Recursion

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 7

Overview

- Recursive functions
 - Analysis using induction
 - Recurrences
 - Recursive programs
- Recursive sets
 - Formal Definition of $\ensuremath{\mathbb{N}}$
 - The Finite Binary Strings Σ^{\ast}
- Recursive structures
 - Rooted binary trees (RBT)

Fantastic Recursion

- Suppose you're talking to a friend on Zoom
 - Your friend's laptop is also projecting on their TV
 - The TV is behind your friend's back, so you can see it through their camera stream
 - What do you see on the TV?
 - Your friend's Zoom, which contains your camera stream and your friend's camera stream
 - What do you see on the TV on your friend's camera stream?
 - » Your friend's Zoom, which contains your camera stream and your friend's camera stream
 - What do you see on the TV on your friend's camera stream?
 - Your friend's Zoom, which contains your camera stream and your friend's camera stream
 - What do you see on the TV on your friend's camera stream?
 - Your friend's Zoom, which contains your camera stream and your friend's camera stream Were devices on the You are freedy camera mand?

Examples of Recursion: Self Reference

- The TV shows your friend's Zoom, which has your friend's camera stream, which has your friend's TV
 - The TV shows what the TV showed. self reference
- look-up(word): Get definition; if a word x in the definition is unknown, look-up(x)
 - Get definition; if a word y in the definition is unknown, look-up(y)
 - Eventually you'll end up in a cycle
 - An unknown word appears in the definition of another word, which appears in the definition of the first, etc.

•
$$f(n) = f(n-1) + 2n - 1$$

– What is f(2)?

$$f(2) = f(1) + 3 =$$

= $f(0) + 4 =$
= $f(-1) + 3 = \cdots$

- WHEN DOES THIS END???

Recursion Must Have Base Cases: *Partial* Self Reference

- *look-up* (word) works if there are some known words to which everything reduces
 - This way you won't recurse forever
- Similarly with recursive functions

$$f(n) = \begin{cases} 0 & n \le 0\\ f(n-1) + 2n - 1 & n > 0 \end{cases}$$

$$f(2) = f(1) + 3 = f(0) + 4 = 4$$

- Must have **base cases**:
 - In this case f(0)
- Must make recursive progress:
 - To compute f(n) you must move *closer* to the base case f(0)

Recursion and Induction

•
$$f(n) = \begin{cases} 0 & n \le 0 \\ f(n-1) + 2n - 1 & n > 0 \\ f(0) \to f(1) \to f(2) \to \cdots \end{cases}$$

- Induction
 - Start with P(0). Show P(0) is T.
 - Then show $P(n) \rightarrow P(n+1)$
 - You can conclude P(n + 1) is T if P(n) is T
 - $P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow \cdots$
 - P(n) is T $\forall n \ge 0$
- Recursion
 - Start with the base case:

$$f(0)=0$$

- Then compute the recursive step: f(n + 1) = f(n) + 2n 1
 - We can compute f(n + 1) if f(n) is known
 - $f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow \cdots$
 - We can compute f(n) for all $n \ge 0$

Recursion and Induction, cont'd

• Example: more base cases

$$f(n) = \begin{cases} 1 & n = 0\\ f(n-2) + 2 & n > 0 \end{cases}$$

• Let's look at some values of *f*

f(0) = 1f(1) = ?f(2) = 3f(3) = ?f(4) = 5

- How do we fix *f* ?
 - Hint: leaping induction!
- Practice: Exercise 7.4

Using Induction to Analyze a Recursion

$$f(n) = \begin{cases} 0 & n \le 0\\ f(n-1) + 2n - 1 & n > 0 \end{cases}$$

• What is f(1), f(2), f(3), f(4), ...?

f(1) = 1f(2) = 4f(3) = 9f(4) = 16

- Hm, could this actually be $f(n) = n^2$???
- Let's unfold the recursion:

$$f(n) = f(n-1) + 2n - 1$$

$$f(n-1) = f(n-2) + 2n - 3$$

$$f(n-2) = f(n-3) + 2n - 5$$

...

$$f(2) = f(1) + 3$$

$$f(1) = f(0) + 1$$

Using Induction to Analyze a Recursion, cont'd

$$f(n) = \begin{cases} 0 & n \le 0\\ f(n-1) + 2n - 1 & n > 0 \end{cases}$$

• Let's unfold the recursion:

$$f(n) = f(n-1) + 2n - 1$$

$$f(n-1) = f(n-2) + 2n - 3$$

$$f(n-2) = f(n-3) + 2n - 5$$

$$f(2) = f(1) + 3$$

f(1) = f(0) + 1

- Let's add them up: (f(n-1)'s cancel, f(n-2)'s cancel, etc.) $f(n) = f(0) + 1 + 3 + \dots + 2n - 1$
- Can use Gauss's idea here also to derive $f(n) = n^2$: $2f(n) = 2n \cdot n$

Using Induction to Analyze a Recursion, cont'd

$$f(n) = \begin{cases} 0 & n \le 0\\ f(n-1) + 2n - 1 & n > 0 \end{cases}$$

- *Proof* that $f(n) = n^2$. [By induction]
- 1. [**Base case**] P(0) = 0. Clearly T.
- 2. [Induction step] Show $P(n) \rightarrow P(n+1)$.

- Assume
$$P(n)$$
: $f(n) = n^2$.
 $f(n + 1) = f(n) + 2(n + 1) - 1$ [recursion]
 $= n^2 + 2n + 1$ [induction hypothesis]
 $= (n + 1)^2$ [$P(n + 1)$ is T]

3. By induction, P(n + 1) is T.

Rensselaer

Using Induction to Analyze a Recursion, cont'd

Rensselaer

• Hard example:

$$f(n) = \begin{cases} 1 & n = 1\\ f\left(\frac{n}{2}\right) + 1 & n > 1, even\\ f(n+1) & n > 1, odd \end{cases}$$

- A halving recursion!
 - Discussed in the book
 - (Looks esoteric? Often, you halve a problem (if it is even) or pad it by one to make it even, and then halve it.)
- Prove $f(n) = 1 + \lceil \log_2 n \rceil$
 - The notation [x] means the smallest integer greater than or equal to x
- Practice. Exercise 7.5

Checklist for Analyzing Recursion

- Tinker. Draw the implication arrows. Is the function well defined?
- Tinker. Compute f(n) for small values of n
- Make a guess for f(n). "Unfolding" the recursion can be helpful here.
- Prove your conjecture for f(n) by induction.
 - The type of induction to use will often be related to the type of recursion.
 - In the induction step, use the recursion to relate the claim for n + 1 to lower values.
- Practice. Exercise 7.6

Recurrences: Fibonacci Numbers

- Fibonacci sequences appear frequently in nature
 - Growth rate of rabbits, family trees of bees, Sanskrit poetry
- Defined formally as:

$$F_1 = 1$$

 $F_2 = 1$
 $F_n = F_{n-1} + F_{n-2}$ for $n > 2$

- Let us prove P(n): $F_n \leq 2^n$ by strong induction.
- What do we do first?
 - TINKER!

Source: https://mathcenter.oxford.emory.edu/site/math125/fibonacciRabbits/

$$F_1 = 1; F_2 = 1; F_n = F_{n-1} + F_{n-2}$$
 for $n > 2$

- Let us prove P(n): $F_n \leq 2^n$ by strong induction.
- 1. [Base cases]

$$F_1 = 1 \le 2$$

$$F_2 = 1 \le 2^2$$

– Clearly T.

- Why two base cases?
- 1. [Induction step] Prove $P(1) \land P(2) \land \dots \land P(n) \rightarrow P(n+1)$ for $n \ge 2$.
 - Assume: $P(1) \land P(2) \land \dots \land P(n)$: $F_i \leq 2^i$ for $1 \leq i \leq n$

$$\begin{split} F_{n+1} &= F_n + F_{n-1} & [\text{definition for } n \geq 2] \\ &\leq 2^n + 2^{n-1} & [\text{strong induction hypothesis}] \\ &\leq 2 \cdot 2^n = 2^{n+1} \end{split}$$

- 2. By strong induction, $F_{n+1} \leq 2^{n+1}$, concluding the proof
- **Practice**: Prove $F_n \ge \left(\frac{3}{2}\right)^n$ for $n \ge 11$

Recursive Programs

• Look at the following program

```
def Big(n):
    if(n==0): out=1
    else: out=2*Big(n-1)
```

- Proving correctness: let's prove $Big(n) = 2^n$ for $n \ge 1$
- Induction.

- When
$$n = 0$$
, Big $(n) = 1 = 2^0$. Check.

- Assume
$$\operatorname{Big}(n) = 2^n$$
 for $n \ge 0$.
 $\operatorname{Big}(n+1) = 2 \times \operatorname{Big}(n)$
 $= 2 \times 2^n = 2^{n+1}$

- Proving code correctness has 2 parts (why?)
 - Prove algorithm is correct AND implementation is correct

Recursive Programs, cont'd

• Look at the following program

```
def Big(n):
    if(n==0): out=1
    else: out=2*Big(n-1)
```

- What is the runtime?
- Define $T_n = \text{runtime of Big}$ for input n

$$T_0 = 2$$

$$T_n = T_{n-1} + (check \ n == 0) + (multiply \ by \ 2) + (assign \ to \ out)$$

$$= T_{n-1} + 3$$

• **Exercise.** Prove by induction that $T_n = 3n + 2$

Recursive Sets: \mathbb{N}

• Recursive definition of the natural numbers $\mathbb N$

 $1 \in \mathbb{N}$ [basis] $x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N}$ [constructor]Nothing else is in \mathbb{N} [minimality]

- $\mathbb{N} = \{1, 2, 3, 4, ...\}$
- Technically, by bullet 3, we mean that \mathbb{N} is the *smallest* set satisfying bullets 1 and 2.
- Minimality is essential in order to define our set without ambiguity

- Let ε be empty string (similar to the empty set)
- Recursive definition of Σ^* (finite binary strings):

 $\varepsilon \in \Sigma^*$ [basis]

 $x \in \Sigma^* \to x \bullet 0 \in \Sigma^* \text{ AND } x \bullet 1 \in \Sigma^*$ [constructor]

where • means concatenation

- Minimality is there by default: nothing else is in Σ^* $\varepsilon \rightarrow 0,1 \rightarrow 00,01,10,11 \rightarrow 000,001,010,011,100,101,110,111 \rightarrow \cdots$
- And so finally

 $\Sigma^* = \{0,1,00,01,10,11,000,001,010,011,100,101,110,111,\dots\}$

• **Practice.** Exercise 7.12

Recursive Structures: Trees

methane, CH_4 ethane, C_2H_6

• Arthur Cayley discovered trees when modeling hydrocarbons

 $\begin{array}{ccc} H & H & H & H & H \\ H - \dot{\mathbf{C}} - \dot{\mathbf{C}} - H & H - \dot{\mathbf{C}} - \dot{\mathbf{C}} - \dot{\mathbf{C}} - H \end{array}$

propane, C_3H_8

- Trees have many uses in computer science
 - Search trees

н-С-н

- Game trees
- Decision trees
- Compression trees
- Multi-processor trees
- Parse trees
- Expression trees
- Ancestry trees
- Organizational trees

 $\begin{array}{c} {}^{\mathrm{H}}_{\mathrm{H}} {}^{\mathrm{H}}_{\mathrm{C}} {}^{\mathrm{H}}_{\mathrm{C}} {}^{\mathrm{H}}_{\mathrm{C}} {}^{\mathrm{H}}_{\mathrm{C}} {}^{\mathrm{H}}_{\mathrm{H}} \\ {}^{\mathrm{H}}_{\mathrm{H}} {}^{\mathrm{H}}_{\mathrm{C}} {}^{\mathrm{C}}_{\mathrm{H}} {}^{\mathrm{H}}_{\mathrm{H}} \end{array}$

butane, C_4H_{10} iso-butane, C_4H_{10}

н н н н н-<u>с</u>-<u>с</u>-<u>с</u>-<u>с</u>-н

Rooted Binary Trees (RBT)

- Recursive definition of Rooted Binary Trees (RBT).
 - The empty tree ε is an RBT
 - If T_1 , T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a *new* root r gives a new RBT with root r

$$\varepsilon \xrightarrow{T_1 = \varepsilon} T_2 = \varepsilon \xrightarrow{T_1 = 0} T_2 = \varepsilon \xrightarrow{T_1 = 0$$

Trees Are Important: Food for Thought

- Do we *know* the right structure is not a tree?
 - Are we sure it can't be derived?

Example Tree

- Trees are more general than just RBT and have many interesting properties.
 - A tree is a connected graph with n nodes and n-1 edges
 - A tree is a connected graph with no cycles
 - A tree is a graph where any two nodes are connected by exactly one path
- Can we be sure *every* RBT has these properties?

