjoint RBTs T_1 , T_2 give a new RBT by linking their roots to a new root.

Rensselaer

- P(T): if T is a rooted binary tree with $n \ge 1$ vertices, then T has n 1 links.
 - 1. [Base case] $P(\varepsilon)$ is vacuously T because ε is not a tree with $n \ge 1$ vertices.
 - 2. [Induction step] Consider the constructors with parent RBTs T_1 and T_2
 - Parents: T₁ with n₁ vertices and l₁ edges and T₂ with n₂ vertices and l₂ edges.
 - Child: T with n vertices and l edges.

• Case 3:
$$T_1 \neq \varepsilon$$
; $T_2 = \varepsilon$. (Similar to Case 2.)
 $n = n_1 + 1 \text{ AND}$
 $l = l_1 + 1$
 $= n_1 - 1 + 1 = n_1 = n - 1$ [induction hypothesis]
• Case 4: $T_1 \neq \varepsilon$; $T_2 \neq \varepsilon$.

- Now, $n = n_1 + n_2 + 1$ and there are two new links, so $l = l_1 + l_2 + 2$ $= n_1 - 1 + n_2 - 1 + 2 = n_1 + n_2 = n - 1$ [induction hypothesis]

Rooted Binary Trees with $n \ge 1$ Vertices Have n-1 Edges, cont'd

- The empty tree ε is an RBT.
- Disjoint RBTs T_1 , T_2 give a new RBT by linking their roots to a new root.

Rensselaer

- P(T): if T is a rooted binary tree with $n \ge 1$ vertices, then T has n 1 links.
 - 1. [Base case] $P(\varepsilon)$ is vacuously T because ε is not a tree with $n \ge 1$ vertices.
 - 2. [Induction step] Consider the constructors with parent RBTs T_1 and T_2
 - Parents: T₁ with n₁ vertices and l₁ edges and T₂ with n₂ vertices and l₂ edges.
 - Child: T with n vertices and l edges.
 - Constructor always preserves property *P*.
 - 3. By structural induction, P(T) is true $\forall T \in RBT$.

Checklist for Structural Induction

- *Analogy:* if the first ancestors had blue eyes, and blue eyes are inherited from one generation to the next, then all of society will have blue eyes.
- You have a recursively defined set ${\mathcal S}$
- You want to prove a property P for all members of \mathcal{S}
- Does the property *P* hold for the base cases?
- Is the property *P preserved* by all the constructor rules?
- Structural induction is **not** how to prove all objects with property P are in S