Proofs with Recursion

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 8
- Two Types of Questions About Recursive Sets
- Matched Parentheses
- Structural Induction
- \mathbb{N}
- Palindromes
- Arithmetic Expressions
- Rooted Binary Trees (RBT)

Two Types of Questions About a Recursive Set

- Recursive definition of a set \mathcal{A} :

$$
\begin{aligned}
& 0 \in \mathcal{A} \\
& x \in \mathcal{A} \rightarrow x+4 \in \mathcal{A}
\end{aligned}
$$

- What is \mathcal{A} ?

$$
\mathcal{A}=\{0,4,8,12,16, \ldots\}
$$

- (i) What is in \mathcal{A} ? Is some feature common to every element of \mathcal{A} ? Is everything in \mathcal{A} even?

$$
x \in \mathcal{A} \rightarrow x \text { is even (} \mathrm{T} \text {) }
$$

- (ii) Is everything with some property in \mathcal{A} ? Is every even number in \mathcal{A} ?

$$
x \text { is even } \rightarrow x \in \mathcal{A} \text { (} \mathrm{F} \text {) }
$$

- Very, very different statements!
- Every leopard has 4 legs
- Is everything with 4 legs a leopard?

Structural Induction

- Structural induction shows every member of a recursive set has a property, question (i)
- Consider the evolution of orcs
- (Because computer scientists have nothing better to do)
- The first two orcs had blue eyes
- When two orcs mate, if they both have blue eyes, then the child has blue eyes
- Do all orcs have blue eyes?
- When could a green-eyed orc have arisen?
- Structural Induction
- The ancestors have a trait
- The trait is passed on from parents to children
- Conclusion: Everyone today has that trait
- Recursive definition of \mathcal{M}

$$
\begin{array}{cr}
\varepsilon \in \mathcal{M} & \text { [basis] } \\
x, y \in \mathcal{M} \rightarrow[x] \bullet y \in \mathcal{M} & \text { [constructor] }
\end{array}
$$

- The strings in \mathcal{M} are the matched (in the arithmetic sense) parentheses. For example:

$$
\begin{array}{cc}
{[]} & \text { (set } x=\varepsilon, y=\varepsilon \text { to get }[\varepsilon] \varepsilon=[]) \\
{[[]]} & (\operatorname{set} x=[], y=\epsilon) \\
{[][]} & (\operatorname{set} x=\varepsilon, y=[])
\end{array}
$$

- Let's list the strings in \mathcal{M} as they are created

$$
\mathcal{M}=\left\{\varepsilon,[],[[]],[][],[[]][], \ldots, s_{n}, \ldots\right\}
$$

- To get s_{n}, we apply the constructor to two prior (not necessarily distinct) strings.

Strings in \mathcal{M} Are Balanced

- Balanced means the number of opening and closing parentheses are equal
- The constructor,

$$
x, y \in \mathcal{M} \rightarrow[x] \bullet y \in \mathcal{M}
$$

- adds one opening and closing parenthesis
- If the "parent" strings x and y are balanced, then the child $[x] \bullet y$ is balanced.
- (Orcs inherit blue eyes. Here, parents pass along balance to the children.)
- Just as all orcs will have blue eyes, all strings in \mathcal{M} will be balanced.

$$
\begin{aligned}
\mathcal{M} & =\left\{\varepsilon,[],[[]],[][],[[]][], \ldots, s_{n}, \ldots\right\} \\
& =\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}, \ldots\right\}
\end{aligned}
$$

- What is the $P(n)$?
$-P(n)$: string s_{n} is balanced, i.e., the number of '[' equals the number of ']'

Proof: Strings in \mathcal{M} are Balanced, cont'd

$$
\mathcal{M}=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}, \ldots\right\}
$$

- $P(n)$: string s_{n} is balanced, i.e., the number of '[' equals the number of ']'
- But is that the only property?
- Every '[' is eventually followed by a corresponding ']'
- Proof. [Strong induction on n]

1. [Base case] $P(1)$ claims that $s_{1}=\varepsilon$ is balanced. True.
2. [Induction step] Show that $P(1) \wedge \cdots \wedge P(n) \rightarrow P(n+1)$. Direct proof.

- Assume $P(1) \wedge \cdots \wedge P(n): s_{1}, \ldots, s_{n}$ are all balanced
- Show $P(n+1): s_{n+1}$ is balanced
- s_{n+1} is the child of two earlier strings: $s_{n+1}=\left[s_{k}\right] \cdot s_{l}$ (constructor rule)
- $\quad s_{k}, s_{l}$ appeared earlier than s_{n+1}, so they are balanced (induction hypothesis)
- Therefore, s_{n+1} is balanced (you add parentheses around a balanced string)

3. By induction, $P(n)$ is $T \forall n \geq 1$

Proof: Strings in \mathcal{M} are Balanced, cont'd

- Question. Is every balanced string in \mathcal{M} ?
- What about][?
- Exercise. Prove that [[]] \mathcal{M}

Structural Induction Overview

- Strong induction with recursively defined sets is called structural induction
- Let \mathcal{S} be a recursive set. This means you have:
- Base cases s_{1}, \ldots, s_{k} that are in \mathcal{S}
- Constructor rules that use elements in \mathcal{S} to create a new element of \mathcal{S}
- Let $P(s)$ be a property defined for any element $s \in \mathcal{S}$. To show $P(s)$ for every element in \mathcal{S}, you must show:

1. [Base cases] $P\left(s_{1}\right), P\left(s_{2}\right), \ldots, P\left(s_{k}\right)$ are T
2. [Induction step] For every constructor rule, show:

- IF P is T for the parents, THEN P is T for children

3. By structural induction, conclude that $P(s)$ is T for all $s \in \mathcal{S}$

- MUST show for every base case
- MUST show for every constructor rule
- Structural induction can be used with any recursive set

Every Opening Parenthesis in \mathcal{M} is Matched

- Example string in \mathcal{M} : [[]] []
- Three opening and three closing parentheses
- Going from left to right:
[, opening $=1$, closing $=0$
[, opening $=2$, closing $=0$
], opening $=2$, closing $=1$
], opening $=2$, closing $=2$
[, opening $=3$, closing $=2$
], opening $=3$, closing $=3$
- Opening is always at least closing: parentheses are arithmetically matched
- Important Exercise. Prove this by structural induction
- Key step is to show that constructor preserves "matchedness"
- Question. Is every string of matched parentheses in \mathcal{M} ?
- Hard Exercise. Prove this. (see Exercise 8.3)

Structural Induction on \mathbb{N}

- $\mathbb{N}=\{1,2,3, \ldots\}$ is a recursively defined set:

$$
\begin{aligned}
& 1 \in \mathbb{N} \\
& x \in \mathbb{N} \rightarrow x+1 \in \mathbb{N}
\end{aligned}
$$

- Consider any property of the natural numbers, for example

$$
P(n): 5^{n}-1 \text { is divisible by } 4
$$

- Structural induction to prove $P(n)$ holds for every $n \in \mathbb{N}$:

1. [Prove for all base cases] Only one base case $P(1)$.
2. [Prove every constructor rule preserves $P(n)$] Only one constructor:

- IF P is T for x (the parent), then P is T for $x+1$ (the child).

3. By structural induction, $P(n)$ is $T \forall n \in \mathbb{N}$

- That's just ordinary induction!

Palindromes \mathcal{P}

- Here's a nerdy palindrome: "Was it a rat I saw"
- The same sequence of letters forwards and backwards
- Binary sequences

$$
\begin{aligned}
(01100)^{R} & =00110 \\
& \\
(0110)^{R} & =0110
\end{aligned} \quad \begin{aligned}
& \text { (not a palindrome) } \\
& \text { (a palindrome) }
\end{aligned}
$$

- Recursive definition of palindromes \mathcal{P}
- There are three base cases: $\varepsilon \in \mathcal{P}, 0 \in \mathcal{P}, 1 \in \mathcal{P}$
- There are two constructor rules: $(i) x \in \mathcal{P} \rightarrow 0 \bullet x \bullet 0 \in \mathcal{P}$; (ii) $x \in \mathcal{P} \rightarrow 1 \cdot x \bullet 1 \in \mathcal{P}$
- Constructor rules preserves palindromicity:

$$
\begin{aligned}
& (0 \cdot 0110 \cdot 0)^{R}=001100 \\
& (1 \cdot 0110 \cdot 1)^{R}=101101
\end{aligned}
$$

- Therefore, we can prove by structural induction that all strings in \mathcal{P} are palindromes
- Hard Exercise. Prove that all palindromes are in \mathcal{P} (Exercise 8.7).

Arithmetic Expressions

- Fact known to all first-graders: $((1+1+1) \times(1+1+1+1+1))=15$
- i.e., value $((1+1+1) \times(1+1+1+1+1))=15$
- A recursive set of well formed arithmetic expression strings $\mathcal{A}_{O D D}$:
- One base case: $1 \in \mathcal{A}_{O D D}$
- There are two constructor rules: (i) $x \in \mathcal{A}_{O D D} \rightarrow(x+1+1) \in \mathcal{A}_{O D D}$; (ii) $x, y \in \mathcal{A}_{O D D} \rightarrow(x \times y) \in \mathcal{A}_{O D D}$
- For example,

$$
\begin{aligned}
1 \rightarrow & (1+1+1) \rightarrow \\
& ((1+1+1)+1+1) \\
& ((1 \times 1)
\end{aligned}
$$

- The constructors add 2 to the parent or multiply the parents.
- If the parents have odd value, then so does the child.
- Constructors preserve "oddness" \rightarrow all strings in $\mathcal{A}_{O D D}$ have odd value

Rooted Binary Trees with $n \geq 1$ Vertices Have

 n-1 Edges- The empty tree ε is an RBT.
- Disjoint RBTs T_{1}, T_{2} give a new RBT by linking their roots to a new root.

- $P(T)$: if T is a rooted binary tree with $n \geq 1$ vertices, then T has $n-1$ links.

1. [Base case] $P(\varepsilon)$ is vacuously T because ε is not a tree with $n \geq 1$ vertices.
2. [Induction step] Consider the constructors with parent RBTs T_{1} and T_{2}

- Parents: T_{1} with n_{1} vertices and l_{1} edges and T_{2} with n_{2} vertices and l_{2} edges.
- Child: T with n vertices and l edges.
- Case 1: $T_{1}=T_{2}=\varepsilon$.
- Child is a single node with $n=1, l=0=n-1$
- Case 2: $T_{1}=\varepsilon ; T_{2} \neq \varepsilon$.
- The child has one more node, $n=n_{2}+1$, and one more link:

$$
\begin{aligned}
l & =l_{2}+1 \\
& =n_{2}-1+1=n_{2}=n-1 \text { [induction hypothesis] }
\end{aligned}
$$

Rooted Binary Trees with $n \geq 1$ Vertices Have n-1 Edges, cont'd

- The empty tree ε is an RBT.
- Disjoint RBTs T_{1}, T_{2} give a new RBT by linking their roots to a new root.

- $P(T)$: if T is a rooted binary tree with $n \geq 1$ vertices, then T has $n-1$ links.

1. [Base case] $P(\varepsilon)$ is vacuously T because ε is not a tree with $n \geq 1$ vertices.
2. [Induction step] Consider the constructors with parent RBTs T_{1} and T_{2}

- Parents: T_{1} with n_{1} vertices and l_{1} edges and T_{2} with n_{2} vertices and l_{2} edges.
- Child: T with n vertices and l edges.
- Case 3: $T_{1} \neq \varepsilon ; T_{2}=\varepsilon$. (Similar to Case 2.)

$$
\begin{aligned}
n & =n_{1}+1 \text { AND } \\
l & =l_{1}+1 \\
& =n_{1}-1+1=n_{1}=n-1 \text { [induction hypothesis] }
\end{aligned}
$$

- Case 4: $T_{1} \neq \varepsilon ; T_{2} \neq \varepsilon$.
- Now, $n=n_{1}+n_{2}+1$ and there are two new links, so

$$
\begin{aligned}
l & =l_{1}+l_{2}+2 \\
& =n_{1}-1+n_{2}-1+2=n_{1}+n_{2}=n-1 \text { [induction hypothesis] }
\end{aligned}
$$

Rooted Binary Trees with $n \geq 1$ Vertices Have n-1 Edges, cont'd

- The empty tree ε is an RBT.
- Disjoint RBTs T_{1}, T_{2} give a new RBT by linking their roots to a new root.

$P(T)$: if T is a rooted binary tree with $n \geq 1$ vertices, then T has $n-1$ links.

1. [Base case] $P(\varepsilon)$ is vacuously T because ε is not a tree with $n \geq 1$ vertices.
2. [Induction step] Consider the constructors with parent RBTs T_{1} and T_{2}

- Parents: T_{1} with n_{1} vertices and l_{1} edges and T_{2} with n_{2} vertices and l_{2} edges.
- Child: T with n vertices and l edges.
- Constructor always preserves property P.

3. By structural induction, $P(T)$ is true $\forall T \in R B T$.

Checklist for Structural Induction

- Analogy: if the first ancestors had blue eyes, and blue eyes are inherited from one generation to the next, then all of society will have blue eyes.
- You have a recursively defined set \mathcal{S}
- You want to prove a property P for all members of \mathcal{S}
- Does the property P hold for the base cases?
- Is the property P preserved by all the constructor rules?
- Structural induction is not how to prove all objects with property P are in \mathcal{S}

