Recursion

Reading

* Malik Magdon-Ismail. Discrete Mathematics and Computing.
— Chapter 7

® Rensselaer

Overview @ Rensselaer

* Recursive functions
— Analysis using induction
— Recurrences
— Recursive programs

* Recursive sets
— Formal Definition of N
— The Finite Binary Strings X*

* Recursive structures
— Rooted binary trees (RBT)

Fantastic Recursion @) Rensselaer

e Suppose you’re talking to a friend on Zoom
— Your friend’s laptop is also projecting on their TV

 The TV is behind your friend’s back, so you can see it through their camera
stream

 What do you see on the TV?

* Your friend’s Zoom, which contains your camera stream and your friend’s
camera stream

— What do you see on the TV on your friend’s camera stream?

» Your friend’s Zoom, which contains your camera stream and your friend’s camera stream
* What do you see on the TV on your friend’s camera stream?

Your friend’s Zoom, which contains your camera stream and your friend’s camera stream

What do you see on the TV on your friend’s camera stream?
Your friend's Zoom, which contains your camera stream and your friend’s camera stream

Examples of Recursion: Self Reference

®) Rensselaer

* The TV shows your friend’s Zoom, which has your friend’s camera stream, which has
your friend’s TV

— The TV shows what the TV showed. — self reference

e Jook-up (word): Get definition; if a word x in the definition is unknown, 1ook-
up (x)
— Get definition; if a word y in the definition is unknown, 1ook-up (y)
* Eventually you’ll end up in a cycle

— An unknown word appears in the definition of another word, which
appears in the definition of the first, etc.

e fn)=f(n—-1)+2n-1
— Whatis f(2)?
f2)=f1)+3=
= F(0) +4 =
=f(-1)+3 =---
— WHEN DOES THIS END???

Recursion Must Have Base Cases: Partial Self

Reference @) Rensselaer

e look-up (word) works if there are some known words to which everything
reduces

— This way you won’t recurse forever
e Similarly with recursive functions
0 n<0

f(”):{f(n—1)+2n—1 n>0

f@2)=7(1)+3
= F(0)+4 =4

 Must have base cases:
— In this case f(0)

* Must make recursive progress:
— To compute f(n) you must move closer to the base case f(0)

Recursion and Induction

0 n<0
) f("):{f(n—1)+2n—1 n>0
Q) = (1) > f(2) > -
* Induction

— Start with P(0). Show P(0) is T.

— Then show P(n) » P(n + 1)
* Youcanconclude P(n+1)isTif P(n)isT
« P(0)-> P(1) » P(2)—> -
e PM)isTVn =0

* Recursion
— Start with the base case:
f(0)=0

— Then compute the recursive step: f(n+1) = f(n) + 2n—1
* We can compute f(n + 1) if f(n) is known
* fO) = fD)=>f(@2)>fB) =

* We can compute f(n) foralln = 0

® Rensselaer

Recursion and Induction,

* Example: more base cases

cont’d

fn) = {1
* Let’s look at some values of f
f0)=1
fQ) =7
f(2)=3
fQ3)=?
f(4) =5

* How do we fix f?
— Hint: leaping induction!

* Practice: Exercise 7.4

n=20

fm—-2)+2 n>0

®) Rensselaer

Using Induction to Analyze a Recursion

0 n<o0
f(n)_{f(n—1)+2n—1 n>0

* Whatis f(1), f(2),f(3), f(4),...?

f) =1
f2)=4
fB)=9
£(4) =16

— Hm, could this actually be f(n) = n????
— Let’s unfold the recursion:
fm)=f(n—-1)+2n-1
fm—1)=f(n—-2)+2n-3
f(n—2) —f(n—3)+2n—5

f(2)—f(1)+3
fA)=f0)+1

®) Rensselaer

Using Induction to Analyze a Recursion, cont’d

0 n<o0

f(n)z{f(n—1)+2n—1 n>0

* Let’s unfold the recursion:
fm)=f(nh—-1)+2n-1
fm—1)=f(n—-2)+2n-3
fm—2)=f(n—3)+2n—-5

f@R)=f1)+3
f=7>0)+1
* Let’s add them up: (f (n — 1)’s cancel, f (n — 2)’s cancel, etc.)
fm)=fO)+1+3+-+2n—-1

e Can use Gauss’s idea here also to derive f(n) = n?:
2f(n) =2n-n

® Rensselaer

10

Using Induction to Analyze a Recursion, cont’d @) Rensselaer

0 n<o0

f(n)z{f(n—1)+2n—1 n>0
* Proof that f(n) = n?. [By induction]
1. [Base case] P(0) = 0. ClearlyT.

2. [Induction step] Show P(n) -» P(n + 1).
— Assume P(n): f(n) = n?.

fm+1)=f(n)+2(n+1)—-1 [recursion]
=n’+2n+1 [induction hypothesis]
= (n+ 1)? [P(n+1)isT]

3. Byinduction, P(n+1)isT.

11

Using Induction to Analyze a Recursion, cont’d @) Rensselaer

Hard example:
1 n=1

n
f(n) = f(5)+1 n> 1, even
f(n+1) n>1,0dd

A halving recursion!
— Discussed in the book
— (Looks esoteric? Often, you halve a problem (if it is even) or pad it by one to
make it even, and then halve it.)
Prove f(n) = 1 + [log, n|
— The notation [x] means the smallest integer greater than or equal to x

Practice. Exercise 7.5

12

Checklist for Analyzing Recursion @) Rensselaer

e Tinker. Draw the implication arrows. Is the function well defined?
* Tinker. Compute f(n) for small values of n
* Make a guess for f(n). “Unfolding” the recursion can be helpful here.

* Prove your conjecture for f(n) by induction.
— The type of induction to use will often be related to the type of recursion.

— In the induction step, use the recursion to relate the claim for n + 1 to lower
values.

* Practice. Exercise 7.6

13

Recurrences: Fibonacci Numbers @2 Rensselaer

Fibonacci sequences appear frequently in nature
— Growth rate of rabbits, family trees of bees, Sanskrit poetry

Defined formally as:
Fl == 1
FZ - 1

E,=F,_1+F,_,forn>2

Let us prove P(n): E, < 2™ by strong induction.

What do we do first?

— TINKER! -
F3 - 2 Jamsaey P‘T

F4 = 3 Februacy \ 1

FS — 5 gt / :_._- 2

F,. =13 ™= _~&% -~ ¢ ;

’ - 7 8 H :

Source: https://mathcenter.oxford.emory.edu/site/math125/fibonacciRabbits/

14

Recurrences: Fibonacci Numbers, cont’d @2 Rensselaer

Fl = 1,F2 =]'JFTL = Fn—l +Fn_2 forn > 2
* Let us prove P(n): F,, < 2™ by strong induction.

1. [Base cases]

— Clearly T.
— Why two base cases?
1. [Induction step] Prove P(1) AP(2) A---AP(n) » P(n+ 1) forn = 2.
— Assume: P(1)) AP(2)A--AP(n):F; <2'for1<i<n
Foy1 =FE,+F,_4 [definition for n > 2]
< 2™ 4 2n1 [strong induction hypothesis]
<?2. on — 2n+1

2. By stronginduction, F,,.; < 2™, concluding the proof
3 n
* Practice: Prove F,, > (5) forn > 11

15

Recursive Programs @) Rensselaer

Look at the following program
def Big(n) :
1f (n==0): out=l

else: out=2*Big(n-1)

Proving correctness: let’s prove Big(n) = 2" forn > 1

Induction.
— Whenn =0, Big(n) = 1 = 2°. Check.
— Assume Big(n) = 2" forn = 0.
Big(n+ 1) =2 xBig(n)
=2 x 2" = 21

Proving code correctness has 2 parts (why?)
— Prove algorithm is correct AND implementation is correct

16

®) Rensselaer

Recursive Programs, cont’d

Look at the following program
def Big(n) :
1f (n==0): out=l

else: out=2*Big(n-1)

What is the runtime?

Define T,, = runtime of Big forinputn

Ty =2 [2 operations]
T, = Ty—1 + (check n == 0) + (multiply by 2) + (assign to out)
= Tn—l + 3

Exercise. Prove by induction that 7,, = 3n + 2

17

Recursive Sets: N @ Rensselaer

Recursive definition of the natural numbers N

1EeN [basis]
xEN->x+1€eN [constructor]
Nothing else is in N [minimality]

N ={1,2,34,..}
Technically, by bullet 3, we mean that N is the smallest set satisfying bullets 1 and 2.

Minimality is essential in order to define our set without ambiguity

18

Recursive Sets: Finite Binary Strings, X* @ Rensselaer
* Let € be empty string (similar to the empty set)
* Recursive definition of £* (finite binary strings):

EEX” [basis]

x EX* > xo0 € X" AND xe1 € X [constructor]
— where ® means concatenation

* Minimality is there by default: nothing else is in £*
«¢-01-000110,11 - 000,001,010,011,100,101,110,111 - ---

* And so finally
X*=1{0,1,00,01,10,11,000,001,010,011,100,101,110,111, ...}

* Practice. Exercise 7.12

20

Recursive Structures: Trees @ Rensselaer

e Arthur Cayley discovered trees when modeling hydrocarbons

methane, C'Hy ethane, CyHg propane, C3Hs butane, CyH1g iso-butane, C'y Hqg
: H H H H H HHHH H H H
H-C-H H-C-C-H H-C C C H H-C-C-C-C-H H- C C C H
H H H H H HHHH HHCHH
H

* Trees have many uses in computer science
— Search trees Example Tree
— Game trees
— Decision trees
— Compression trees
— Multi-processor trees
— Parse trees Not 3 Tree
— Expression trees
— Ancestry trees

— Organizational trees

21

Rooted Binary Trees (RBT) @) Rensselaer

* Recursive definition of Rooted Binary Trees (RBT).
— The empty tree € is an RBT

— If Ty, T, are disjoint RBTs with roots r; and 7, A A - I{

then linking r; and r, to a new root r gives a
new RBT with root r

T, =¢ e Tl_[\

&E —.— —
T2=€ Tz—e z Tz—.A Tz—

E =—> O

—J VA

— 23X F {4

22

Trees Are Important: Food for Thought ® Rensselaer

* Do we know the right structure is not a tree?
— Are we sure it can’t be derived?

Example Tree Not a Tree

* Is there only one way to derive a tree?

* Trees are more general than just RBT and have many interesting properties.
— A tree is a connected graph with n nodes and n — 1 edges
— A treeis a connected graph with no cycles
— Atree is a graph where any two nodes are connected by exactly one path

e Can we be sure every RBT has these properties?

23

	Slide 1: Recursion
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Fantastic Recursion
	Slide 5: Examples of Recursion: Self Reference
	Slide 6: Recursion Must Have Base Cases: Partial Self Reference
	Slide 7: Recursion and Induction
	Slide 8: Recursion and Induction, cont’d
	Slide 9: Using Induction to Analyze a Recursion
	Slide 10: Using Induction to Analyze a Recursion, cont’d
	Slide 11: Using Induction to Analyze a Recursion, cont’d
	Slide 12: Using Induction to Analyze a Recursion, cont’d
	Slide 13: Checklist for Analyzing Recursion
	Slide 14: Recurrences: Fibonacci Numbers
	Slide 15: Recurrences: Fibonacci Numbers, cont’d
	Slide 16: Recursive Programs
	Slide 17: Recursive Programs, cont’d
	Slide 18: Recursive Sets: double-struck cap N
	Slide 20: Recursive Sets: Finite Binary Strings, bold cap sigma to the asterisk operator
	Slide 21: Recursive Structures: Trees
	Slide 22: Rooted Binary Trees (RBT)
	Slide 23: Trees Are Important: Food for Thought

