Strong Induction: Strengthening Induction

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 6
- Solving harder problems with induction
- Proving $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n}$
- Strengthening the induction hypothesis
- Proving $n^{2}<2^{n}$
- L-tiling
- Many flavors of induction
- Leaping Induction
- Postage
- $n^{3}<2^{n}$
- Strong induction
- Fundamental Theorem of Arithmetic
- Games of Strategy

A Hard Problem: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n}$

- Proof. $P(n): \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n}$

1. [Base case] $P(1)$ claims that $1 \leq 2$, which is T
2. [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \geq 1$. Direct proof.

- Assume (induction hypothesis) $P(n)$ is $\mathrm{T}: \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n}$
- Show $P(n+1)$ is T :

$$
\begin{gathered}
\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n+1} \\
\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}}=\sum_{i=1}^{n} \frac{1}{\sqrt{i}}+\frac{1}{\sqrt{n+1}} \\
\leq 2 \sqrt{n}+\frac{1}{\sqrt{n+1}}
\end{gathered}
$$

- Hm, now what??
- Lemma: $2 \sqrt{n}+\frac{1}{\sqrt{n+1}} \leq 2 \sqrt{n+1}$

Lemma: $2 \sqrt{n}+\frac{1}{\sqrt{n+1}} \leq 2 \sqrt{n+1}$

- Proof. By contradiction.
- Assume

$$
2 \sqrt{n}+\frac{1}{\sqrt{n+1}}>2 \sqrt{n+1}
$$

- It follows that (by multiplying by $\sqrt{n+1}$)

$$
\begin{aligned}
2 \sqrt{n(n+1)}+1 & >2(n+1) \\
2 \sqrt{n(n+1)} & >2 n+1 \\
4 n(n+1) & >(2 n+1)^{2} \\
4 n^{2}+4 n & >4 n^{2}+4 n+1 \\
0 & >1
\end{aligned}
$$

- Contradiction!

A Hard Problem: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n}$

- Proof. P(n): $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n}$

1. [Base case] $P(1)$ claims that $1 \leq 2$, which is T
2. [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \geq 1$. Direct proof.

- Assume (induction hypothesis) $P(n)$ is $\mathrm{T}: \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n}$
- Show $P(n+1)$ is T: $\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \leq 2 \sqrt{n+1}$

$$
\begin{aligned}
\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} & =\sum_{i=1}^{n} \frac{1}{\sqrt{i}}+\frac{1}{\sqrt{n+1}} \\
& \leq 2 \sqrt{n}+\frac{1}{\sqrt{n+1}} \\
& \leq 2 \sqrt{n+1}
\end{aligned}
$$

[key step]
[induction hypothesis]
[Lemma]

- So, $P(n) \rightarrow P(n+1)$

3. By induction, $P(n)$ is $\mathrm{T} \forall n \geq 1$.

Proving Stronger Claims

- Prove that $n^{2} \leq 2^{n}$ for $n \geq 4$
- Proof attempt. [By induction]
- [Base case] $P(4)$ claims that $16 \leq 16$, which is T
- [Induction step] Assume $P(n)$ is T: $n^{2} \leq 2^{n}$ for $n \geq 4$
- Need to show $P(n) \rightarrow P(n+1)$:
$(n+1)^{2} \leq 2^{n+1}$
- Note that $(n+1)^{2}=n^{2}+2 n+1 \leq 2^{n}+2 n+1$
- If only we could show $2 n+1 \leq 2^{n}$
- Then $2^{n}+2 n+1 \leq 2^{n}+2^{n}=2^{n+1}$
- With induction, it can be easier to prove a stronger claim.

Strengthen the claim: $\boldsymbol{Q}(\boldsymbol{n})$ Implies $\boldsymbol{P}(\boldsymbol{n})$

- Consider a new claim $Q(n):(i) n^{2} \leq 2^{n}$ AND (ii) $2 n+1 \leq 2^{n}$
- Proof. [By induction]

1. [Base case] $Q(4)$ claims $16 \leq 16$ AND $9 \leq 16$; both are T
2. [Induction step] Show $Q(n) \rightarrow Q(n+1)$ for $n \geq 4$. Direct proof

- Assume $Q(n)$ is $\mathrm{T}:(i) n^{2} \leq 2^{n}$ AND (ii) $2 n+1 \leq 2^{n}$
- Show $Q(n+1)$ is T :
(i) $(n+1)^{2} \leq 2^{(n+1)}$ AND (ii) $2(n+1)+1 \leq 2^{(n+1)}$
(i): $(n+1)^{2}=n^{2}+2 n+1$

$$
\leq 2^{n}+2 n+1 \leq 2^{n}+2^{n}=2^{n+1}
$$

- (From the induction hypothesis: $n^{2} \leq 2^{n}$ AND $2 n+1 \leq 2^{n}$)
(ii): $2(n+1)+1=2+2 n+1$

$$
\leq 2^{n}+2^{n}=2^{n+1}
$$

- (Because $2 \leq 2^{n}$ and $2 n+1 \leq 2^{n}$ from the induction hypothesis)
- So $Q(n+1)$ is T

3. By induction, $Q(n)$ is T for $n \geq 4$

L-Tile Land

- Can you tile a $2^{n} \times 2^{n}$ patio missing a center square (there's a pot there!). You only have L-shaped tiles
- TINKER!
- when $n=1$

- when $n=2$

- when $n=3$

- $P(n)$: The $2^{n} \times 2^{n}$ grid minus a center-square can be L-tiled.

L-Tile Land: Induction Idea

- Suppose $P(n)$ is T. What about $P(n+1)$?
- The $2^{n+1} \times 2^{n+1}$ patio can be decomposed into four $2^{n} \times 2^{n}$ patios

Add first tile in the center. Now each sub-patio has one missing square.

- Problem. Corner squares are missing. $P(n)$ can be used only if center-square is missing.
- Solution. Strengthen claim to also include patios missing corner-squares. $Q(n)$:
- (i) The $2^{n} \times 2^{n}$ grid missing a center-square can be L-tiled; AND
- (ii) The $2^{n} \times 2^{n}$ grid missing a corner-square can be L-tiled

L-Tile Land: Induction Proof of Stronger Claim

- Assume $Q(n)$:
- (i) The $2^{n} \times 2^{n}$ grid missing a center-square can be L-tiled; and
- (ii) The $2^{n} \times 2^{n}$ grid missing a corner-square can be L-tiled
- Induction step: Must prove two things for $Q(n+1)$, namely (i) and (ii).
- (i) Center square missing

- use $Q(n)$ with center squares
(ii) Corner square missing

use $Q(n)$ with corner squares
- Exercise: Add base cases and complete the formal proof.
- Exercise 6.4. What if the missing square is some random square?
- Strengthen further.

A Tricky Induction Problem

- Prove $P(n): n^{3}<2^{n}$, for all $n \geq 10$
- Proof attempt. [By induction]
- [Base case] $P(10)$ claims $1000=10^{3}<2^{10}=1024$.
- True.
- [Induction step] Assume $P(n)$ is $\mathrm{T}: n^{3}<2^{n}$ for $n \geq 10$.
- Need to show $P(n+1)$ is T:

$$
(n+1)^{3}<2^{n+1}
$$

- Seems hard
- Consider $P(n+2):(n+2)^{3}<2^{n+2}$?

$$
\begin{aligned}
(n+2)^{3} & =n^{3}+\mathbf{6} n^{2}+\mathbf{1 2} n+\mathbf{8} \\
& <n^{3}+\boldsymbol{n} \cdot n^{2}+\boldsymbol{n}^{2} \cdot n+\boldsymbol{n}^{3} \\
> & \left(\text { Because } n \geq 10 \rightarrow 6<n, 12<n^{2}, 8<n^{3}\right) \\
(n+2)^{3} & <n^{3}+\boldsymbol{n} \cdot n^{2}+\boldsymbol{n}^{2} \cdot n+\boldsymbol{n}^{3}=4 n^{3} \\
& <4 \cdot 2^{n}=2^{n+2}
\end{aligned}
$$

" (From induction hypothesis: $P(n): n^{3}<2^{n}$)

- i.e., $P(n) \rightarrow P(n+2)$
- Not quite induction yet. What can we do?

A Tricky Induction Problem, cont'd

- Prove $P(n): n^{3}<2^{n}$, for all $n \geq 10$
- Proof. [By induction]

1. [Base cases] $P(10)$ claims $1000=10^{3}<2^{10}=1024$.
$P(11)$ claims $1331=11^{3}<2^{11}=2048$.

- Both are T.

2. [Induction step] Assume $P(n)$ is T: $n^{3}<2^{n}$ for $n \geq 10$.

- Need to show $P(n) \rightarrow P(n+2):(n+2)^{3}<2^{n+2}$
- Consider $P(n+2):(n+2)^{3}<2^{n+2}$?

$$
\begin{aligned}
& (n+2)^{3}=n^{3}+\mathbf{6} n^{2}+\mathbf{1 2 n + 8} \\
& \quad<n^{3}+\boldsymbol{n} \cdot n^{2}+\boldsymbol{n}^{2} \cdot n+\boldsymbol{n}^{3} \\
& \left.\quad \text { "(Because } n \geq 10 \rightarrow 6<n, 12<n^{2}, 8<n^{3}\right) \\
& (n+2)^{3}<n^{3}+\boldsymbol{n} \cdot n^{2}+\boldsymbol{n}^{2} \cdot n+\boldsymbol{n}^{3}=4 n^{3}<4 \cdot 2^{n}=2^{n+2} \\
& \left.\quad \text { "(From induction hypothesis: } P(n): n^{3}<2^{n}\right) \\
& \text { - i.e., } P(n) \rightarrow P(n+2)
\end{aligned}
$$

3. By induction, $P(n+2)$ is T for all $n \geq 10$

- Already showed $P(10)$ and $P(11)$ are T.

Leaping Induction

- Induction. One base case.

$$
\boldsymbol{P}(\mathbf{1}) \rightarrow P(2) \rightarrow P(3) \rightarrow \cdots
$$

- Leaping Induction. More than one base case.

$$
\begin{aligned}
& \boldsymbol{P}(\mathbf{1}) \rightarrow P(3) \rightarrow P(5) \rightarrow \cdots \\
& \boldsymbol{P}(\mathbf{2}) \rightarrow P(4) \rightarrow P(6) \rightarrow \cdots
\end{aligned}
$$

- Example. Postage greater than 5¢ can be made using 3c and 4¢ stamps.

3¢	4¢	5¢	6¢	7¢	8¢	9¢	10¢	11¢
3	4	-	3,3	3,4	4,4	3,3,3	3,4,3	4,4,3

- $P(n)$: Postage of $n ¢$ can be made using only $3 ¢$ and $4 ¢$ stamps.

$$
P(n) \rightarrow P(n+3)(\text { add a 3c stamp to } n)
$$

- Practice. Exercise 6.6

Fundamental Theorem of Arithmetic

- The fundamental theorem of arithmetic states that

$$
2024=2 \times 2 \times 2 \times 11 \times 23
$$

- Huh?
- Well, it says more than that $;$
- Theorem [The primes ($\mathcal{P}=\{2,3,5,7,11,13, \ldots\}$) are the atom numbers]. Suppose $n \geq 2$ is natural number. Then:
- (i) n can be written as a product of factors all of which are prime.
- (ii) The representation of n as a product of primes is unique (up to reordering).
- What is $P(n)$?

$$
P(n): n \text { is a product of primes }
$$

- What is the first thing we do?
- TINKER!

Fundamental Theorem of Arithmetic

- The prime-factor decomposition of 2024 is:

$$
2024=2 \times 2 \times 2 \times 11 \times 23
$$

- Theorem. [The primes $(\mathcal{P}=\{2,3,5,7,11,13, \ldots\})$ are the atom numbers]. Suppose $n \geq 2$. Then:
- (i) n can be written as a product of factors all of which are prime.
- (ii) The representation of n as a product of primes is unique (up to reordering).
- What is $P(n)$?

$$
P(n): n \text { is a product of primes }
$$

- What is the prime-factor decomposition of 2025:

$$
2025=5 \times 5 \times 3 \times 3 \times 3 \times 3
$$

- Wow! No similarity between the factors of 2024 and 2025
- How will $P(n)$ help us to prove $P(n+1)$?

Much "Stronger" Induction Claim

- Do smaller values of n help with 2025?
- Yes, $2025=25 \times 81$

$$
P(25) \wedge P(81) \rightarrow P(2025)
$$

- (like leaping induction)
- Much Stronger Claim:
$-Q(n): 2,3, \ldots, n$ are all products of primes.
- Compare with: $P(n): n$ is a product of primes

$$
Q(n)=P(2) \wedge P(3) \wedge P(4) \wedge \cdots \wedge P(n)
$$

- Surprise! The much stronger claim is much easier to prove.
- Also, $Q(n) \rightarrow P(n)$

Fundamental Theorem of Arithmetic: Proof of (i)

- Recall $P(n): n$ is product of primes.
- Recall $Q(n)=P(2) \wedge P(3) \wedge \cdots \wedge P(n)$
- Proof. [By induction that $Q(n)$ is T for all $n \geq 2$.]

1. [Base case]. Q (1) claims that 2 is product of primes. True.
2. [Induction step] Show that $Q(n) \rightarrow Q(n+1)$ for $n \geq 2$. Direct proof.

- Assume $Q(n)$ is T: each of $2,3, \ldots, n$ are products of primes
- Show $Q(n+1)$ is T: each of $2,3, \ldots, n, n+1$ are products of primes
- \quad Since we assumed $Q(n)$, we know $2,3, \ldots, n$ are products of primes
- To prove $Q(n+1)$, we only need to prove $n+1$ is a product of primes!

Fundamental Theorem of Arithmetic: Proof of (i) Rensselaer

- Proof. [By induction that $Q(n)$ is T for all $n \geq 2$.]

1. [Base case]. $Q(1)$ claims that 2 is product of primes. True.
2. [Induction step] Show that $Q(n) \rightarrow Q(n+1)$ for $n \geq 2$. Direct proof.

- Assume $Q(n)$ is T: each of $2,3, \ldots, n$ are products of primes
- Show $Q(n+1)$ is T: each of $2,3, \ldots, n, n+1$ are products of primes
- Since we assumed $Q(n)$, we know $2,3, \ldots, n$ are products of primes
- To prove $Q(n+1)$, we only need to prove $n+1$ is a product of primes!
- Case 1: $n+1$ is prime.
- Done, nothing to prove.
- Case 2: $n+1$ is not prime,
- i.e., $n+1=k l$, where $2 \leq k, l \leq n$.
- What now?
" Use induction hypothesis!
$P(k): k$ is product of primes; $P(l): l$ is product of primes.
- i.e., $n+1=k l$ is a product of primes and $Q(n+1)$ is T

3. By induction, $Q(n)$ is $\mathrm{T}, \forall n \geq 2$.

Strong Induction

- Strong Induction. To prove $P(n) \forall n \geq 1$ by strong induction, you use induction to prove the stronger claim:
- $Q(n)$: each of $P(1), P(2), \ldots, P(n)$ are T
- Ordinary induction
- Base case: Prove $P(1)$
- Induction step: Assume $P(n)$ and prove $P(n+1)$
- Strong induction
- Base case: Prove $Q(1)=P(1)$
- Induction step: Assume $Q(n)=P(1) \wedge P(2) \wedge P(3) \wedge \cdots \wedge P(n)$ and prove $P(n+1)$
- Strong induction is always easier

Every $\boldsymbol{n} \geq 1$ has a binary expansion

- What is $P(n)$ more precisely?
$-P(n)$: Every $n \geq 1$ is a sum of distinct powers of 2 (its binary expansion)
- E.g., what is the binary expansion of 22 ?

$$
22=2^{4}+2^{2}+2^{1}\left(22_{\text {binary }}=10110\right)
$$

- Proof Sketch.
- [Base case] $P(1)$ is $\mathrm{T}: 1=2^{0}$
- [Induction step] Assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n)$ and prove $P(n+1)$
- If n is even, then

$$
n+1=2^{0}+n_{\text {binary }}
$$

- e.g., $23=2^{4}+2^{2}+2^{1}+2^{0}$
- If n is odd, then multiply each term in the expansion of $\frac{1}{2}(n+1)$ by 2
- This gets us $n+1$
- e.g., $24=2 \times 12_{\text {binary }}=2 \times\left(2^{3}+2^{2}\right)=2^{4}+2^{3}$
- Why does $\frac{1}{2}(n+1)$ have an expansion?
- Strong induction!
- Exercise. Give the formal proof by strong induction.

Applications of Induction

- Greedy or recursive algorithms, games of strategy
- Consider the game of Equal Pile Nim (old English/German: to steal or pilfer)
- two players take turns taking pennies from two equal rows of pennies
- each player can take an arbitrary number of pennies from one row
- the player to take the last stone wins
- Claim: $P(n)$: Player 2 can win the game that starts with n pennies per row.
- Equalization strategy:

- Player 2 can always return the game to smaller equal piles.
- If Player 2 wins the smaller game, Player 2 wins the larger game.
- That's strong induction!
- Exercise. Give the full formal proof by strong induction.
- Challenge. What about more than 2 piles? What about unequal piles? (Problem 6.20).

Investigate Further in the Problems

- Uniqueness of binary representation as a sum of distinct powers of 2:
- Problem 6.27
- General Nim:
- Problem 6.39

Checklist When Approaching an Induction Problem

- Are you trying to prove a "For all . . ." claim?
- Identify the claim $P(n)$, especially the parameter n. Here is an example.
- Prove: geometric mean \leq arithmetic mean. What is $P(n)$? What is n ?
- $P(n)$: geometric mean \leq arithmetic mean for every set of $n>0$ numbers
- Identifying the right claim is important.

You may fail because you try to prove too much. Your $P(n+1)$ is too heavy a burden. You may fail because you try to prove too little. Your $P(n)$ is too weak a support. You must balance the strength of your claim so that the support is just enough for the burden. -G. Polya (paraphrased).

- Tinker. Does the claim hold for small $n(n=1,2,3, \ldots)$? These become base cases.
- Tinker. Can you see why (say) $P(5)$ follows from $P(1), P(2), P(3), P(4)$?
- This is the crux of induction; to build up from smaller n to a larger n.
- Determine the type of induction: try strong induction first.
- Write out the skeleton of the proof to see exactly what you need to prove.
- Determine and prove the base cases.
- Prove $P(n+1)$ in the induction step. You must use the induction hypothesis.

