
Recursion

1



Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 7

2



Overview

• Recursive functions

– Analysis using induction

– Recurrences

– Recursive programs

• Recursive sets

– Formal Definition of ℕ

– The Finite Binary Strings Σ∗

• Recursive structures

– Rooted binary trees (RBT)

3



Fantastic Recursion

• Suppose you’re talking to a friend on Zoom

– Your friend’s laptop is also projecting on their TV

• The TV is behind your friend’s back, so you can see it through their camera 
stream

• What do you see on the TV?

• Your friend’s Zoom, which contains your camera stream and your friend’s 
camera stream

– What do you see on the TV on your friend’s camera stream?
» Your friend’s Zoom, which contains your camera stream and your friend’s camera stream

• What do you see on the TV on your friend’s camera stream?
• Your friend’s Zoom, which contains your camera stream and your friend’s camera stream

• What do you see on the TV on your friend’s camera stream?
• Your friend’s Zoom, which contains your camera stream and your friend’s camera stream
• What do you see on the TV on your friend’s camera stream?

4



Examples of Recursion: Self Reference

• The TV shows your friend’s Zoom, which has your friend’s camera stream, which has 
your friend’s TV

– The TV shows what the TV showed. – self reference

• look-up(word): Get definition; if a word x in the definition is unknown, look-
up(x)

– Get definition; if a word y in the definition is unknown, look-up(y)

• Eventually you’ll end up in a cycle

– An unknown word appears in the definition of another word, which 
appears in the definition of the first, etc.

• 𝑓 𝑛 = 𝑓 𝑛 − 1 + 2𝑛 − 1

– What is 𝑓(2)?
𝑓 2 = 𝑓 1 + 3 =

= 𝑓 0 + 4 =
= 𝑓(−1) + 3 = · · ·

– WHEN DOES THIS END???

5



Recursion Must Have Base Cases: Partial Self 

Reference

• look-up(word) works if there are some known words to which everything 
reduces

– This way you won’t recurse forever

• Similarly with recursive functions

𝑓 𝑛 = ቊ
0 𝑛 ≤ 0
𝑓 𝑛 − 1 + 2𝑛 − 1 𝑛 > 0

𝑓 2 = 𝑓 1 + 3
= 𝑓 0 + 4 = 4

• Must have base cases:

– In this case 𝑓(0)

• Must make recursive progress:

– To compute 𝑓(𝑛) you must move closer to the base case 𝑓(0)

6



Recursion and Induction

• 𝑓 𝑛 = ቊ
0 𝑛 ≤ 0
𝑓 𝑛 − 1 + 2𝑛 − 1 𝑛 > 0

𝑓 0 → 𝑓 1 → 𝑓 2 → ⋯

• Induction

– Start with 𝑃 0 . Show 𝑃(0) is T. 

– Then show 𝑃 𝑛 → 𝑃(𝑛 + 1)

• You can conclude 𝑃(𝑛 + 1) is T if 𝑃(𝑛) is T

• 𝑃 0 → 𝑃 1 → 𝑃 2 → ⋯

• 𝑃(𝑛) is T ∀𝑛 ≥ 0

• Recursion

– Start with the base case:
𝑓 0 = 0

– Then compute the recursive step: 𝑓 𝑛 + 1 = 𝑓 𝑛 + 2𝑛 − 1

• We can compute 𝑓 𝑛 + 1 if 𝑓(𝑛) is known

• 𝑓 0 → 𝑓 1 → 𝑓 2 → 𝑓 3 → ⋯

• We can compute 𝑓 𝑛 for all 𝑛 ≥ 0
7



Recursion and Induction, cont’d

• Example: more base cases

𝑓 𝑛 = ቊ
1 𝑛 = 0
𝑓 𝑛 − 2 + 2 𝑛 > 0

• Let’s look at some values of 𝑓
𝑓 0 = 1
𝑓 1 = ?
𝑓 2 = 3
𝑓 3 =?
𝑓 4 = 5

• How do we fix 𝑓?

– Hint: leaping induction!

• Practice: Exercise 7.4

8



Using Induction to Analyze a Recursion

𝑓 𝑛 = ቊ
0 𝑛 ≤ 0
𝑓 𝑛 − 1 + 2𝑛 − 1 𝑛 > 0

• What is 𝑓 1 , 𝑓 2 , 𝑓 3 , 𝑓 4 , … ?
𝑓 1 = 1
𝑓 2 = 4
𝑓 3 = 9
𝑓 4 = 16

– Hm, could this actually be 𝑓 𝑛 = 𝑛2???

– Let’s unfold the recursion:
𝑓 𝑛 = 𝑓 𝑛 − 1 + 2𝑛 − 1

𝑓 𝑛 − 1 = 𝑓 𝑛 − 2 + 2𝑛 − 3
𝑓 𝑛 − 2 = 𝑓 𝑛 − 3 + 2𝑛 − 5

⋯
𝑓 2 = 𝑓 1 + 3
𝑓 1 = 𝑓 0 + 1

9



Using Induction to Analyze a Recursion, cont’d

𝑓 𝑛 = ቊ
0 𝑛 ≤ 0
𝑓 𝑛 − 1 + 2𝑛 − 1 𝑛 > 0

• Let’s unfold the recursion:
𝑓 𝑛 = 𝑓 𝑛 − 1 + 2𝑛 − 1

𝑓 𝑛 − 1 = 𝑓 𝑛 − 2 + 2𝑛 − 3
𝑓 𝑛 − 2 = 𝑓 𝑛 − 3 + 2𝑛 − 5

⋯
𝑓 2 = 𝑓 1 + 3
𝑓 1 = 𝑓 0 + 1

• Let’s add them up: (𝑓(𝑛 − 1)’s cancel, 𝑓(𝑛 − 2)’s cancel, etc.)
𝑓 𝑛 = 𝑓 0 + 1 + 3 +⋯+ 2𝑛 − 1

• Can use Gauss’s idea here also to derive 𝑓 𝑛 = 𝑛2:
2𝑓 𝑛 = 2𝑛 ⋅ 𝑛

10



Using Induction to Analyze a Recursion, cont’d

𝑓 𝑛 = ቊ
0 𝑛 ≤ 0
𝑓 𝑛 − 1 + 2𝑛 − 1 𝑛 > 0

• Proof that 𝑓 𝑛 = 𝑛2. [By induction]

1. [Base case] 𝑃 0 = 0. Clearly T.

2. [Induction step] Show 𝑃 𝑛 → 𝑃 𝑛 + 1 .

– Assume 𝑃 𝑛 : 𝑓 𝑛 = 𝑛2.

𝑓 𝑛 + 1 = 𝑓 𝑛 + 2 𝑛 + 1 − 1 [recursion]

= 𝑛2 + 2𝑛 + 1 [induction hypothesis]

= 𝑛 + 1 2 [𝑃(𝑛 + 1) is T]

3. By induction, 𝑃(𝑛 + 1) is T.

11



Using Induction to Analyze a Recursion, cont’d

• Hard example:

𝑓 𝑛 =

1 𝑛 = 1

𝑓
𝑛

2
+ 1 𝑛 > 1, 𝑒𝑣𝑒𝑛

𝑓 𝑛 + 1 𝑛 > 1, 𝑜𝑑𝑑

• A halving recursion!

– Discussed in the book

– (Looks esoteric? Often, you halve a problem (if it is even) or pad it by one to 
make it even, and then halve it.)

• Prove 𝑓 𝑛 = 1 + ⌈log2 𝑛⌉

– The notation ⌈𝑥⌉ means the smallest integer greater than or equal to 𝑥

• Practice. Exercise 7.5

12



Checklist for Analyzing Recursion

• Tinker. Draw the implication arrows. Is the function well defined?

• Tinker. Compute 𝑓(𝑛) for small values of 𝑛

• Make a guess for 𝑓(𝑛). “Unfolding” the recursion can be helpful here.

• Prove your conjecture for 𝑓(𝑛) by induction.

– The type of induction to use will often be related to the type of recursion.

– In the induction step, use the recursion to relate the claim for 𝑛 + 1 to lower 
values.

• Practice. Exercise 7.6

13



Recurrences: Fibonacci Numbers

• Fibonacci sequences appear frequently in nature

– Growth rate of rabbits, family trees of bees, Sanskrit poetry

• Defined formally as:
𝐹1 = 1
𝐹2 = 1

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 > 2

• Let us prove 𝑃 𝑛 : 𝐹𝑛 ≤ 2𝑛 by strong induction.

• What do we do first?

– TINKER!
𝐹3 = 2
𝐹4 = 3
𝐹5 = 5
𝐹6 = 8
𝐹7 = 13

14

Source: https://mathcenter.oxford.emory.edu/site/math125/fibonacciRabbits/



Recurrences: Fibonacci Numbers, cont’d

𝐹1 = 1; 𝐹2 = 1; 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 > 2

• Let us prove 𝑃 𝑛 : 𝐹𝑛 ≤ 2𝑛 by strong induction.

1. [Base cases] 
𝐹1 = 1 ≤ 2
𝐹2 = 1 ≤ 22

– Clearly T.

– Why two base cases?

1. [Induction step] Prove 𝑃 1 ∧ 𝑃 2 ∧ ⋯∧ 𝑃 𝑛 → 𝑃(𝑛 + 1) for 𝑛 ≥ 2.

– Assume: 𝑃 1 ∧ 𝑃 2 ∧ ⋯∧ 𝑃 𝑛 : 𝐹𝑖 ≤ 2𝑖 for 1 ≤ 𝑖 ≤ 𝑛

𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 [definition for 𝒏 ≥ 𝟐]

≤ 2𝑛 + 2𝑛−1 [strong induction hypothesis]
≤ 2 ⋅ 2𝑛 = 2𝑛+1

2. By strong induction, 𝐹𝑛+1 ≤ 2𝑛+1, concluding the proof

• Practice: Prove 𝐹𝑛 ≥
3

2

𝑛
for 𝑛 ≥ 11

15



Recursive Programs

• Look at the following program

def Big(n):

if(n==0): out=1

else: out=2*Big(n-1)

• Proving correctness: let’s prove Big(𝑛) = 2𝑛 for 𝑛 ≥ 1

• Induction.

– When 𝑛 = 0, Big 𝑛 = 1 = 20. Check.

– Assume Big 𝑛 = 2𝑛 for 𝑛 ≥ 0.
Big 𝑛 + 1 = 2 × Big 𝑛

= 2 × 2𝑛 = 2𝑛+1

• Proving code correctness has 2 parts (why?)

– Prove algorithm is correct AND implementation is correct

16



Recursive Programs, cont’d

• Look at the following program

def Big(n):

if(n==0): out=1

else: out=2*Big(n-1)

• What is the runtime?

• Define 𝑇𝑛 = runtime of Big for input 𝑛

𝑇0 = 2 [2 operations]
𝑇𝑛 = 𝑇𝑛−1 + 𝑐ℎ𝑒𝑐𝑘 𝑛 == 0 + 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑏𝑦 2 + (𝑎𝑠𝑠𝑖𝑔𝑛 𝑡𝑜 𝑜𝑢𝑡)

= 𝑇𝑛−1 + 3

• Exercise. Prove by induction that 𝑇𝑛 = 3𝑛 + 2

17



Recursive Sets: ℕ

• Recursive definition of the natural numbers ℕ

1 ∈ ℕ [basis]

𝑥 ∈ ℕ → 𝑥 + 1 ∈ ℕ [constructor]

Nothing else is in ℕ [minimality]

• ℕ = {1,2,3,4, … }

• Technically, by bullet 3, we mean that ℕ is the smallest set satisfying bullets 1 and 2.

• Minimality is essential in order to define our set without ambiguity

18



Recursive Sets: Finite Binary Strings, 𝚺∗

• Let 𝜀 be empty string (similar to the empty set)

• Recursive definition of Σ∗ (finite binary strings):

𝜀 ∈ Σ∗ [basis]

𝑥 ∈ Σ∗ → 𝑥•0 ∈ Σ∗ AND 𝑥•1 ∈ Σ∗ [constructor]

– where • means concatenation 

• Minimality is there by default: nothing else is in Σ∗

𝜀 → 0,1 → 00,01,10,11 → 000,001,010,011,100,101,110,111 → ⋯

• And so finally
Σ∗ = {0,1,00,01,10,11,000,001,010,011,100,101,110,111, … }

• Practice. Exercise 7.12

20



Recursive Structures: Trees

• Arthur Cayley discovered trees when modeling hydrocarbons

• Trees have many uses in computer science

– Search trees

– Game trees

– Decision trees

– Compression trees

– Multi-processor trees

– Parse trees

– Expression trees

– Ancestry trees

– Organizational trees

21

Example Tree

Not a Tree



Rooted Binary Trees (RBT)

• Recursive definition of Rooted Binary Trees (RBT).

– The empty tree 𝜀 is an RBT

– If 𝑇1, 𝑇2 are disjoint RBTs with roots 𝑟1 and 𝑟2, 
then linking 𝑟1 and 𝑟2 to a new root 𝑟 gives a 
new RBT with root 𝑟

22

𝜀
𝑇1 = 𝜀

𝑇2 = 𝜀

𝑇1 =

𝑇2 = 𝜀

𝑇1 =

𝑇2 =

𝑇1 =

𝑇2 =

𝜀

…



Trees Are Important: Food for Thought

• Do we know the right structure is not a tree?

– Are we sure it can’t be derived?

• Is there only one way to derive a tree?

• Trees are more general than just RBT and have many interesting properties.

– A tree is a connected graph with 𝑛 nodes and 𝑛 − 1 edges

– A tree is a connected graph with no cycles

– A tree is a graph where any two nodes are connected by exactly one path

• Can we be sure every RBT has these properties?

23

Example Tree Not a Tree


	Slide 1: Recursion
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Fantastic Recursion
	Slide 5: Examples of Recursion: Self Reference
	Slide 6: Recursion Must Have Base Cases: Partial Self Reference
	Slide 7: Recursion and Induction
	Slide 8: Recursion and Induction, cont’d
	Slide 9: Using Induction to Analyze a Recursion
	Slide 10: Using Induction to Analyze a Recursion, cont’d
	Slide 11: Using Induction to Analyze a Recursion, cont’d
	Slide 12: Using Induction to Analyze a Recursion, cont’d
	Slide 13: Checklist for Analyzing Recursion
	Slide 14: Recurrences: Fibonacci Numbers
	Slide 15: Recurrences: Fibonacci Numbers, cont’d
	Slide 16: Recursive Programs
	Slide 17: Recursive Programs, cont’d
	Slide 18: Recursive Sets: double-struck cap N
	Slide 20: Recursive Sets: Finite Binary Strings, bold cap sigma to the asterisk operator 
	Slide 21: Recursive Structures: Trees
	Slide 22: Rooted Binary Trees (RBT)
	Slide 23: Trees Are Important: Food for Thought

