Strong Induction: Strengthening Induction

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 6

Overview

- Solving harder problems with induction
 - Proving $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$
- Strengthening the induction hypothesis
 - Proving $n^2 < 2^n$
 - L-tiling
- Many flavors of induction
 - Leaping Induction
 - Postage
 - $n^3 < 2^n$
 - Strong induction
 - Fundamental Theorem of Arithmetic
 - Games of Strategy

A Hard Problem: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$

- Proof. $P(n): \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$
- 1. [Base case] P(1) claims that $1 \le 2$, which is T
- 2. [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$. Direct proof.
 - Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$
 - Show P(n+1) is T:

$$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \le 2\sqrt{n+1}$$
$$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}}$$
$$\le 2\sqrt{n} + \frac{1}{\sqrt{n+1}}$$

[key step]

[induction hypothesis]

– Hm, now what??

- Lemma:
$$2\sqrt{n} + \frac{1}{\sqrt{n+1}} \le 2\sqrt{n+1}$$

Lemma:
$$2\sqrt{n} + \frac{1}{\sqrt{n+1}} \le 2\sqrt{n+1}$$

- Proof. By contradiction.
 - Assume

$$2\sqrt{n} + \frac{1}{\sqrt{n+1}} > 2\sqrt{n+1}$$

It follows that (by multiplying by $\sqrt{n+1}$)
$$2\sqrt{n(n+1)} + 1 > 2(n+1)$$

$$2\sqrt{n(n+1)} > 2n+1$$

$$4n(n+1) > (2n+1)^2$$

$$4n^2 + 4n > 4n^2 + 4n + 1$$

$$0 > 1$$

– Contradiction!

A Hard Problem: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$

- 1. [Base case] P(1) claims that $1 \le 2$, which is T
- 2. [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$. Direct proof.
 - Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$

$$\begin{array}{ll} - & \operatorname{Show} P(n+1) \text{ is T: } \sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \leq 2\sqrt{n+1} \\ & \sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}} & [\text{key step}] \\ & \leq 2\sqrt{n} + \frac{1}{\sqrt{n+1}} & [\text{induction hypothesis}] \\ & \leq 2\sqrt{n+1} & [\text{Lemma}] \\ - & \operatorname{So}, P(n) \to P(n+1) \end{array}$$

3. By induction, P(n) is $T \forall n \ge 1$.

Proving Stronger Claims

- Prove that $n^2 \leq 2^n$ for $n \geq 4$
- *Proof attempt*. [By induction]
- [Base case] P(4) claims that $16 \le 16$, which is T
- [Induction step] Assume P(n) is T: $n^2 \le 2^n$ for $n \ge 4$
 - Need to show $P(n) \rightarrow P(n+1)$: $(n+1)^2 \le 2^{n+1}$
 - Note that $(n + 1)^2 = n^2 + 2n + 1 \le 2^n + 2n + 1$
 - If only we could show $2n + 1 \le 2^n$
 - Then $2^n + 2n + 1 \le 2^n + 2^n = 2^{n+1}$
 - With induction, it can be easier to prove a stronger claim.

Strengthen the claim: Q(n) Implies P(n)

- Consider a new claim Q(n): (i) $n^2 \leq 2^n \text{ AND}$ (ii) $2n + 1 \leq 2^n$
- Proof. [By induction]
- 1. [Base case] Q(4) claims $16 \le 16$ AND $9 \le 16$; both are T
- 2. [Induction step] Show $Q(n) \rightarrow Q(n+1)$ for $n \ge 4$. Direct proof
 - Assume Q(n) is T: (i) $n^2 \leq 2^n$ AND (ii) $2n + 1 \leq 2^n$
 - Show Q(n + 1) is T: (i) $(n + 1)^2 \le 2^{(n+1)}$ AND (ii) $2(n + 1) + 1 \le 2^{(n+1)}$ (i): $(n + 1)^2 = n^2 + 2n + 1$ $\le 2^n + 2n + 1 \le 2^n + 2^n = 2^{n+1}$ - (From the induction hypothesis: $n^2 \le 2^n$ AND $2n + 1 \le 2^n$) (ii): 2(n + 1) + 1 = 2 + 2n + 1 $\le 2^n + 2^n = 2^{n+1}$ - (Because $2 \le 2^n$ and $2n + 1 \le 2^n$ from the induction hypothesis) - So Q(n + 1) is T
- 3. By induction, Q(n) is T for $n \ge 4$

L-Tile Land

Rensselaer

- Can you tile a 2ⁿ × 2ⁿ patio missing a center square (there's a pot there!). You only
 have L-shaped tiles
- TINKER!
 - when n = 1

- when n = 2

– when n = 3

	1	
	ļ	

• P(n): The $2^n \times 2^n$ grid minus a center-square can be *L*-tiled.

L-Tile Land: Induction Idea

- Suppose P(n) is T. What about P(n + 1)?
- The $2^{n+1} \times 2^{n+1}$ patio can be decomposed into four $2^n \times 2^n$ patios

- Problem. Corner squares are missing. P(n) can be used only if center-square is missing.
- Solution. Strengthen claim to also include patios missing corner-squares. Q(n):
 - (i) The $2^n \times 2^n$ grid missing a **center-square** can be L-tiled; AND
 - (*ii*) The $2^n \times 2^n$ grid missing a **corner-square** can be L-tiled

Rensselaer

L-Tile Land: Induction Proof of Stronger Claim

- Assume Q(n):
 - (i) The $2^n \times 2^n$ grid missing a **center-square** can be L-tiled; and
 - (*ii*) The $2^n \times 2^n$ grid missing a **corner-square** can be *L*-tiled
- Induction step: Must prove two things for Q(n + 1), namely (i) and (ii). ٠

- use Q(n) with center squares

use Q(n) with corner squares

- **Exercise:** Add base cases and complete the formal proof.
- **Exercise 6.4.** What if the missing square is some random square? •
 - Strengthen further.

A Tricky Induction Problem

- Prove $P(n): n^3 < 2^n$, for all $n \ge 10$
- *Proof attempt*. [By induction]
 - [Base case] P(10) claims $1000 = 10^3 < 2^{10} = 1024$.
 - True.
 - [Induction step] Assume P(n) is T: $n^3 < 2^n$ for $n \ge 10$.
 - Need to show P(n + 1) is T: $(n + 1)^3 < 2^{n+1}$
 - Seems hard

• Consider
$$P(n + 2): (n + 2)^3 < 2^{n+2}$$
?
 $(n + 2)^3 = n^3 + 6n^2 + 12n + 8$
 $< n^3 + n \cdot n^2 + n^2 \cdot n + n^3$
» (Because $n \ge 10 \to 6 < n, 12 < n^2, 8 < n^3$)
 $(n + 2)^3 < n^3 + n \cdot n^2 + n^2 \cdot n + n^3 = 4n^3$
 $< 4 \cdot 2^n = 2^{n+2}$
» (From induction hypothesis: $P(n): n^3 < 2^n$)
 $- i.e., P(n) \to P(n + 2)$

Not quite induction yet. What can we do?

A Tricky Induction Problem, cont'd

- Prove $P(n): n^3 < 2^n$, for all $n \ge 10$
- Proof. [By induction]
- 1. [Base cases] P(10) claims $1000 = 10^3 < 2^{10} = 1024$. P(11) claims $1331 = 11^3 < 2^{11} = 2048$.
 - Both are T.
- 2. [Induction step] Assume P(n) is T: $n^3 < 2^n$ for $n \ge 10$.
 - Need to show $P(n) \to P(n+2): (n+2)^3 < 2^{n+2}$

• Consider
$$P(n + 2): (n + 2)^3 < 2^{n+2}$$
?
 $(n + 2)^3 = n^3 + 6n^2 + 12n + 8$
 $< n^3 + n \cdot n^2 + n^2 \cdot n + n^3$
» (Because $n \ge 10 \rightarrow 6 < n, 12 < n^2, 8 < n^3$)
 $(n + 2)^3 < n^3 + n \cdot n^2 + n^2 \cdot n + n^3 = 4n^3 < 4 \cdot 2^n = 2^{n+2}$
» (From induction hypothesis: $P(n): n^3 < 2^n$)
 $-$ i.e., $P(n) \rightarrow P(n + 2)$

3. By induction, P(n+2) is T for all $n \ge 10$

- Already showed P(10) and P(11) are T.

Leaping Induction

• Induction. One base case.

$$\boldsymbol{P(1)} \to \boldsymbol{P(2)} \to \boldsymbol{P(3)} \to \cdots$$

• Leaping Induction. More than one base case.

$$P(1) \rightarrow P(3) \rightarrow P(5) \rightarrow \cdots$$
$$P(2) \rightarrow P(4) \rightarrow P(6) \rightarrow \cdots$$

• **Example**. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

3¢	4¢	5¢	6¢	7¢	8¢	9¢	10¢	11¢
3	4	-	3,3	3,4	4,4	3,3,3	3,4,3	4,4,3

- P(n): Postage of n¢ can be made using only 3¢ and 4¢ stamps. $P(n) \rightarrow P(n+3)$ (add a 3¢ stamp to n)
- Practice. Exercise 6.6

Fundamental Theorem of Arithmetic

• The fundamental theorem of arithmetic states that $2024 = 2 \times 2 \times 2 \times 11 \times 23$

– Huh?

- Well, it says more than that $\textcircled{\odot}$
- Theorem [The primes ($\mathcal{P} = \{2,3,5,7,11,13, ...\}$) are the atom numbers]. Suppose $n \ge 2$ is natural number. Then:
 - -(i) n can be written as a product of factors all of which are prime.
 - (*ii*) The representation of n as a product of primes is unique (up to reordering).
- What is P(n)?

P(n): *n* is a product of primes

- What is the first thing we do?
 - TINKER!

Fundamental Theorem of Arithmetic

• The prime-factor decomposition of 2024 is:

 $2024 = 2 \times 2 \times 2 \times 11 \times 23$

- *Theorem*. [The primes ($\mathcal{P} = \{2,3,5,7,11,13, \dots\}$) are the atom numbers]. Suppose $n \ge 2$. Then:
 - -(i) n can be written as a product of factors all of which are prime.
 - -(ii) The representation of n as a product of primes is unique (up to reordering).
- What is P(n)?

P(n): *n* is a product of primes

- What is the prime-factor decomposition of 2025: $2025 = 5 \times 5 \times 3 \times 3 \times 3 \times 3$
- Wow! No similarity between the factors of 2024 and 2025
 - How will P(n) help us to prove P(n + 1)?

Much "Stronger" Induction Claim

- Do smaller values of *n* help with 2025?
 - Yes, 2025 $= 25 \times 81$

```
P(25) \land P(81) \rightarrow P(2025)
```

- (like leaping induction)
- Much Stronger Claim:
 - -Q(n): 2, 3, ..., *n* are all products of primes.
 - Compare with: P(n): n is a product of primes $Q(n) = P(2) \land P(3) \land P(4) \land \dots \land P(n)$
- **Surprise!** The much stronger claim is *much* easier to prove.
 - Also, $Q(n) \rightarrow P(n)$

Fundamental Theorem of Arithmetic: Proof of (i) (i) Rensselaer

• Recall P(n): *n* is product of primes.

- Recall $Q(n) = P(2) \land P(3) \land \dots \land P(n)$

- *Proof.* [By induction that Q(n) is T for all $n \ge 2$.]
- 1. [Base case]. Q(1) claims that 2 is product of primes. True.
- 2. [Induction step] Show that $Q(n) \rightarrow Q(n+1)$ for $n \ge 2$. Direct proof.
 - Assume Q(n) is T: each of 2,3, ..., n are products of primes
 - Show Q(n + 1) is T: each of 2,3, ..., n, n + 1 are products of primes
 - Since we assumed Q(n), we know 2,3, ..., n are products of primes
 - To prove Q(n+1), we only need to prove n+1 is a product of primes!

Fundamental Theorem of Arithmetic: Proof of (i) (i) Rensselaer

- *Proof.* [By induction that Q(n) is T for all $n \ge 2$.]
- 1. [Base case]. Q(1) claims that 2 is product of primes. True.
- 2. [Induction step] Show that $Q(n) \rightarrow Q(n+1)$ for $n \ge 2$. Direct proof.
 - Assume Q(n) is T: each of 2,3, ..., n are products of primes
 - Show Q(n + 1) is T: each of 2,3, ..., n, n + 1 are products of primes
 - Since we assumed Q(n), we know 2,3, ..., n are products of primes
 - To prove Q(n+1), we only need to prove n+1 is a product of primes!
 - Case 1: n + 1 is prime.
 - Done, nothing to prove.
 - Case 2: n + 1 is not prime,
 - i.e., n + 1 = kl, where $2 \le k$, $l \le n$.
 - What now?
 - » Use induction hypothesis!

P(k): k is product of primes; P(l): l is product of primes.

- i.e., n + 1 = kl is a product of primes and Q(n + 1) is T
- 3. By induction, Q(n) is T, $\forall n \ge 2$.

Strong Induction

- Strong Induction. To prove $P(n) \forall n \ge 1$ by strong induction, you use induction to prove the *stronger* claim:
 - -Q(n): each of P(1), P(2), ..., P(n) are T
- Ordinary induction
 - Base case: Prove P(1)
 - Induction step: Assume P(n) and prove P(n + 1)
- Strong induction
 - Base case: Prove Q(1) = P(1)
 - Induction step: Assume $Q(n) = P(1) \land P(2) \land P(3) \land \dots \land P(n)$ and prove P(n + 1)
- Strong induction is always easier

Every $n \ge 1$ has a binary expansion

- What is P(n) more precisely?
 - P(n): Every $n \ge 1$ is a sum of distinct powers of 2 (its binary expansion)
 - E.g., what is the binary expansion of 22?

$$22 = 2^4 + 2^2 + 2^1 (22_{binary} = 10110)$$

Every $n \ge 1$ has a binary expansion

- Proof Sketch.
- [Base case] P(1) is T: $1 = 2^0$
- [Induction step] Assume $P(1) \land P(2) \land \dots \land P(n)$ and prove P(n+1)
 - If n is even, then

$$n+1 = 2^0 + n_{binary}$$

- e.g., $23 = 2^4 + 2^2 + 2^1 + 2^0$
- If n is odd, then multiply each term in the expansion of $\frac{1}{2}(n+1)$ by 2
 - This gets us n + 1
 - e.g., $24 = 2 \times 12_{binary} = 2 \times (2^3 + 2^2) = 2^4 + 2^3$
- Why does $\frac{1}{2}(n+1)$ have an expansion?
 - Strong induction!
- Exercise. Give the formal proof by strong induction.

Applications of Induction

- Greedy or recursive algorithms, games of strategy
- Consider the game of Equal Pile Nim (old English/German: to steal or pilfer)
 - two players take turns taking pennies from two equal rows of pennies
 - each player can take an arbitrary number of pennies from one row
 - the player to take the last stone wins

- Claim: P(n): Player 2 can win the game that starts with n pennies per row.
 - Equalization strategy:

00000	player 1	00000	player 2	00
00000		00		00

- Player 2 can always return the game to *smaller* equal piles.
- If Player 2 wins the smaller game, Player 2 wins the larger game.
 - That's strong induction!
- **Exercise.** Give the full formal proof by strong induction.
- Challenge. What about more than 2 piles? What about unequal piles? (Problem 6.20).

Investigate Further in the Problems

- Uniqueness of binary representation as a sum of distinct powers of 2:
 Problem 6.27
- General Nim:
 - Problem 6.39

Checklist When Approaching an Induction Problem (Rensselaer

- Are you trying to prove a "For all . . . " claim?
- Identify the claim P(n), especially the parameter n. Here is an example.
 - Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?
 - P(n): geometric mean \leq arithmetic mean for every set of n > 0 numbers
 - Identifying the right claim is important. You may fail because you try to prove too much. Your P(n + 1) is too heavy a burden. You may fail because you try to prove too *little*. Your P(n) is too weak a support. You must balance the strength of your claim so that the support is just enough for the burden. —G. Polya (paraphrased).
- Tinker. Does the claim hold for small n (n = 1, 2, 3, ...)? These become base cases.
- Tinker. Can you see why (say) P(5) follows from P(1), P(2), P(3), P(4)? •
 - This is the crux of induction; to build up from smaller n to a larger n.
- Determine the type of induction: try strong induction first. ٠
- Write out the skeleton of the proof to see exactly what you need to prove. ٠
- Determine and prove the base cases.
- Prove P(n + 1) in the induction step. You *must* use the induction hypothesis. ٠