Induction: Proving "For All..."

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 5

Overview: Induction, Proving "...for all..."

- What is induction
- Why do we need it?
- The principle of induction
- Toppling the dominos
- The induction template
- Examples
- Induction, Well-Ordering and the Smallest Counter-Example

Dispensing postage using 5¢ and 7¢ stamps

- How do I pay for a 19¢ letter?
- using 7,7,5 stamps
- How about 20?
- using 5,5,5,5 stamps
- How about 21?
- using 7,7,7 stamps
- How about 22?
- using 5,5,5,7 stamps
- How about 23?
- ?
- Looks hard

Dispensing postage using 5¢ and 7¢ stamps

- How do I pay for a 19¢ letter?
- using 7,7,5 stamps
- What about 24?
- 7,7,5,5
- How about 22?
- using 5,5,5,7 stamps
- What about 27?
- 5,5,5,7,5
- Can every postage greater than 23¢ can be dispensed?
- Intuitively, yes
- Induction formalizes this intuition

Why do we need induction?

- Predicate: $P(n)=$ " 5 c and $7 ¢$ ctamps can make postage $n . "$
- Claim: $\forall n \geq 24: P(n)$
- Seems true
- Predicate: $P(n)=$ " $n^{2}-n+41$ a prime number."
- Claim: $\forall n \geq 1: P(n)$
- Try different n
- $n=1: 41$ (prime)
- $n=2: 43$ (prime)
- $n=3: 47$ (prime)
- $n=4: 53$ (prime)
- $n=41$: 1681 (not prime!)
- Predicate: $P(n)=$ " $4 n-1$ is divisible by $3 . "$
- Claim: $\forall n \geq 1: P(n)$
- Try different n
- $n=1 \rightarrow 4-1=3$ (yes)
- $n=2 \rightarrow 8-1=7$ (nope)
- How can we prove something for all $n \geq 1$? Checking each n takes too long!
- Prove for general n. Can be tricky.
- Induction. Systematic.

Is $4^{n}-1$ divisible by $\mathbf{3}$ for $n \geq 1$?

- Predicate: $P(n)=" 4^{n}-1$ is divisible by $3 . "$
- We proved
- IF $4^{n}-1$ is divisible by 3 , THEN $4^{n+1}-1$ is divisible by 3
- Theorem: Let x be any real number, i.e., $x \in \mathbb{R}$. IF $4^{x}-1$ is divisible by 3 , THEN $4^{x+1}-1$ is divisible by 3 .
- Proof: We prove the claim using a direct proof.

1. Assume that p is T , that is $4^{x}-1$ is divisible by 3 .
2. This means that $4^{x}-1=3 k$ for an integer k, or that $4^{x}=3 k+1$
3. Observe that $4^{x+1}=4 \times 4^{x}$. Using $4^{x}=3 k+1$, note that $4^{x+1}=4(3 k+1)=12 k+4$
4. Therefore $4^{x+1}-1=12 k+3=3(4 k+1)$ is a multiple of $3(4 k+1$ is an integer)
5. Since $4^{x+1}-1$ is a multiple of 3 , we have shown that $4^{x+1}-1$ is divisible by 3
6. Therefore, the statement claimed in q is T

Is $\mathbf{4}^{\boldsymbol{n}} \mathbf{- 1}$ divisible by $\mathbf{3}$ for $n \geq 1$?

- Predicate: $P(n)=" 4^{n}-1$ is divisible by $3 . "$
- We proved
- IF $4^{n}-1$ is divisible by 3 , THEN $4^{n+1}-1$ is divisible by 3
- So we proved: IF $P(n)$ THEN $P(n+1)$
- i.e., $P(n) \rightarrow P(n+1)$
- What use is this?
- (Reasoning in the absence of facts.)
- We proved
- IF $4^{n}-1$ is divisible by 3 , THEN $4^{n+1}-1$ is divisible by 3
- So we proved IF $P(n)$ THEN $P(n+1)$
- i.e., $P(n) \rightarrow P(n+1)$
- From tinkering, we know $P(1)$ is $\mathrm{T}: 4^{1}-1=3$ is divisible by 3
- $P(1) \rightarrow P(2)$
- $P(2) \rightarrow P(3)$
- $P(3) \rightarrow P(4)$
- $P(4) \rightarrow P(5)$
- When does this end??

Is $4^{n}-1$ divisible by $\mathbf{3}$ for $n \geq 1$?

- We know $P(1)$ is T

$$
4^{1}-1=3 \text { is divisible by } 3
$$

- We also know $P(n) \rightarrow P(n+1)$
- By induction, $P(n)$ is T for all $n \geq 1$

- $P(n)$ form an infinite chain of dominos
- Topple the first and they all fall
- Practice: Exercise 5.2
- Induction to prove: $\forall n \geq 1: P(n)$
- Proof. We use induction to prove: $\forall n \geq 1: P(n)$

1. Show that $P(1)$ is T ("simple" verification) [base case]
2. Show $P(n) \rightarrow P(n+1)$ for $n \geq 1$ [induction step]

- Use Direct proof
- Assume $P(n)$ is T
- (valid derivations)
- must show for any $n \geq 1$
- must use $P(n)$ here
- Show $P(n+1)$ is T
- Induction to prove: $\forall n \geq 1: P(n)$
- Proof. We use induction to prove: $\forall n \geq 1: P(n)$

1. Show that $P(1)$ is T ("simple" verification) [base case]
2. Show $P(n) \rightarrow P(n+1)$ for $n \geq 1$ [induction step]

- Use Proof by Contraposition
- Assume $P(n+1)$ is F
- (valid derivations)
- must show for any $n \geq 1$
- must use $\neg P(n+1)$ here
- Show $P(n)$ is F

Induction Template

- Induction to prove: $\forall n \geq 1: P(n)$
- Proof. We use induction to prove: $\forall n \geq 1: P(n)$

1. Show that $P(1)$ is T ("simple" verification) [base case]
2. Show $P(n) \rightarrow P(n+1)$ for $n \geq 1$ [induction step]

- Use Direct proof
- Assume $P(n)$ is T
- (valid derivations)
- must show for any $n \geq 1$
- must use $P(n)$ here
- Show $P(n+1)$ is T
- Use Proof by Contraposition
- Assume $P(n+1)$ is F
- (valid derivations)
- must show for any $n \geq 1$
- must use $\neg P(n+1)$ here
- Show $P(n)$ is F

3. Conclude: by induction: $\forall n \geq 1: P(n)$

Induction Template, cont'd

- Prove the implication $P(n) \rightarrow P(n+1)$ for a general $n \geq 1$
- Why is this easier than just proving $P(n)$ for general n ?
- Assuming $P(n)$ is T gives us a lot of information to work with
- Assume $P(n)$ is T, and reformulate it mathematically
- Somewhere in the proof you must use $P(n)$ to prove $P(n+1)$
- End with a statement that $P(n+1)$ is T

Sum of Integers

- What is the sum $1+2+3+\cdots+(n-1)+n$
- Can you give an expression as a function of n ?
- The mathematician Gauss was one day sitting in class and was bored, so his teacher asked him to calculate $1+2+\cdots+100$
- he started playing around with numbers:

$$
\begin{array}{ll}
S(n)=1+2 & +\cdots+n \\
S(n)=n+n-1 & +\cdots+1
\end{array}
$$

- So, $2 S(n)=(n+1)+(n+1)+\cdots+(n+1)$
- i.e., $2 S(n)=n \times(n+1)$
- i.e., $S(n)=\frac{n(n+1)}{2}$
- This is direct proof!
- Note that this proof technique requires ingenuity in general

Proof by induction: $\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)$

- Proof: (By induction) $P(n): \sum_{i=1}^{n} i=\frac{1}{2} n(n+1)$

1. [Base Case] $P(1)$ claims that $1=\frac{1}{2} \times 1 \times(1+1)$

- Clearly T

2. [Induction Step] We show $P(n) \rightarrow P(n+1)$ for all $n \geq 1$, using direct proof.

- Assume (induction hypothesis) $P(n)$ is T: $\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)$
- Need to show $P(n+1)$ is $\mathrm{T}: \sum_{i=1}^{n+1} i=\frac{1}{2}(n+1)(n+1+1)$

$$
\begin{array}{rlr}
\sum_{i=1}^{n+1} i & =\left(\sum_{i=1}^{n} i\right)+(n+1) & \text { [key step] } \\
& =\frac{1}{2} n(n+1)+(n+1) & \text { [induction hypothesis } \boldsymbol{P}(\boldsymbol{n}) \text {] } \\
& =(n+1)\left(\frac{1}{2} n+1\right)=\frac{1}{2}(n+1)(n+2) & \text { [algebra] } \\
& =\frac{1}{2}(n+1)(n+2) & \text { [what needed to be shown] }
\end{array}
$$

3. By induction, $P(n)$ is T for all $n \geq 1$

BEWARE of going in the wrong direction!

- If we had started from $n+1$

$$
\sum_{i=1}^{n+1} i=\frac{1}{2}(n+1)(n+2)
$$

- This is what we would like to show
- It follows that:

$$
\begin{aligned}
\sum_{i=1}^{n+1} i-(n+1) & =\frac{1}{2}(n+1)(n+2)-(n+1) \\
\sum_{i=1}^{n} i & =(n+1)\left(\frac{1}{2} n+1-1\right) \\
& =\frac{1}{2} n(n+1)
\end{aligned}
$$

Or is it...

BEWARE of going in the wrong direction!

- Suppose we assume $7=4$
- This means that $4=7$
- because $(a=b) \rightarrow(b=a)$
- If we add both equations, we get $11=11$
- Just because the final result makes sense doesn't mean that we did something right
- By assuming $4=7$, we proved that $11=11$
- But did we actually prove $4=7$?
- To start, you can NEVER assert (as though it's true) what you are trying to prove

Sum of Integer Squares

- What is the sum $1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2}+n^{2}$?
- Need to channel our inner Gauss
- Unfortunately, he didn't solve this one
- Or didn't think it was important enough to write down...
- Let's play around with some numbers first

$$
\begin{aligned}
& S(1)=1 \\
& S(2)=5 \\
& S(3)=14 \\
& S(4)=30 \\
& S(5)=55 \\
& S(6)=91 \\
& S(7)=140
\end{aligned}
$$

- Let's play around with some numbers first

$$
S(1)=1, S(2)=5, S(3)=14, S(4)=30, S(5)=55, S(6)=91, S(7)=140
$$

- How about $S^{\prime}(n)=S(n+1)-S(n)$?
- All the squares: $4,9,16,25,36,49$
- How about $S^{\prime \prime}(n)=S^{\prime}(n+1)-S^{\prime}(n)$?
- All odd numbers: 5,7,9,11,13
- How about $S^{\prime \prime \prime}(n)=S^{\prime \prime}(n+1)-S^{\prime \prime}(n)$?
- Constant: 2,2,2,2
- Hm... Difference is kind of like a derivative
- If a function's $4^{\text {th }}$ derivative is 0 , then we know the function is a $3^{\text {rd }}$ order polynomial
- Perhaps we can approximate $S(n)$ in a Taylor-series-like way and see if that works

Sum of Integer Squares, cont'd

- Recall Taylor series expansion (around point x_{0}):

$$
\hat{f}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{3}
$$

- Higher-order terms are 0 if third derivative is constant
- "Taylor series" guess

$$
S(n)=a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}
$$

- Let's plug in a few values for n and see if can solve for the a 's

$$
\begin{aligned}
& S(1)=1=a_{0}+a_{1}+a_{2}+a_{3} \\
& S(2)=5=a_{0}+2 a_{1}+4 a_{2}+8 a_{3} \\
& S(3)=14=a_{0}+3 a_{1}+9 a_{2}+27 a_{3} \\
& S(4)=30=a_{0}+4 a_{1}+16 a_{2}+64 a_{3}
\end{aligned}
$$

- How do we solve a linear system of equations?
- Gaussian elimination! (thank you, Gauss, after all)
- "Taylor series" guess

$$
S(n)=a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}
$$

- Let's plug in a few values for n and see if can solve for the a^{\prime} 's

$$
\begin{aligned}
& S(1)=1=a_{0}+a_{1}+a_{2}+a_{3} \\
& S(2)=5=a_{0}+2 a_{1}+4 a_{2}+8 a_{3} \\
& S(3)=14=a_{0}+3 a_{1}+9 a_{2}+27 a_{3} \\
& S(4)=30=a_{0}+4 a_{1}+16 a_{2}+64 a_{3}
\end{aligned}
$$

- Solution is $a_{0}=0, a_{1}=\frac{1}{6}, a_{2}=\frac{1}{2}, a_{3}=\frac{1}{3}$
- Solve for a_{0} in terms of other a^{\prime}; then solve for a_{1}, etc.
- So guess is $S(n)=\frac{1}{6} n+\frac{1}{2} n^{2}+\frac{1}{3} n^{3}$
$-S(1)=1, S(2)=5, S(3)=14, \ldots$
- Hm, seems correct. Let's prove it using induction!

Proof: $S(n)=\sum_{i=1}^{n} i^{2}=\frac{1}{6} n+\frac{1}{2} n^{2}+\frac{1}{3} n^{3}$

- Proof: (By induction)

$$
P(n): \sum_{i=1}^{n} i^{2}=\frac{1}{6} n+\frac{1}{2} n^{2}+\frac{1}{3} n^{3}=\frac{1}{6} n(n+1)(2 n+1)
$$

1. [Base case] $P(1)$ claims that $1=\frac{1}{6} \times 1 \times 2 \times 3$, which is T
2. [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \geq 1$. Direct proof.

- Need to show $P(n+1)$ is T:

$$
\begin{aligned}
& \sum_{i=1}^{n+1} i^{2}=\frac{1}{6}(n+1)(n+2)(2 n+3) \\
& \sum_{i=1}^{n+1} i^{2}=\left(\sum_{i=1}^{n} i^{2}\right)+(n+1)^{2} \\
& =\frac{1}{6} n(n+1)(2 n+1)+(n+1)^{2} \quad[\text { induction hypothesis } \boldsymbol{P}(\boldsymbol{n})] \\
& =\frac{1}{6}(n+1)\left(2 n^{2}+7 n+6\right) \\
& =\frac{1}{6}(n+1)\left(2 n^{2}+4 n+3 n+6\right) \\
& =\frac{1}{6}(n+1)(n+2)(2 n+3)
\end{aligned}
$$

Proof: $S(n)=\sum_{i=1}^{n} i^{2}=\frac{1}{6} n+\frac{1}{2} n^{2}+\frac{1}{3} n^{3}$

- Proof: (By induction)

$$
P(n): \sum_{i=1}^{n} i^{2}=\frac{1}{6} n+\frac{1}{2} n^{2}+\frac{1}{3} n^{3}=\frac{1}{6} n(n+1)(2 n+1)
$$

1. [Base case] $P(1)$ claims that $1=\frac{1}{6} \times 1 \times 2 \times 3$, which is T
2. [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \geq 1$. Direct proof.

- Need to show $P(n+1)$ is T:

$$
\begin{gathered}
\quad \sum_{i=1}^{n+1} i^{2}=\frac{1}{6}(n+1)(n+2)(2 n+3) \\
\sum_{i=1}^{n+1} i^{2}=\frac{1}{6}(n+1)\left(2 n^{2}+4 n+3 n+6\right) \\
=\frac{1}{6}(n+1)(n+2)(2 n+3)
\end{gathered}
$$

- So $P(n+1)$ is T
- By induction, $P(n)$ is T for all $n \geq 1$

Induction gone wrong

- Suppose we proved $P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots$
- What is missing?
- No base case!
- Remember, $F \rightarrow T$!
- Suppose we want to prove:

$$
P(n): n \geq n+1 \text { for all } n \geq 1
$$

- Add 1 to both sides:

$$
n \geq n+1 \rightarrow n+1 \geq n+2
$$

- Therefore, $P(n) \rightarrow P(n+1)$
- [Every link is proved, but without the base case, you have nothing.]
- Broken chain!

Induction gone wrong, cont'd

- False: $P(n)$: "all balls in any set of n balls are the same color."
- Base case. $P(1)$ is T because there is only 1 ball
- Induction step. Suppose any set of n balls have the same color.
- Consider any set of $n+1$ balls $b_{1}, b_{2}, \ldots, b_{n}, b_{n+1}$.
- So, $b_{1}, b_{2}, \ldots, b_{n}$ have the same color and $b_{2}, \ldots, b_{n}, b_{n+1}$ have the same color.
- Thus $b_{1}, b_{2}, \ldots, b_{n}, b_{n+1}$ have the same color.
- Does that mean $P(n) \rightarrow P(n+1)$ for all $n \geq 1$?
- Well, $P(1) \rightarrow P(2)$ is F
- [A single broken link kills the entire proof.]
- How would you "fix" this proof?
- Need two base cases!
- Of course, now we can't prove $P(2)$!
- Phew, what a relief - the world is colorful after all!

Well Ordering Principle

- Recall the Well-ordering Principle:
- Any non-empty set of natural numbers has a minimum element.
- Induction follows from well ordering
- Let $P(1)$ and $P(n) \rightarrow P(n+1)$ be T
- Suppose $P\left(n_{*}\right)$ fails for the smallest counter-example n_{*} (well-ordering).

$$
P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow \cdots \rightarrow P\left(n_{*}-1\right) \rightarrow P\left(n_{*}\right) \rightarrow \cdots
$$

- Now how can $P\left(n_{*}-1\right) \rightarrow P\left(n_{*}\right)$ be T ?
- Any induction proof can also be done using well-ordering.

Example Well-ordering Proof: $\boldsymbol{n}<\mathbf{2}^{\boldsymbol{n}}$ for all $\boldsymbol{n} \geq \mathbf{1}$ (i) Rensselaer

- First prove it with induction
- Proof: [Induction] $P(n): n<2^{n}$

1. [Base case] $P(1)$ claims that $1<2^{1}$, which is T
2. [Induction step] Assume $P(n)$ is $\mathrm{T}: n<2^{n}$

- Need to show $P(n+1)$ is T:

$$
n+1<2^{n+1}
$$

- From the induction hypothesis:

$$
\begin{aligned}
n+1 & \leq n+n \\
& \leq 2^{n}+2^{n}=2 \times 2^{n}=2^{n+1}
\end{aligned}
$$

Example Well-ordering Proof: $\boldsymbol{n}<\mathbf{2}^{\boldsymbol{n}}$ for all $\boldsymbol{n} \geq \mathbf{1}$ (ia) Rensselaer

- Proof: [Well-ordering] Proof by contradiction.
- Assume that there is an $n \geq 1$ for which $n \geq 2^{n}$
- Let n_{*} be the minimum such counter-example, $n_{*} \geq 2^{n_{*}}$
- Using the well ordering axiom
- Since $1<2^{1}$, then $n_{*} \geq 2$
- Since $n_{*} \geq 2, \frac{1}{2} n_{*} \geq 1$ and so,

$$
\begin{aligned}
n_{*}-1 & \geq n_{*}-\frac{1}{2} n_{*}=\frac{1}{2} n_{*} \\
& \geq \frac{1}{2} \times 2^{n_{*}}=2^{n_{*}-1}
\end{aligned}
$$

- So, $n_{*}-1$ is a smaller counter example. FISHY!
- The method of minimum counter-example is very powerful.

Getting Good at Induction

- TINKER, TINKER, TINKER
- PRACTICE, PRACTICE, PRACTICE
- Just because something is not immediately obvious doesn't mean you should give up
- Challenge. A circle has $2 n$ distinct points, n are red and n are blue.
- Prove that for all $n \geq 1$, there exists a blue point such that one can start at that blue point and move clockwise always having passed as many blue points as red.

- Practice. All exercises and pop-quizzes in chapter 5.
- Strengthen. Problems in chapter 5.

