
Induction: Proving “For All…”
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Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 5
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Overview: Induction, Proving “…for all…”

• What is induction

• Why do we need it?

• The principle of induction

– Toppling the dominos

– The induction template

• Examples

• Induction, Well-Ordering and the Smallest Counter-Example
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Dispensing postage using 5¢ and 7¢ stamps

• How do I pay for a 19¢ letter?

– using 7,7,5 stamps

• How about 20?

– using 5,5,5,5 stamps

• How about 21?

– using 7,7,7 stamps

• How about 22?

– using 5,5,5,7 stamps

• How about 23?

– ?

– Looks hard
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Dispensing postage using 5¢ and 7¢ stamps

• How do I pay for a 19¢ letter?

– using 7,7,5 stamps

– What about 24?

• 7,7,5,5

• How about 22?

– using 5,5,5,7 stamps

– What about 27?

• 5,5,5,7,5

• Can every postage greater than 23¢ can be dispensed?

– Intuitively, yes

– Induction formalizes this intuition
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Why do we need induction?

• Predicate: 𝑃(𝑛) = “5¢ and 7¢ stamps can make postage 𝑛.”

– Claim: ∀𝑛 ≥ 24: 𝑃(𝑛)

– Seems true

• Predicate: 𝑃(𝑛) = “𝑛2 − 𝑛 + 41 a prime number.”

– Claim: ∀𝑛 ≥ 1: 𝑃(𝑛)

– Try different 𝑛

• 𝑛 = 1: 41 (prime)

• 𝑛 = 2: 43 (prime)

• 𝑛 = 3: 47 (prime)

• 𝑛 = 4: 53 (prime)

• …

• 𝑛 = 41: 1681 (not prime!)
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Why do we need induction?, cont’d

• Predicate: 𝑃(𝑛) = “4𝑛 − 1 is divisible by 3.”

– Claim: ∀𝑛 ≥ 1: 𝑃(𝑛)

– Try different 𝑛

• 𝑛 = 1 → 4 − 1 = 3 (yes)

• 𝑛 = 2 → 8 − 1 = 7 (nope)

• How can we prove something for all 𝑛 ≥ 1? Checking each 𝑛 takes too long!

• Prove for general 𝑛. Can be tricky.

• Induction. Systematic.
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Is 𝟒𝒏 − 𝟏 divisible by 3 for 𝒏 ≥ 𝟏?

• Predicate: 𝑃(𝑛) = “4𝑛 − 1 is divisible by 3.”

• We proved 

– IF 4𝑛 − 1 is divisible by 3, THEN 4𝑛+1 − 1 is divisible by 3
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Is 𝟒𝒏 − 𝟏 divisible by 3 for 𝒏 ≥ 𝟏?

• Predicate: 𝑃(𝑛) = “4𝑛 − 1 is divisible by 3.”

• We proved 

– IF 4𝑛 − 1 is divisible by 3, THEN 4𝑛+1 − 1 is divisible by 3

– So we proved: IF 𝑃(𝑛) THEN 𝑃(𝑛 + 1)

– i.e., 𝑃 𝑛 → 𝑃(𝑛 + 1)

• What use is this?

– (Reasoning in the absence of facts.)
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Is 𝟒𝒏 − 𝟏 divisible by 3 for 𝒏 ≥ 𝟏?

• We proved 

– IF 4𝑛 − 1 is divisible by 3, THEN 4𝑛+1 − 1 is divisible by 3

– So we proved IF 𝑃(𝑛) THEN 𝑃(𝑛 + 1)

– i.e., 𝑃 𝑛 → 𝑃(𝑛 + 1)

• From tinkering, we know

𝑃(1) is T: 41 − 1 = 3 is divisible by 3

• 𝑃 1 → 𝑃(2)

• 𝑃 2 → 𝑃(3)

• 𝑃 3 → 𝑃(4)

• 𝑃 4 → 𝑃(5)

• When does this end??
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Is 𝟒𝒏 − 𝟏 divisible by 3 for 𝒏 ≥ 𝟏?

• We know 𝑃(1) is T

41 − 1 = 3 is divisible by 3

• We also know 𝑃 𝑛 → 𝑃(𝑛 + 1)

• By induction, 𝑃(𝑛) is T for all 𝑛 ≥ 1

• 𝑃(𝑛) form an infinite chain of dominos

• Topple the first and they all fall

• Practice: Exercise 5.2
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Induction Template

• Induction to prove: ∀𝑛 ≥ 1: 𝑃(𝑛)

• Proof. We use induction to prove: ∀𝑛 ≥ 1: 𝑃(𝑛)

1. Show that 𝑃(1) is T (“simple” verification) [base case]

2. Show 𝑃(𝑛) → 𝑃(𝑛 + 1) for 𝑛 ≥ 1 [induction step]

• Use Direct proof

• Assume 𝑃(𝑛) is T

– (valid derivations)

– must show for any 𝑛 ≥ 1

– must use 𝑃 𝑛 here

• Show 𝑃(𝑛 + 1) is T
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Induction Template

• Induction to prove: ∀𝑛 ≥ 1: 𝑃(𝑛)

• Proof. We use induction to prove: ∀𝑛 ≥ 1: 𝑃(𝑛)

1. Show that 𝑃(1) is T (“simple” verification) [base case]

2. Show 𝑃(𝑛) → 𝑃(𝑛 + 1) for 𝑛 ≥ 1 [induction step]

• Use Proof by Contraposition

• Assume 𝑃(𝑛 + 1) is F

– (valid derivations)

– must show for any 𝑛 ≥ 1

– must use ¬𝑃 𝑛 + 1 here

• Show 𝑃(𝑛) is F
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Induction Template

• Induction to prove: ∀𝑛 ≥ 1: 𝑃(𝑛)

• Proof. We use induction to prove: ∀𝑛 ≥ 1: 𝑃(𝑛)

1. Show that 𝑃(1) is T (“simple” verification) [base case]

2. Show 𝑃(𝑛) → 𝑃(𝑛 + 1) for 𝑛 ≥ 1 [induction step]

3. Conclude: by induction: ∀𝑛 ≥ 1: 𝑃(𝑛)
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Induction Template, cont’d

• Prove the implication 𝑃 𝑛 → 𝑃(𝑛 + 1) for a general 𝑛 ≥ 1

• Why is this easier than just proving 𝑃(𝑛) for general 𝑛?

– Assuming 𝑃(𝑛) is T gives us a lot of information to work with

• Assume 𝑃(𝑛) is T, and reformulate it mathematically

• Somewhere in the proof you must use 𝑃(𝑛) to prove 𝑃(𝑛 + 1)

• End with a statement that 𝑃(𝑛 + 1) is T
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Sum of Integers

• What is the sum 1 + 2 + 3 +⋯+ 𝑛 − 1 + 𝑛

– Can you give an expression as a function of 𝑛?

• The mathematician Gauss was one day sitting in class and was bored, so his teacher 
asked him to calculate 1 + 2 +⋯+ 100

– he started playing around with numbers:
𝑆 𝑛 = 1 + 2 +⋯+ 𝑛
𝑆 𝑛 = 𝑛 + 𝑛 − 1 +⋯+ 1

• So, 2𝑆 𝑛 = 𝑛 + 1 + 𝑛 + 1 +⋯+ (𝑛 + 1)

– i.e., 2𝑆 𝑛 = 𝑛 × 𝑛 + 1

– i.e., 𝑆 𝑛 =
𝑛(𝑛+1)

2

• This is direct proof!

– Note that this proof technique requires ingenuity in general
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Proof by induction: σ𝒊=𝟏
𝒏 𝒊 =

𝟏

𝟐
𝒏(𝒏 + 𝟏)

• Proof: (By induction) 𝑃 𝑛 :σ𝑖=1
𝑛 𝑖 =

1

2
𝑛(𝑛 + 1)

1. [Base Case] 𝑃(1) claims that 1 =
1

2
× 1 × (1 + 1)

– Clearly T

2. [Induction Step] We show 𝑃 𝑛 → 𝑃(𝑛 + 1) for all 𝑛 ≥ 1, using direct proof. 

– Assume (induction hypothesis) 𝑃(𝑛) is T: σ𝑖=1
𝑛 𝑖 =

1

2
𝑛(𝑛 + 1)

– Need to show 𝑃(𝑛 + 1) is T: σ𝑖=1
𝑛+1 𝑖 =

1

2
𝑛 + 1 𝑛 + 1 + 1

σ𝑖=1
𝑛+1 𝑖 = σ𝑖=1

𝑛 𝑖 + 𝑛 + 1 [key step]

=
1

2
𝑛 𝑛 + 1 + (𝑛 + 1) [induction hypothesis 𝑷(𝒏)]

= 𝑛 + 1
1

2
𝑛 + 1 =

1

2
(𝑛 + 1)(𝑛 + 2) [algebra]

=
1

2
𝑛 + 1 𝑛 + 2 [what needed to be shown]    

3. By induction, 𝑃(𝑛) is T for all 𝑛 ≥ 1

17



BEWARE of going in the wrong direction!

• If we had started from 𝑛 + 1



𝑖=1

𝑛+1

𝑖 =
1

2
𝑛 + 1 𝑛 + 2

– This is what we would like to show

• It follows that:



𝑖=1

𝑛+1

𝑖 − 𝑛 + 1 =
1

2
𝑛 + 1 𝑛 + 2 − 𝑛 + 1



𝑖=1

𝑛

𝑖 = 𝑛 + 1
1

2
𝑛 + 1 − 1

=
1

2
𝑛 𝑛 + 1
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BEWARE of going in the wrong direction!

• Suppose we assume 7 = 4

• This means that 4 = 7

– because 𝑎 = 𝑏 → (𝑏 = 𝑎)

• If we add both equations, we get 11 = 11

– Just because the final result makes sense doesn’t mean that we did something 
right

– By assuming 4 = 7, we proved that 11 = 11

– But did we actually prove 4 = 7?

• To start, you can NEVER assert (as though it’s true) what you are trying to prove
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Sum of Integer Squares

• What is the sum 12 + 22 + 32 +⋯+ 𝑛 − 1 2 + 𝑛2?

– Need to channel our inner Gauss

– Unfortunately, he didn’t solve this one

• Or didn’t think it was important enough to write down…

• Let’s play around with some numbers first
𝑆 1 = 1
𝑆 2 = 5
𝑆 3 = 14
𝑆 4 = 30
𝑆 5 = 55
𝑆 6 = 91
𝑆 7 = 140
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Sum of Integer Squares, cont’d

• Let’s play around with some numbers first

𝑆 1 = 1, 𝑆 2 = 5, 𝑆 3 = 14, 𝑆 4 = 30, 𝑆 5 = 55, 𝑆 6 = 91, 𝑆 7 = 140

• How about 𝑆′ 𝑛 = 𝑆 𝑛 + 1 − 𝑆(𝑛)?

– All the squares: 4,9,16,25,36,49

• How about 𝑆′′ 𝑛 = 𝑆′ 𝑛 + 1 − 𝑆′(𝑛)?

– All odd numbers: 5,7,9,11,13

• How about 𝑆′′′ 𝑛 = 𝑆′′ 𝑛 + 1 − 𝑆′′(𝑛)?

– Constant: 2,2,2,2

• Hm… Difference is kind of like a derivative

– If a function’s 4th derivative is 0, then we know the function is a 3rd order 
polynomial

– Perhaps we can approximate 𝑆(𝑛) in a Taylor-series-like way and see if that 
works
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Sum of Integer Squares, cont’d

• Recall Taylor series expansion (around point 𝑥0):

መ𝑓 𝑥 = 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0 +
1

2
𝑓′′ 𝑥0 𝑥 − 𝑥0

2 +
1

6
𝑓′′′ 𝑥0 𝑥 − 𝑥0

3

– Higher-order terms are 0 if third derivative is constant

• “Taylor series” guess
𝑆 𝑛 = 𝑎0 + 𝑎1𝑛 + 𝑎2𝑛

2 + 𝑎3𝑛
3

• Let’s plug in a few values for 𝑛 and see if can solve for the 𝑎’s
𝑆 1 = 1 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3
𝑆 2 = 5 = 𝑎0 + 2𝑎1 + 4𝑎2 + 8𝑎3
𝑆 3 = 14 = 𝑎0 + 3𝑎1 + 9𝑎2 + 27𝑎3
𝑆 4 = 30 = 𝑎0 + 4𝑎1 + 16𝑎2 + 64𝑎3

– How do we solve a linear system of equations?

– Gaussian elimination! (thank you, Gauss, after all)
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Sum of Integer Squares, cont’d

• “Taylor series” guess
𝑆 𝑛 = 𝑎0 + 𝑎1𝑛 + 𝑎2𝑛

2 + 𝑎3𝑛
3

• Let’s plug in a few values for 𝑛 and see if can solve for the 𝑎’s
𝑆 1 = 1 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3
𝑆 2 = 5 = 𝑎0 + 2𝑎1 + 4𝑎2 + 8𝑎3
𝑆 3 = 14 = 𝑎0 + 3𝑎1 + 9𝑎2 + 27𝑎3
𝑆 4 = 30 = 𝑎0 + 4𝑎1 + 16𝑎2 + 64𝑎3

• Solution is 𝑎0 = 0, 𝑎1 =
1

6
, 𝑎2 =

1

2
, 𝑎3 =

1

3

– Solve for 𝑎0 in terms of other 𝑎’s; then solve for 𝑎1, etc.

• So guess is 𝑆 𝑛 =
1

6
𝑛 +

1

2
𝑛2 +

1

3
𝑛3

– 𝑆 1 = 1, 𝑆 2 = 5, 𝑆 3 = 14,…

– Hm, seems correct. Let’s prove it using induction!
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Proof: 𝑺 𝒏 = σ𝒊=𝟏
𝒏 𝒊𝟐 =

𝟏

𝟔
𝒏 +

𝟏

𝟐
𝒏𝟐 +

𝟏

𝟑
𝒏𝟑

• Proof: (By induction)

𝑃 𝑛 :

𝑖=1

𝑛

𝑖2 =
1

6
𝑛 +

1

2
𝑛2 +

1

3
𝑛3 =

1

6
𝑛(𝑛 + 1)(2𝑛 + 1)

1. [Base case] 𝑃(1) claims that 1 =
1

6
× 1 × 2 × 3, which is T

2. [Induction step] Show 𝑃 𝑛 → 𝑃(𝑛 + 1) for all 𝑛 ≥ 1. Direct proof.

– Need to show 𝑃(𝑛 + 1) is T: 



𝑖=1

𝑛+1

𝑖2 =
1

6
(𝑛 + 1)(𝑛 + 2)(2𝑛 + 3)

σ𝑖=1
𝑛+1 𝑖2 = σ𝑖=1

𝑛 𝑖2 + 𝑛 + 1 2 [key step]

=
1

6
𝑛 𝑛 + 1 2𝑛 + 1 + 𝑛 + 1 2 [induction hypothesis 𝑷(𝒏)]

=
1

6
𝑛 + 1 2𝑛2 + 7𝑛 + 6 [algebra]

=
1

6
𝑛 + 1 2𝑛2 + 4𝑛 + 3𝑛 + 6 [algebra]

=
1

6
𝑛 + 1 𝑛 + 2 2𝑛 + 3 [what needed to be shown]

24



Proof: 𝑺 𝒏 = σ𝒊=𝟏
𝒏 𝒊𝟐 =

𝟏

𝟔
𝒏 +

𝟏

𝟐
𝒏𝟐 +

𝟏

𝟑
𝒏𝟑

• Proof: (By induction)

𝑃 𝑛 :

𝑖=1

𝑛

𝑖2 =
1

6
𝑛 +

1

2
𝑛2 +

1

3
𝑛3 =

1

6
𝑛(𝑛 + 1)(2𝑛 + 1)

1. [Base case] 𝑃(1) claims that 1 =
1

6
× 1 × 2 × 3, which is T

2. [Induction step] Show 𝑃 𝑛 → 𝑃(𝑛 + 1) for all 𝑛 ≥ 1. Direct proof.

– Need to show 𝑃(𝑛 + 1) is T: 



𝑖=1

𝑛+1

𝑖2 =
1

6
(𝑛 + 1)(𝑛 + 2)(2𝑛 + 3)

σ𝑖=1
𝑛+1 𝑖2 =

1

6
𝑛 + 1 2𝑛2 + 4𝑛 + 3𝑛 + 6 [algebra]

=
1

6
𝑛 + 1 𝑛 + 2 2𝑛 + 3 [what needed to be shown]

– So 𝑃(𝑛 + 1) is T

• By induction, 𝑃(𝑛) is T for all 𝑛 ≥ 1
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Induction gone wrong

• Suppose we proved 𝑃 1 → 𝑃 2 → 𝑃 3 → 𝑃 4 → ⋯

• What is missing?

– No base case!

• Remember, 𝐹 → 𝑇!

• Suppose we want to prove: 

𝑃 𝑛 : 𝑛 ≥ 𝑛 + 1 for all 𝑛 ≥ 1

– Add 1 to both sides: 

𝑛 ≥ 𝑛 + 1 → 𝑛 + 1 ≥ 𝑛 + 2

– Therefore, 𝑃 𝑛 → 𝑃(𝑛 + 1)

• [Every link is proved, but without the base case, you have nothing.]

– Broken chain!
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Induction gone wrong, cont’d

• False: 𝑃 𝑛 : “all balls in any set of 𝑛 balls are the same color.”

– Base case. 𝑃(1) is T because there is only 1 ball

– Induction step. Suppose any set of 𝑛 balls have the same color. 

• Consider any set of 𝑛 + 1 balls 𝑏1, 𝑏2, … , 𝑏𝑛, 𝑏𝑛+1.

• So, 𝑏1, 𝑏2, … , 𝑏𝑛 have the same color and 𝑏2, … , 𝑏𝑛, 𝑏𝑛+1 have the same 
color. 

• Thus 𝑏1, 𝑏2, … , 𝑏𝑛, 𝑏𝑛+1 have the same color.

– Does that mean 𝑃(𝑛) → 𝑃(𝑛 + 1) for all 𝑛 ≥ 1?

• Well, 𝑃 1 → 𝑃(2) is F

• [A single broken link kills the entire proof.]

• How would you “fix” this proof?

– Need two base cases!

– Of course, now we can’t prove 𝑃(2)!

– Phew, what a relief – the world is colorful after all!
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Well Ordering Principle

• Recall the Well-ordering Principle:

– Any non-empty set of natural numbers has a minimum element.

• Induction follows from well ordering

– Let 𝑃(1) and 𝑃(𝑛) → 𝑃(𝑛 + 1) be T

• Suppose 𝑃(𝑛∗) fails for the smallest counter-example 𝑛∗ (well-ordering).
𝑃 1 → 𝑃 2 → 𝑃 3 → ⋯ → 𝑃 𝑛∗ − 1 → 𝑃 𝑛∗ → ⋯

– Now how can 𝑃(𝑛∗ − 1) → 𝑃(𝑛∗) be T?

• Any induction proof can also be done using well-ordering.
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Example Well-ordering Proof: 𝒏 < 𝟐𝒏 for all 𝒏 ≥ 𝟏

• First prove it with induction

• Proof: [Induction] 𝑃 𝑛 : 𝑛 < 2𝑛

1. [Base case] 𝑃(1) claims that 1 < 21, which is T

2. [Induction step] Assume 𝑃 𝑛 is T: 𝑛 < 2𝑛

– Need to show 𝑃(𝑛 + 1) is T: 
𝑛 + 1 < 2𝑛+1

– From the induction hypothesis:
𝑛 + 1 ≤ 𝑛 + 𝑛

≤ 2𝑛 + 2𝑛 = 2 × 2𝑛 = 2𝑛+1
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Example Well-ordering Proof: 𝒏 < 𝟐𝒏 for all 𝒏 ≥ 𝟏

• Proof: [Well-ordering] Proof by contradiction.

– Assume that there is an 𝑛 ≥ 1 for which 𝑛 ≥ 2𝑛

– Let 𝑛∗ be the minimum such counter-example, 𝑛∗ ≥ 2𝑛∗

• Using the well ordering axiom

– Since 1 < 21, then 𝑛∗ ≥ 2

– Since 𝑛∗ ≥ 2, 
1

2
𝑛∗ ≥ 1 and so,

𝑛∗ − 1 ≥ 𝑛∗ −
1

2
𝑛∗ =

1

2
𝑛∗

≥
1

2
× 2𝑛∗ = 2𝑛∗−1

• So, 𝑛∗ − 1 is a smaller counter example. FISHY!

• The method of minimum counter-example is very powerful.
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Getting Good at Induction

• TINKER, TINKER, TINKER

• PRACTICE, PRACTICE, PRACTICE

• Just because something is not immediately obvious doesn’t mean you should give 
up

• Challenge. A circle has 2𝑛 distinct points, 𝑛 are red and 𝑛 are blue. 

– Prove that for all 𝑛 ≥ 1, there exists a blue point such that one can start at that 
blue point and move clockwise always having passed as many blue points as red.

• Practice. All exercises and pop-quizzes in chapter 5.

• Strengthen. Problems in chapter 5.
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