Recursion

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 7
- Recursive functions
- Analysis using induction
- Recurrences
- Recursive programs
- Recursive sets
- Formal Definition of \mathbb{N}
- The Finite Binary Strings Σ^{*}
- Recursive structures
- Rooted binary trees (RBT)

Fantastic Recursion

- Suppose you're talking to a friend on Zoom
- Your friend's laptop is also projecting on their TV
- The TV is behind your friend's back, so you can see it through their camera stream
- What do you see on the TV?
- Your friend's Zoom, which contains your camera stream and your friend's camera stream
- What do you see on the TV on your friend's camera stream?
» Your friend's Zoom, which contains your camera stream and your friend's camera stream
- What do you see on the TV on your friend's camera stream?
- Your friend's Zoom, which contains your camera stream and your friend's camera stream
- What do you see on the TV on your friend's camera stream?

Your friend's zoom, which contains your camera stream and your friend's camera stream

Examples of Recursion: Self Reference

- The TV shows your friend's Zoom, which has your friend's camera stream, which has your friend's TV
- The TV shows what the TV showed. - self reference
- look-up (word) : Get definition; if a word x in the definition is unknown, lookup (x)
- Get definition; if a word y in the definition is unknown, look-up (y)
- Eventually you'll end up in a cycle
- An unknown word appears in the definition of another word, which appears in the definition of the first, etc.
- $f(n)=f(n-1)+2 n-1$
- What is $f(2)$?

$$
\begin{aligned}
f(2) & =f(1)+3= \\
& =f(0)+4= \\
& =f(-1)+3=\cdots
\end{aligned}
$$

- WHEN DOES THIS END???

Recursion Must Have Base Cases: Partial Self Reference

- look-up (word) works if there are some known words to which everything reduces
- This way you won't recurse forever
- Similarly with recursive functions

$$
\begin{aligned}
f(n) & = \begin{cases}0 & n \leq 0 \\
f(n-1)+2 n-1 & n>0\end{cases} \\
f(2) & =f(1)+3 \\
& =f(0)+4=4
\end{aligned}
$$

- Must have base cases:
- In this case $f(0)$
- Must make recursive progress:
- To compute $f(n)$ you must move closer to the base case $f(0)$

Recursion and Induction

- $f(n)= \begin{cases}0 & n \leq 0 \\ f(n-1)+2 n-1 & n>0\end{cases}$

$$
f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow \ldots
$$

- Induction
- Start with $P(0)$. Show $P(0)$ is T .
- Then show $P(n) \rightarrow P(n+1)$
- You can conclude $P(n+1)$ is T if $P(n)$ is T
- $P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow \cdots$
- $P(n)$ is $\mathrm{T} \forall n \geq 0$
- Recursion
- Start with the base case:

$$
f(0)=0
$$

- Then compute the recursive step: $f(n+1)=f(n)+2 n-1$
- We can compute $f(n+1)$ if $f(n)$ is known
- $f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow \cdots$
- We can compute $f(n)$ for all $n \geq 0$

Recursion and Induction, cont'd

- Example: more base cases

$$
f(n)= \begin{cases}1 & n=0 \\ f(n-2)+2 & n>0\end{cases}
$$

- Let's look at some values of f

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=? \\
& f(2)=3 \\
& f(3)=? \\
& f(4)=5
\end{aligned}
$$

- How do we fix f ?
- Hint: leaping induction!
- Practice: Exercise 7.4

Using Induction to Analyze a Recursion

$$
f(n)= \begin{cases}0 & n \leq 0 \\ f(n-1)+2 n-1 & n>0\end{cases}
$$

- What is $f(1), f(2), f(3), f(4), \ldots$?

$$
\begin{aligned}
& f(1)=1 \\
& f(2)=4 \\
& f(3)=9 \\
& f(4)=16
\end{aligned}
$$

- Hm, could this actually be $f(n)=n^{2}$???
- Let's unfold the recursion:

$$
\begin{aligned}
& f(n)=f(n-1)+2 n-1 \\
& f(n-1)=f(n-2)+2 n-3 \\
& f(n-2)=f(n-3)+2 n-5 \\
& \cdots \\
& f(2)=f(1)+3 \\
& f(1)=f(0)+1
\end{aligned}
$$

Using Induction to Analyze a Recursion, cont'd

$$
f(n)= \begin{cases}0 & n \leq 0 \\ f(n-1)+2 n-1 & n>0\end{cases}
$$

- Let's unfold the recursion:

$$
\begin{aligned}
& f(n)=f(n-1)+2 n-1 \\
& f(n-1)=f(n-2)+2 n-3 \\
& f(n-2)=f(n-3)+2 n-5 \\
& \cdots \\
& f(2)=f(1)+3 \\
& f(1)=f(0)+1
\end{aligned}
$$

- Let's add them up: ($f(n-1$)'s cancel, $f(n-2)$'s cancel, etc.)

$$
f(n)=f(0)+1+3+\cdots+2 n-1
$$

- Can use Gauss's idea here also to derive $f(n)=n^{2}$:

$$
2 f(n)=2 n \cdot n
$$

Using Induction to Analyze a Recursion, cont'd

$$
f(n)= \begin{cases}0 & n \leq 0 \\ f(n-1)+2 n-1 & n>0\end{cases}
$$

- Proof that $f(n)=n^{2}$. [By induction]

1. [Base case] $P(0)=0$. Clearly T .
2. [Induction step] Show $P(n) \rightarrow P(n+1)$.

- Assume $P(n): f(n)=n^{2}$.

$$
\begin{array}{rlrr}
f(n+1) & =f(n)+2(n+1)-1 & \text { [recursion] } \\
& =n^{2}+2 n+1 & & \text { [induction hypothesis] } \\
& =(n+1)^{2} & & {[P(n+1) \text { is } T]}
\end{array}
$$

3. By induction, $P(n+1)$ is T .

Using Induction to Analyze a Recursion, cont'd

- Hard example:

$$
f(n)= \begin{cases}1 & n=1 \\ f\left(\frac{n}{2}\right)+1 & n>1, \text { even } \\ f(n+1) & n>1, \text { odd }\end{cases}
$$

- A halving recursion!
- Discussed in the book
- (Looks esoteric? Often, you halve a problem (if it is even) or pad it by one to make it even, and then halve it.)
- Prove $f(n)=1+\left\lceil\log _{2} n\right\rceil$
- The notation $\lceil x\rceil$ means the smallest integer greater than or equal to x
- Practice. Exercise 7.5

Checklist for Analyzing Recursion

- Tinker. Draw the implication arrows. Is the function well defined?
- Tinker. Compute $f(n)$ for small values of n
- Make a guess for $f(n)$. "Unfolding" the recursion can be helpful here.
- Prove your conjecture for $f(n)$ by induction.
- The type of induction to use will often be related to the type of recursion.
- In the induction step, use the recursion to relate the claim for $n+1$ to lower values.
- Practice. Exercise 7.6

Recurrences: Fibonacci Numbers

- Fibonacci sequences appear frequently in nature
- Growth rate of rabbits, family trees of bees, Sanskrit poetry
- Defined formally as:

$$
\begin{aligned}
& F_{1}=1 \\
& F_{2}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \text { for } n>2
\end{aligned}
$$

- Let us prove $P(n): F_{n} \leq 2^{n}$ by strong induction.
- What do we do first?
- TINKER!

$$
\begin{aligned}
& F_{3}=2 \\
& F_{4}=3 \\
& F_{5}=5 \\
& F_{6}=8 \\
& F_{7}=13
\end{aligned}
$$

Recurrences: Fibonacci Numbers, cont'd

$$
F_{1}=1 ; F_{2}=1 ; F_{n}=F_{n-1}+F_{n-2} \text { for } n>2
$$

- Let us prove $P(n): F_{n} \leq 2^{n}$ by strong induction.

1. [Base cases]

$$
\begin{aligned}
& F_{1}=1 \leq 2 \\
& F_{2}=1 \leq 2^{2}
\end{aligned}
$$

- Clearly T.
- Why two base cases?

1. [Induction step] Prove $P(1) \wedge P(2) \wedge \cdots \wedge P(n) \rightarrow P(n+1)$ for $n \geq 2$.

- Assume: $P(1) \wedge P(2) \wedge \cdots \wedge P(n): F_{i} \leq 2^{i}$ for $1 \leq i \leq n$

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
& \leq 2^{n}+2^{n-1} \\
& \leq 2 \cdot 2^{n}=2^{n+1}
\end{aligned}
$$

[definition for $n \geq 2]$

$$
\leq 2^{n}+2^{n-1} \quad[\text { strong induction hypothesis }]
$$

2. By strong induction, $F_{n+1} \leq 2^{n+1}$, concluding the proof

- Practice: Prove $F_{n} \geq\left(\frac{3}{2}\right)^{n}$ for $n \geq 11$

Recursive Programs

- Look at the following program

```
def Big(n):
    if(n==0): out=1
    else: out=2*Big(n-1)
```

- Proving correctness: let's prove $\operatorname{Big}(n)=2^{n}$ for $n \geq 1$
- Induction.
- When $n=0, \operatorname{Big}(n)=1=2^{0}$. Check.
- Assume $\operatorname{Big}(n)=2^{n}$ for $n \geq 0$.

$$
\begin{aligned}
\operatorname{Big}(n+1) & =2 \times \operatorname{Big}(n) \\
& =2 \times 2^{n}=2^{n+1}
\end{aligned}
$$

- Proving code correctness has 2 parts (why?)
- Prove algorithm is correct AND implementation is correct

Recursive Programs, cont'd

- Look at the following program

```
def Big(n):
    if(n==0): out=1
    else: out=2*Big(n-1)
```

- What is the runtime?
- Define $T_{n}=$ runtime of Big for input n

$$
\begin{aligned}
& T_{0}=2 \\
& T_{n}=T_{n-1}+(\text { check } n==0)+(\text { multiply by } 2)+(\text { assign to out }) \\
& \\
& =T_{n-1}+3
\end{aligned}
$$

- Exercise. Prove by induction that $T_{n}=3 n+2$

Recursive Sets: \mathbb{N}

- Recursive definition of the natural numbers \mathbb{N}

$$
\begin{array}{lr}
1 \in \mathbb{N} & \text { [basis] } \\
x \in \mathbb{N} \rightarrow x+1 \in \mathbb{N} & \text { [constructor] } \\
\text { Nothing else is in } \mathbb{N} & \text { [minimality] }
\end{array}
$$

- $\mathbb{N}=\{1,2,3,4, \ldots\}$
- Technically, by bullet 3 , we mean that \mathbb{N} is the smallest set satisfying bullets 1 and 2 .
- Minimality is essential in order to define our set without ambiguity

Recursive Sets: Finite Binary Strings, Σ^{*}

- Let ε be empty string (similar to the empty set)
- Recursive definition of Σ^{*} (finite binary strings):

$$
\begin{array}{lr}
\varepsilon \in \Sigma^{*} & \text { [basis] } \\
x \in \Sigma^{*} \rightarrow x \bullet 0 \in \Sigma^{*} \text { AND } x \bullet 1 \in \Sigma^{*} & \text { [constructor] }
\end{array}
$$

- where • means concatenation
- Minimality is there by default: nothing else is in Σ^{*}

$$
\varepsilon \rightarrow 0,1 \rightarrow 00,01,10,11 \rightarrow 000,001,010,011,100,101,110,111 \rightarrow \cdots
$$

- And so finally

$$
\Sigma^{*}=\{0,1,00,01,10,11,000,001,010,011,100,101,110,111, \ldots\}
$$

- Practice. Exercise 7.12

Recursive Structures: Trees

- Arthur Cayley discovered trees when modeling hydrocarbons
methane, CH_{4}

ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$

propane, $\mathrm{C}_{3} \mathrm{H}_{8}$

butane, $C_{4} H_{10}$

iso-butane, $\mathrm{C}_{4} \mathrm{H}_{10}$

- Trees have many uses in computer science
- Search trees
- Game trees
- Decision trees
- Compression trees
- Multi-processor trees
- Parse trees
- Expression trees
- Ancestry trees
- Organizational trees

Example Tree

Not a Tree

Rooted Binary Trees (RBT)

- Recursive definition of Rooted Binary Trees (RBT).
- The empty tree ε is an RBT
- If T_{1}, T_{2} are disjoint RBTs with roots r_{1} and r_{2}, then linking r_{1} and r_{2} to a new root r gives a new RBT with root r
$\varepsilon \xrightarrow[T_{2}=\varepsilon]{T_{1}=\varepsilon} \bullet \xrightarrow[T_{2}=\varepsilon]{T_{1}=\bullet} \bullet \xrightarrow[T_{2}=\bullet]{T_{1}=\bullet} \xrightarrow[T_{2}=\ell]{T_{1}=\ell}$

Trees Are Important: Food for Thought

- Do we know the right structure is not a tree?
- Are we sure it can't be derived?

- Is there only one way to derive a tree?
- Trees are more general than just RBT and have many interesting properties.
- A tree is a connected graph with n nodes and $n-1$ edges
- A tree is a connected graph with no cycles
- A tree is a graph where any two nodes are connected by exactly one path
- Can we be sure every RBT has these properties?

