Strong Induction: Strengthening Induction




Reading

@ Rensselaer

e Malik Magdon-Ismail. Discrete Mathematics and Computing.
— Chapter 6




Overview

@ Rensselaer

* Solving harder problems with induction

— Proving Z{Ll% < 24/n

e Strengthening the induction hypothesis
— Proving n? < 2"
— L-tiling
* Many flavors of induction
— Leaping Induction
* Postage
e n3<2n
— Strong induction

* Fundamental Theorem of Arithmetic

* Games of Strategy




A Hard Problem: YiX % 2+/n

@ Rensselaer

* Proof. P(n): Y,1- 1\F_ 2/n

1.
2.

[Base case] P(1) claims that 1 < 2, whichis T

[Induction step] Show P(n) —» P(n + 1) for all n > 1. Direct proof.
—  Assume (induction hypothesis) P(n) is T: ))& 1\/_ < 2Jn
— ShowP(n+1)isT:

n+1 1
z—S 2Vvn + 1
i
=1
1

Zn+1 1 n

i=1; = i= 1\/- \/— [key step]

[induction hypothesis]

—  Hm, now what??

—  Lemma: 2\/_+—1_2\/n+1




Lemma: 2yn+—<2vVn+1 @ Rensselaer

\/—_

* Proof. By contradiction.

— Assume
1
2\/n + >2Vn+1
vn vn+1
— It follows that (by multiplying by vn + 1)
2ynn+1)+1>2(n+1)

2yn(n+1)>2n+1
in(n+1) > (2n+ 1)?
An® +4n > 4n? +4n+1
0>1

— Contradiction!




A Hard Problem: Y% % 2/n ©® Rensselaer

* Proof. P(n): Y,1- 1\F < 2Jn
1. [Base case] P(1) claimsthat1 < 2, whichisT
2. [Induction step] Show P(n) - P(n + 1) for alln > 1. Direct proof.

—  Assume (induction hypothesis) P(n) is T: ))& 1\/_ < 2Jn
— ShowP(n+1)isT: 21”115_ <2vn+1

Zn+1 1 n 1 1

i=1\/' 11\/‘ \/—

[key step]

— [induction hypothesis]
<2Vyn+1 [Lemmal]
— So, P(n) » P(n+1)
3. Byinduction, P(n)isTVn > 1.




Proving Stronger Claims @) Rensselaer

Prove that n? < 2™ forn > 4

Proof attempt. [By induction]
[Base case] P(4) claims that 16 < 16, whichis T

[Induction step] Assume P(n) is T: n? < 2" forn > 4

— Need to show P(n) » P(n + 1):
(n+1)? < 2nt!

— Notethat(n+1)?=n?+2n+1<2"+2n+1

— If only we could show 2n + 1 < 2"
 Then2™+2n+1 < 2" 4 2" = 21+l

— With induction, it can be easier to prove a stronger claim.




Strengthen the claim: Q(n) Implies P(n)

* Consider a new claim Q(n): (i) n? < 2" AND (ii) 2n+ 1 < 2"
* Proof. [By induction]
1. [Base case] Q(4) claims 16 < 16 AND9 < 16; bothareT

2. [Induction step] Show Q(n) —» Q(n + 1) for n = 4. Direct proof
— Assume Q(n) is T: (i) n? < 2" AND (ii) 2n+ 1 < 2"
— Show Q(n+1)isT:
(D) (n+ 1)2< 2D AND (i) 2(n + 1) + 1 < 2(+1)

():nm+1D?=n?+2n+1
<2"+4+2n+1< 2"+ 20 =20t

— (From the induction hypothesis: n? < 2" AND 2n + 1 < 2%)
(ii):2n+1)+1=2+2n+1
< Zn + zn — 2n+1
— (Because 2 < 2™ and 2n + 1 < 2™ from the induction hypothesis)
—SoQ(n+1)isT

3. Byinduction, Q(n)isTforn = 4

@ Rensselaer




L-Tile Land ® Rensselaer

* Canyou tile a 2™ X 2™ patio missing a center square (there’s a pot there!). You only
have L-shaped tiles

e TINKER!
— whenn =2 :H
— whenn =3

 P(n): The 2™ x 2" grid minus a center-square can be L-tiled.




L-Tile Land: Induction Idea @ Rensselaer

* Suppose P(n) is T. What about P(n + 1)?

e The 2™*1 x 2™*1 patio can be decomposed into four 2™ x 2™ patios

2)1 : 27’! 2]2 ‘ 211

o

e . .......................... . Add first tile in the center. U P . ....................
Now each sub-patio has one .

on : missing square. on

* Problem. Corner squares are missing. P(n) can be used only if center-square is
missing.

* Solution. Strengthen claim to also include patios missing corner-squares. Q(n):
— (i) The 2™ X 2™ grid missing a center-square can be L-tiled; AND
— (ii) The 2™ x 2™ grid missing a corner-square can be L-tiled
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L-Tile Land: Induction Proof of Stronger Claim ® Rensselaer

* Assume Q(n):
— (i) The 2™ x 2™ grid missing a center-square can be L-tiled; and
— (ii) The 2™ x 2™ grid missing a corner-square can be L-tiled

* Induction step: Must prove two things for Q(n + 1), namely (i) and (ii).

— (i) Center square missing (ii) Corner square missing
o 2
-‘
| S ]
g o
— use Q(n) with center squares use Q(n) with corner squares

* Exercise: Add base cases and complete the formal proof.

* Exercise 6.4. What if the missing square is some random square?
— Strengthen further.
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A Tricky Induction Problem

@ Rensselaer

« Prove P(n):n3 < 2", foralln > 10

* Proof attempt. [By induction]
— [Base case] P(10) claims 1000 = 103 < 219 = 1024.
* True.
— [Induction step] Assume P(n) is T: n3 < 2™ forn > 10.

* Needtoshow P(n+1)isT:
(n+1)3 < 2n*t!
— Seems hard
« Consider P(n + 2): (n + 2)3 < 2n+2?
n+223=n3+6n°+12n+8
<n3+n-n*+n? n+nd
» (Becausen =10 » 6 <n,12 < n?,8 < nd)
m+2)3<n3+n-n>+n? n+n3=4ns
< 4_ . 27?, — 2n+2
» (From induction hypothesis: P(n): n3 < 2™)
—i.e., P(n) » P(n + 2)
* Not quite induction yet. What can we do?
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A Tricky Induction Problem, cont’d @) Rensselaer

« Prove P(n):n3 < 2", foralln > 10
* Proof. [By induction]
1. [Base cases] P(10) claims 1000 = 103 < 210 = 1024.

P(11) claims 1331 = 113 < 211 = 2048.
— BothareT.

2. [Induction step] Assume P(n) is T: n3 < 2™ forn > 10.
— Need to show P(n) - P(n + 2): (n + 2)3 < 2"*2

* Consider P(n+ 2): (n + 2)3 < 2*+2?
n+2)¥=n*+6n*+12n+8
<n*+n-n?+n?-n+nd
» (Because n =10 = 6 <n,12 < n? 8 <n3)
m+22<n®+n-n?+n?2 n+nd=4n3<4.2"n =2n+2
» (From induction hypothesis: P(n):n3 < 2™)
—i.e., P(n) > P(n+2)

3. Byinduction, P(n+ 2)isTforalln = 10
— Already showed P(10) and P(11) are .
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Leaping Induction ®) Rensselaer

Induction. One base case.
P(1) » P(2) » P(3) » -

Leaping Induction. More than one base case.
P(1) -» P(3) » P(5) —» ---
P(2) » P(4) - P(6) > -

Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

3¢ 4¢ 5¢ 6¢ 7¢ 8¢ 9¢ 10¢ 11¢

3 4 - 3,3 3,4 4,4 3,3,3 3,4,3 4,4,3

P(n): Postage of n¢ can be made using only 3¢ and 4¢ stamps.
P(n) » P(n + 3) (add a 3¢ stamp to n)

Practice. Exercise 6.6
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Fundamental Theorem of Arithmetic @) Rensselaer

* The fundamental theorem of arithmetic states that
2024 =2 %X 2X%X2X11 X 23

— Huh?
— Well, it says more than that ©

* Theorem [The primes (P = {2,3,5,7,11,13, ... }) are the atom numbers]. Suppose
n = 2 is natural number. Then:

— (i) n can be written as a product of factors all of which are prime.
— (ii) The representation of n as a product of primes is unique (up to reordering).
* Whatis P(n)?
P(n):n is a product of primes
* What is the first thing we do?
— TINKER!
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Fundamental Theorem of Arithmetic @) Rensselaer

* The prime-factor decomposition of 2024 is:
2024 =2%x2Xx2x%x11x%x23

* Theorem. [The primes (P = {2,3,5,7,11,13, ... }) are the atom numbers]. Suppose
n = 2. Then:

— (i) n can be written as a product of factors all of which are prime.
— (ii) The representation of n as a product of primes is unique (up to reordering).

* Whatis P(n)?
P(n):n is a product of primes

* What is the prime-factor decomposition of 2025:
2025 =5%Xx5%Xx3%x3%x3x%3

* Wow! No similarity between the factors of 2024 and 2025
— How will P(n) help us to prove P(n + 1)?
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Much “Stronger” Induction Claim

@ Rensselaer

* Do smaller values of n help with 20257

— Yes, 2025 = 25 x 81
P(25) A P(81) - P(2025)

— (like leaping induction)
* Much Stronger Claim:
— Q(n):2,3,...,n are all products of primes.
— Compare with: P(n): n is a product of primes
Qn) =PR2)APB)APMA)AN---AP(n)
e Surprise! The much stronger claim is much easier to prove.
— Also, Q(n) - P(n)

18




Fundamental Theorem of Arithmetic: Proof of (i) @2 Rensselaer

* Recall P(n):n is product of primes.
— RecallQ(n) = P(2) AP(3)A---AP(n)
* Proof. [By induction that Q(n) is T foralln = 2.]

1. [Base case]. Q(1) claims that 2 is product of primes. True.

2. [Induction step] Show that Q(n) —» Q(n + 1) for n = 2. Direct proof.
— Assume Q(n) is T: each of 2,3, ..., n are products of primes
— Show Q(n+1)isT:eachof 2,3, ...,n,n + 1 are products of primes
—  Since we assumed Q(n), we know 2,3, ..., n are products of primes
— Toprove Q(n + 1), we only need to prove n + 1 is a product of primes!

19




Fundamental Theorem of Arithmetic: Proof of (i) @2 Rensselaer

* Proof. [By induction that Q(n) is Tforalln = 2.]

1.
2.

[Base case]. Q (1) claims that 2 is product of primes. True.

[Induction step] Show that Q(n) —» Q(n + 1) for n = 2. Direct proof.
— Assume Q(n) is T: each of 2,3, ..., n are products of primes
— Show Q(n+1)isT:eachof 2,3, ...,n,n + 1 are products of primes
—  Since we assumed Q(n), we know 2,3, ..., n are products of primes
— Toprove Q(n + 1), we only need to prove n + 1 is a product of primes!
. Case 1: n + 1 is prime.
— Done, nothing to prove.
. Case 2: n + 1 is not prime,
— je,n+1=kl where2 <kl <n.
—  What now?
»  Use induction hypothesis!
P(k): k is product of primes; P(l): L is product of primes.
— i.e,n+1=klisaproduct of primesand Q(n+ 1)isT

By induction, Q(n)is T, Vn = 2.




Strong Induction ®) Rensselaer

 Strong Induction. To prove P(n) Vn > 1 by strong induction, you use induction to
prove the stronger claim:

— Q(n):eachof P(1),P(2),...,P(n) areT
* Ordinary induction
— Base case: Prove P(1)
— Induction step: Assume P(n) and prove P(n + 1)

e Strong induction
— Base case: Prove Q(1) = P(1)

— Induction step: Assume Q(n) = P(1) AP(2) AP(3) A-- A P(n) and prove
P(n+1)

* Strong induction is always easier

21




Every n > 1 has a binary expansion ® Rensselaer

* Whatis P(n) more precisely?
— P(n): Everyn = 1 is a sum of distinct powers of 2 (its binary expansion)
— E.g., what is the binary expansion of 227?

22 = 2* + 22 + 21 (22pingry = 10110)
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Every n > 1 has a binary expansion

@ Rensselaer

* Proof Sketch.
 [Base case] P(1)isT:1 = 29

* [Induction step] Assume P(1) AP(2) A---AP(n) and prove P(n + 1)

— If nis even, then

¢ eg,23=2%+22421 42
— If nis odd, then multiply each term in the expansion of% (n+1)by?2
* Thisgetsusn +1
* e.g, 24 =2X12pnary = 2% (23 +22) = 2%+ 23
— Why does % (n + 1) have an expansion?
e Strong induction!

* Exercise. Give the formal proof by strong induction.
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Applications of Induction @) Rensselaer

* Greedy or recursive algorithms, games of strategy

* Consider the game of Equal Pile Nim (old English/German: to steal or pilfer)
— two players take turns taking pennies from two equal rows of pennies
— each player can take an arbitrary number of pennies from one row
— the player to take the last stone wins

00000 player 1 00000 player?2 (@) plaver 1 O player 2 O player 1 =
00000 OO oJo, O - wins -

* Claim: P(n): Player 2 can win the game that starts with n pennies per row.

— Equalization strategy:
00000 player 1 00000 player 2 OO0
00000 o]e OO

— Player 2 can always return the game to smaller equal piles.
— If Player 2 wins the smaller game, Player 2 wins the larger game.
e That’s strong induction!

* Exercise. Give the full formal proof by strong induction.

* Challenge. What about more than 2 piles? What about unequal piles? (Problem 6.20).




Investigate Further in the Problems @ Rensselaer

* Uniqueness of binary representation as a sum of distinct powers of 2:
— Problem 6.27

e General Nim:
— Problem 6.39
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Checklist When Approaching an Induction Problem ® Rensselaer

Are you trying to prove a “For all ... ” claim?

* |dentify the claim P(n), especially the parameter n. Here is an example.
— Prove: geometric mean < arithmetic mean. What is P(n)? What is n?
— P(n): geometric mean < arithmetic mean for every set of n > 0 numbers

— ldentifying the right claim is important.
You may fail because you try to prove too much. Your P(n + 1) is too heavy a burden. You may fail
because you try to prove too little. Your P(n) is too weak a support. You must balance the strength of
your claim so that the support is just enough for the burden. —G. Polya (paraphrased).

* Tinker. Does the claim hold forsmalln (n = 1, 2, 3, ...)? These become base cases.

* Tinker. Can you see why (say) P(5) follows from P(1), P(2),P(3),P(4)?
— This is the crux of induction; to build up from smaller n to a larger n.

* Determine the type of induction: try strong induction first.
* Write out the skeleton of the proof to see exactly what you need to prove.
* Determine and prove the base cases.

* Prove P(n + 1) in the induction step. You must use the induction hypothesis.
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