Induction: Proving "For All..."

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 5

Overview: Induction, Proving "...for all..."

- What is induction
- Why do we need it?
- The principle of induction
 - Toppling the dominos
 - The induction template
- Examples
- Induction, Well-Ordering and the Smallest Counter-Example

Dispensing postage using 5¢ and 7¢ stamps

Rensselaer

- How do I pay for a 19¢ letter?
 - using 7,7,5 stamps
- How about 20?
 - using 5,5,5,5 stamps
- How about 21?
 - using 7,7,7 stamps
- How about 22?
 - using 5,5,5,7 stamps
- How about 23?
 - ?
 - Looks hard

Dispensing postage using 5¢ and 7¢ stamps

- How do I pay for a 19¢ letter?
 - using 7,7,5 stamps
 - What about 24?
 - 7,7,5,5
- How about 22?
 - using 5,5,5,7 stamps
 - What about 27?
 - 5,5,5,7,5
- Can every postage greater than 23¢ can be dispensed?
 - Intuitively, yes
 - Induction formalizes this intuition

Why do we need induction?

- Predicate: P(n) = "5¢ and 7¢ stamps can make postage n."
 - Claim: $\forall n \ge 24$: P(n)
 - Seems true
- Predicate: $P(n) = "n^2 n + 41$ a prime number."
 - Claim: $\forall n \ge 1$: P(n)
 - Try different n
 - *n* = 1: 41 (prime)
 - *n* = 2: 43 (prime)
 - *n* = 3: 47 (prime)
 - *n* = 4: 53 (prime)
 - ...
 - n = 41: 1681 (not prime!)

Why do we need induction?, cont'd

- Predicate: P(n) = "4n 1 is divisible by 3."
 - Claim: $\forall n \ge 1$: P(n)
 - Try different n
 - $n = 1 \rightarrow 4 1 = 3$ (yes)
 - $n = 2 \rightarrow 8 1 = 7$ (nope)
- How can we prove something for all $n \ge 1$? Checking each n takes too long!
- Prove for general *n*. Can be tricky.
- Induction. Systematic.

Is $4^n - 1$ divisible by 3 for $n \ge 1$?

- Predicate: $P(n) = "4^n 1$ is divisible by 3."
- We proved
 - IF $4^n 1$ is divisible by 3, THEN $4^{n+1} 1$ is divisible by 3
- Theorem: Let x be any real number, i.e., $x \in \mathbb{R}$. IF $4^x 1$ is divisible by 3, THEN $4^{x+1} 1$ is divisible by 3.
- *Proof*: We prove the claim using a direct proof.
 - 1. Assume that p is T, that is $4^x 1$ is divisible by 3.
 - 2. This means that $4^{x} 1 = 3k$ for an integer k, or that $4^{x} = 3k + 1$
 - 3. Observe that $4^{x+1} = 4 \times 4^x$. Using $4^x = 3k + 1$, note that $4^{x+1} = 4(3k + 1) = 12k + 4$
 - 4. Therefore $4^{x+1} 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 (4k + 1 is an integer)
 - 5. Since $4^{x+1} 1$ is a multiple of 3, we have shown that $4^{x+1} 1$ is divisible by 3
 - 6. Therefore, the statement claimed in q is T

Is $4^n - 1$ divisible by 3 for $n \ge 1$?

- Predicate: $P(n) = "4^n 1$ is divisible by 3."
- We proved
 - IF $4^n 1$ is divisible by 3, THEN $4^{n+1} 1$ is divisible by 3
 - So we proved: IF P(n) THEN P(n + 1)
 - i.e., $P(n) \rightarrow P(n+1)$
- What use is this?
 - (Reasoning in the absence of facts.)

Is $4^n - 1$ divisible by 3 for $n \ge 1$?

- We proved
 - IF $4^n 1$ is divisible by 3, THEN $4^{n+1} 1$ is divisible by 3
 - So we proved IF P(n) THEN P(n + 1)
 - i.e., $P(n) \rightarrow P(n+1)$
- From tinkering, we know

P(1) is T: $4^1 - 1 = 3$ is divisible by 3

- $P(1) \rightarrow P(2)$
- $P(2) \rightarrow P(3)$
- $P(3) \rightarrow P(4)$
- $P(4) \rightarrow P(5)$
- When does this end??

• We know P(1) is T

$$4^1 - 1 = 3$$
 is divisible by 3

- We also know $P(n) \rightarrow P(n+1)$
- By induction, P(n) is T for all $n \ge 1$

- *P*(*n*) form an infinite chain of dominos
- Topple the first and they *all* fall
- Practice: Exercise 5.2

Rensselaer

Induction Template

- Induction to prove: $\forall n \ge 1$: P(n)
- *Proof.* We use induction to prove: $\forall n \ge 1$: P(n)
 - 1. Show that P(1) is T ("simple" verification) [base case]
 - 2. Show $P(n) \rightarrow P(n+1)$ for $n \ge 1$ [induction step]
 - Use <u>Direct</u> proof
 - Assume P(n) is T
 - (valid derivations)
 - must show for any $n \ge 1$
 - must use P(n) here
 - Show P(n+1) is T

Induction Template

- Induction to prove: $\forall n \ge 1$: P(n)
- *Proof.* We use induction to prove: $\forall n \ge 1$: P(n)
 - 1. Show that P(1) is T ("simple" verification) [base case]
 - 2. Show $P(n) \rightarrow P(n+1)$ for $n \ge 1$ [induction step]
 - Use Proof by <u>Contraposition</u>
 - Assume P(n+1) is F
 - (valid derivations)
 - must show for any $n \ge 1$
 - must use $\neg P(n+1)$ here
 - Show P(n) is F

Induction Template

- Induction to prove: $\forall n \ge 1$: P(n)
- *Proof.* We use induction to prove: $\forall n \ge 1$: P(n)
 - 1. Show that P(1) is T ("simple" verification) [base case]
 - 2. Show $P(n) \rightarrow P(n+1)$ for $n \ge 1$ [induction step]
 - Use <u>Direct proof</u>
 - Assume P(n) is T
 - (valid derivations)
 - must show for any $n \ge 1$
 - must use P(n) here
 - Show P(n+1) is T

- Use Proof by <u>Contraposition</u>
- Assume P(n+1) is F
 - (valid derivations)
 - must show for any $n \ge 1$
 - must use $\neg P(n+1)$ here
- Show P(n) is F
- 3. Conclude: by induction: $\forall n \ge 1$: P(n)

Induction Template, cont'd

- Prove the implication $P(n) \rightarrow P(n+1)$ for a general $n \ge 1$
- Why is this easier than just proving P(n) for general n?
 - Assuming P(n) is T gives us a lot of information to work with
- Assume P(n) is T, and reformulate it mathematically
- Somewhere in the proof you *must* use P(n) to prove P(n + 1)
- End with a statement that P(n + 1) is T

Sum of Integers

- What is the sum $1 + 2 + 3 + \dots + (n 1) + n$
 - Can you give an expression as a function of n?
- The mathematician Gauss was one day sitting in class and was bored, so his teacher asked him to calculate $1 + 2 + \dots + 100$
 - he started playing around with numbers:

$$S(n) = 1 + 2 + \dots + n$$

 $S(n) = n + n - 1 + \dots + 1$

• So,
$$2S(n) = (n + 1) + (n + 1) + \dots + (n + 1)$$

- i.e., $2S(n) = n \times (n + 1)$
- i.e., $S(n) = \frac{n(n+1)}{2}$

- This is direct proof!
 - Note that this proof technique requires ingenuity in general

Proof by induction: $\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$

• *Proof*: (By induction) $P(n): \sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$

1. [Base Case]
$$P(1)$$
 claims that $1 = \frac{1}{2} \times 1 \times (1+1)$

– Clearly T

- 2. [Induction Step] We show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$, using direct proof.
 - Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$

- Need to show
$$P(n + 1)$$
 is T: $\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1)$
 $\sum_{i=1}^{n+1} i = (\sum_{i=1}^{n} i) + (n + 1)$ [key step]
 $= \frac{1}{2}n(n + 1) + (n + 1)$ [induction hypothesis $P(n)$]
 $= (n + 1)(\frac{1}{2}n + 1) = \frac{1}{2}(n + 1)(n + 2)$ [algebra]
 $= \frac{1}{2}(n + 1)(n + 2)$ [what needed to be shown]

3. By induction, P(n) is T for all $n \ge 1$

BEWARE of going in the wrong direction!

Rensselaer

• If we had started from n + 1

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2)$$

This is what we would like to show

• It follows that:

$$\sum_{i=1}^{n+1} i - (n+1) = \frac{1}{2}(n+1)(n+2) - (n+1)$$
$$\sum_{i=1}^{n} i = (n+1)\left(\frac{1}{2}n+1-1\right)$$
$$= \frac{1}{2}n(n+1)$$
Hoooray

Or is it...

BEWARE of going in the wrong direction!

- Suppose we assume 7 = 4
- This means that 4 = 7
 - because (a = b) \rightarrow (b = a)
- If we add both equations, we get 11 = 11
 - Just because the final result makes sense doesn't mean that we did something right
 - By assuming 4 = 7, we proved that 11 = 11
 - But did we actually prove 4 = 7?
- To start, you can **NEVER** assert (as though it's true) what you are trying to prove

Sum of Integer Squares

- What is the sum $1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2$?
 - Need to channel our inner Gauss
 - Unfortunately, he didn't solve this one
 - Or didn't think it was important enough to write down...
- Let's play around with some numbers first

S(1) = 1 S(2) = 5 S(3) = 14 S(4) = 30 S(5) = 55 S(6) = 91S(7) = 140

Sum of Integer Squares, cont'd

- Let's play around with some numbers first S(1) = 1, S(2) = 5, S(3) = 14, S(4) = 30, S(5) = 55, S(6) = 91, S(7) = 140
- How about S'(n) = S(n + 1) S(n)?
 - All the squares: 4,9,16,25,36,49
- How about S''(n) = S'(n + 1) S'(n)? - All odd numbers: 5,7,9,11,13
- How about S'''(n) = S''(n + 1) S''(n)?
 Constant: 2,2,2,2
- Hm... Difference is kind of like a derivative
 - If a function's 4th derivative is 0, then we know the function is a 3rd order polynomial
 - Perhaps we can approximate S(n) in a Taylor-series-like way and see if that works

Rensselaer

Sum of Integer Squares, cont'd

- Recall Taylor series expansion (around point x_0): $\hat{f}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{6}f'''(x_0)(x - x_0)^3$
 - Higher-order terms are 0 if third derivative is constant
- "Taylor series" guess

$$S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3$$

• Let's plug in a few values for n and see if can solve for the a's

$$S(1) = 1 = a_0 + a_1 + a_2 + a_3$$

$$S(2) = 5 = a_0 + 2a_1 + 4a_2 + 8a_3$$

$$S(3) = 14 = a_0 + 3a_1 + 9a_2 + 27a_3$$

$$S(4) = 30 = a_0 + 4a_1 + 16a_2 + 64a_3$$

- How do we solve a linear system of equations?
- Gaussian elimination! (thank you, Gauss, after all)

• "Taylor series" guess

$$S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3$$

• Let's plug in a few values for *n* and see if can solve for the *a*'s

$$S(1) = 1 = a_0 + a_1 + a_2 + a_3$$

$$S(2) = 5 = a_0 + 2a_1 + 4a_2 + 8a_3$$

$$S(3) = 14 = a_0 + 3a_1 + 9a_2 + 27a_3$$

$$S(4) = 30 = a_0 + 4a_1 + 16a_2 + 64a_3$$

• Solution is
$$a_0 = 0, a_1 = \frac{1}{6}, a_2 = \frac{1}{2}, a_3 = \frac{1}{3}$$

- Solve for a_0 in terms of other *a*'s; then solve for a_1 , etc.

• So guess is $S(n) = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3$

$$-S(1) = 1, S(2) = 5, S(3) = 14, \dots$$

– Hm, seems correct. Let's prove it using induction!

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3$$

• *Proof*: (By induction)

$$P(n): \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

- 1. [Base case] P(1) claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is T
- 2. [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$. Direct proof.

- Need to show
$$P(n + 1)$$
 is T:

$$\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$$

$$\sum_{i=1}^{n+1} i^2 = (\sum_{i=1}^n i^2) + (n+1)^2 \qquad \text{[key step]}$$

$$= \frac{1}{6}n(n+1)(2n+1) + (n+1)^2 \qquad \text{[induction hypothesis } P(n)\text{]}$$

$$= \frac{1}{6}(n+1)(2n^2 + 7n + 6) \qquad \text{[algebra]}$$

$$= \frac{1}{6}(n+1)(2n^2 + 4n + 3n + 6) \qquad \text{[algebra]}$$

$$= \frac{1}{6}(n+1)(n+2)(2n+3) \qquad \text{[what needed to be shown]}$$

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3$$

• *Proof*: (By induction)

$$P(n): \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

- 1. [Base case] P(1) claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is T
- 2. [Induction step] Show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$. Direct proof.

- Need to show
$$P(n + 1)$$
 is T:

$$\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n + 1)(n + 2)(2n + 3)$$

$$\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n + 1)(2n^2 + 4n + 3n + 6)$$
[algebra]

$$= \frac{1}{6}(n + 1)(n + 2)(2n + 3)$$
[what needed to be shown]
- So $P(n + 1)$ is T

• By induction, P(n) is T for all $n \ge 1$

Induction gone wrong

- Suppose we proved $P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots$
- What is missing?
 - No base case!
- Remember, $F \rightarrow T!$
- Suppose we want to prove:

```
P(n): n \ge n + 1 for all n \ge 1
```

– Add 1 to both sides:

 $n \ge n+1 \to n+1 \ge n+2$

- Therefore, $P(n) \rightarrow P(n+1)$
- [Every link is proved, but without the base case, you have *nothing*.]
 Broken chain!

Induction gone wrong, cont'd

- False: P(n): "all balls in any set of n balls are the same color."
 - **Base case.** P(1) is T because there is only 1 ball
 - Induction step. Suppose any set of *n* balls have the same color.
 - Consider any set of n + 1 balls $b_1, b_2, \dots, b_n, b_{n+1}$.
 - So, b₁, b₂, ..., b_n have the same color and b₂, ..., b_n, b_{n+1} have the same color.
 - Thus $b_1, b_2, \dots, b_n, b_{n+1}$ have the same color.
 - Does that mean $P(n) \rightarrow P(n+1)$ for all $n \ge 1$?
 - Well, $P(1) \rightarrow P(2)$ is F
- [A single broken link kills the entire proof.]
- How would you "fix" this proof?
 - Need two base cases!
 - Of course, now we can't prove P(2)!
 - Phew, what a relief the world is colorful after all!

Well Ordering Principle

• Recall the Well-ordering Principle:

- Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering

- Let P(1) and $P(n) \rightarrow P(n+1)$ be T

• Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering). $P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow \cdots \rightarrow P(n_* - 1) \rightarrow P(n_*) \rightarrow \cdots$

- Now how can $P(n_* - 1) \rightarrow P(n_*)$ be T?

• Any induction proof can also be done using well-ordering.

Example Well-ordering Proof: $n < 2^n$ for all $n \ge 1$ (1) Rensselaer

- First prove it with induction
- Proof: [Induction] $P(n): n < 2^n$
- 1. [Base case] P(1) claims that $1 < 2^1$, which is T
- 2. [Induction step] Assume P(n) is T: $n < 2^n$
 - Need to show P(n + 1) is T:

$$n+1 < 2^{n+1}$$

– From the induction hypothesis:

$$n + 1 \le n + n$$

 $\le 2^n + 2^n = 2 \times 2^n = 2^{n+1}$

Example Well-ordering Proof: $n < 2^n$ for all $n \ge 1$ (1) Rensselaer

- *Proof*: [Well-ordering] Proof by contradiction.
 - Assume that there is an $n \ge 1$ for which $n \ge 2^n$
 - Let n_* be the **minimum** such **counter-example**, $n_* \geq 2^{n_*}$
 - Using the well ordering axiom
 - Since $1 < 2^1$, then $n_* \ge 2$

- Since
$$n_* \ge 2$$
, $\frac{1}{2}n_* \ge 1$ and so,
 $n_* - 1 \ge n_* - \frac{1}{2}n_* = \frac{1}{2}n_*$
 $\ge \frac{1}{2} \times 2^{n_*} = 2^{n_* - 1}$

- So, $n_* 1$ is a *smaller* counter example. **FISHY!**
- The method of minimum counter-example is very powerful.

Getting Good at Induction

- TINKER, TINKER, TINKER
- PRACTICE, PRACTICE, PRACTICE
- Just because something is not immediately obvious doesn't mean you should give up
- Challenge. A circle has 2n distinct points, n are red and n are blue.
 - Prove that for all $n \ge 1$, there exists a blue point such that one can start at that blue point and move clockwise always having passed as many blue points as red.

- **Practice.** All exercises and pop-quizzes in chapter 5.
- Strengthen. Problems in chapter 5.