Proofs

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 4

Today

- Proving "IF ..., THEN ..."
- Proof patterns
- Direct proof
- Proof by contraposition
- Proof by contradiction
- Proofs about sets

Implications: reasoning in the absence of facts

- Reasoning:
- It rained last night (fact); the grass is wet ("deduced").
- Reasoning in the absence of facts:
- IF it rained last night, THEN the grass is wet
- We like to prove such statements even though, at this moment, it is not much use
- Later, you may learn that it rained last night and infer the grass is wet
- More relevant example from CS:

IF we can quickly find the largest friend-clique in a friendship network, THEN we can quickly determine how to assign non-conflicting frequencies to radio stations using a minimum number of frequencies

Implications, cont'd

- Mathematical example, quadratic formula:
- IF $a x^{2}+b x+c=0$ AND $a \neq 0$, THEN

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { or } x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Proving an implication

- IF x and y are rational, THEN $x+y$ is rational
- What are the predicates p and q ?

$$
\begin{aligned}
& p=x \text { and } y \text { are rational } \\
& q=x+y \text { is rational }
\end{aligned}
$$

- Formally, we write this as

$$
\forall(x, y) \in \mathbb{Q}^{2}:(x+y) \in \mathbb{Q}
$$

- i.e., $P(x, y)=(x+y) \in \mathbb{Q}$

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

- Proof:
- We must show that the row $p=T, q=F$ cannot happen
- Let's see what happens if $p=T$, i.e., $(x, y) \in \mathbb{Q}^{2}$ $x=\frac{a}{b}, y=\frac{c}{d}$, where $a, c \in \mathbb{Z}$ and $b, d \in \mathbb{N}$
- What is $x+y$?
$x+y=\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$. Is that number rational?
- Yes, $a d+b c \in \mathbb{Z}, b d \in \mathbb{N}$
- i.e., $q=T$ (the row $p=T, q=F$ cannot happen!) QED.

Template for direct proof of an implication $\boldsymbol{p} \rightarrow \boldsymbol{q}$ Rensselaer

- Proof. We prove the implication using a direct proof.

1. Start by assuming that the statement claimed in p is T
2. Restate your assumption in mathematical terms
3. Use mathematical and logical derivations to relate your assumption to q
4. Argue that you have shown that q must be T
5. End by concluding that q is T

- Theorem: If $x, y \in \mathbb{Q}$, then $x+y \in \mathbb{Q}$
- Proof. We prove the theorem using a direct proof.

1. Assume that $x, y \in \mathbb{Q}$, that is x and y are rational
2. \quad Then there are integers a, c and natural numbers b, d such that $x=a / b$ and $y=c / d$

- (because this is what it means for x and y to be rational)

3. Then $x+y=(a d+b c) / b d$

- (high-school algebra)

4. Since $a d+b c \in \mathbb{Z}$ and $b d \in \mathbb{N}$, $(a d+b c) / b d$ is rational
5. Thus, we conclude (from steps 3 and 4) that $x+y \in \mathbb{Q}$

A proof is a mathematical essay

- A proof must be well written
- The goal of a proof is to convince a reader of a theorem
- A badly written proof that leaves a reader with some doubts has failed

Steps for Writing Readable Proofs

1. State your strategy.

- Start with proof type.
- Structure long proofs into parts and tie up the parts at the end.
- Readers must have no doubts.

2. The proof should have a logical flow.

- It is difficult to follow movies that jump between story lines or back and forth in time.
- A reader follows a proof linearly, from beginning to end.

3. Keep it simple.

- Make the idea at the heart of your proof clear.
- Avoid excessive symbols and unnecessary notation.

4. Justify your steps.

- The reader must have no doubts.
- Avoid phrases like "It's obvious that . . ." If it is so obvious, explain.

5. End your proof. Explain why what you set out to show is true.
6. Read your proof. Finally, check correctness; edit; simplify

- Theorem: Let x be any real number, i.e., $x \in \mathbb{R}$. IF $4^{x}-1$ is divisible by 3 , THEN $4^{x+1}-1$ is divisible by 3 .
- What are the predicates p and q ?

$$
\begin{aligned}
& p=4^{x}-1 \text { is divisible by } 3 \\
& q=4^{x+1}-1 \text { is divisible by } 3
\end{aligned}
$$

Example: direct proof

- Theorem: Let x be any real number, i.e., $x \in \mathbb{R}$. IF $4^{x}-1$ is divisible by 3 , THEN $4^{x+1}-1$ is divisible by 3 .
- Proof: We prove the claim using a direct proof.

1. Assume that p is T , that is $4^{x}-1$ is divisible by 3 .
2. This means that $4^{x}-1=3 k$ for an integer k, or that

$$
4^{x}=3 k+1
$$

3. Observe that $4^{x+1}=4 \times 4^{x}$. Using $4^{x}=3 k+1$,

$$
4^{x+1}=4(3 k+1)=12 k+4
$$

4. Therefore

$$
\begin{aligned}
4^{x+1}-1 & =12 k+3 \\
& =3(4 k+1)
\end{aligned}
$$

is a multiple of $3(4 k+1$ is an integer)
5. Since $4^{x+1}-1$ is a multiple of 3 , we have shown that $4^{x+1}-1$ is divisible by 3
6. Therefore, the statement claimed in q is T

- Question: Is $4^{x}-1$ divisible by 3?

We made no assumptions about x !

- $P(x)$: "IF $4^{x}-1$ is divisible by 3 , THEN $4^{x+1}-1$ is divisible by 3 "
- Since we made no assumptions about x, we proved:

$$
\forall x \in \mathbb{R}: P(x)
$$

- Exercise:
- Prove: For all pairs of odd integers m, n, the sum $m+n$ is an even integer

1. $m=2 k+1$ for some $k \in \mathbb{Z}$
2. $n=2 p+1$ for some $p \in \mathbb{Z}$
3. $m+n=2(p+k+1)$
4. Why is this sufficient proof?

Disproving an Implication

- IF $x^{2}>y^{2}$, THEN $x>y$
- What are p and q ?

$$
\begin{aligned}
& p=\left(x^{2}>y^{2}\right) \\
& q=(x>y)
\end{aligned}
$$

- Is this statement true or false?
- False!
- Counter example: $x=-8, y=-4$

$$
\begin{aligned}
& p: 64=x^{2}>y^{2}=16 \\
& q:-8=x<y=-4
\end{aligned}
$$

- The row $p=\mathrm{T}, q=\mathrm{F}$ has occurred!
- A single counter-example suffices to disprove an implication

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

Contraposition

- IF x^{2} is even, THEN x is even
- What are p and q ?

$$
\begin{aligned}
& p=\left(x^{2} \text { is even }\right) \\
& q=(x \text { is even })
\end{aligned}
$$

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

- Proof: We must show that the row $p=\mathrm{T}, q=\mathrm{F}$ can't happen
- Let us see what happens if $q=\mathrm{F}$
- If x is odd, $x=2 k+1$
- Then $x^{2}=4 k^{2}+4 k+1$
- i.e., $x^{2}=2\left(2 k^{2}+2 k\right)+1\left(x^{2}\right.$ is odd!)
- That means p is F
- The row $p=\mathrm{T}, q=\mathrm{F}$ cannot occur!
- The implication is proved

Template: Contraposition Proof of an Implication $\boldsymbol{p} \rightarrow \boldsymbol{q}$

- Proof. We prove the theorem using contraposition.

1. Start by assuming that the statement claimed in q is F.
2. Restate your assumption in mathematical terms.
3. Use mathematical and logical derivations to relate your assumption to p.
4. Argue that you have shown that p must be F .
5. End by concluding that p is F .

Example Contraposition Proof of an Implication $\boldsymbol{p} \rightarrow \boldsymbol{q}$

- Theorem: If x^{2} is even, then x is even.
- Proof:

1. Assume x is odd
2. \quad Then $x=2 k+1$ for some $k \in \mathbb{Z}$ (definition of what it means for x to be odd)
3. Then $x^{2}=2\left(2 k^{2}+2 k\right)+1$ (high-school algebra)
4. Which means x^{2} is 1 plus a multiple of 2 , and hence is odd
5. We have shown that x^{2} is odd, concluding the proof. QED.

- Exercise: Prove: IF x is irrational, THEN \sqrt{x} is irrational

Equivalence: ... IF AND ONLY IF ...

- p and q are equivalent means they are either both T or both F
- We write (p IF AND ONLY IF q) or ($p \leftrightarrow q$)
- You are a US citizen if and only if you were born on US soil
- (This is not an equivalence according to current US law)
- Sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
T	T	T

- Integer x is divisible by 3 if and only if x^{2} is divisible by 3
- To prove $p \leftrightarrow q$ is T, you must prove:
- Row $p=T, q=F$ cannot occur: that is $p \rightarrow q$
- Row $p=F, q=T$ cannot occur: that is $q \rightarrow p$

Integer x is divisible by 3 IF AND ONLY IF x^{2} is divisible by 3

- What are p and q ?

$$
\begin{aligned}
& p=(x \text { is divisible by } 3) \\
& q=\left(x^{2} \text { is divisible by } 3\right)
\end{aligned}
$$

- Proof. The proof has two main steps (one for each implication):

1. Prove $p \rightarrow q$: IF x is divisible by 3 THEN x^{2} is divisible by 3

- We use a direct proof
- Assume x is divisible by 3 , so $x=3 k$ for some $k \in \mathbb{Z}$
- Then $x^{2}=9 k^{2}$
- i.e., $x^{2}=3 \times\left(3 k^{2}\right)$, so it is divisible by 3

Integer x is divisible by 3 IF AND ONLY IF x^{2} is divisible by 3

- What are p and q ?

$$
\begin{aligned}
& p=(x \text { is divisible by } 3) \\
& q=\left(x^{2} \text { is divisible by } 3\right)
\end{aligned}
$$

- Proof. The proof has two main steps (one for each implication):

2. Prove $q \rightarrow p$: IF x^{2} is divisible by 3 THEN x is divisible by 3

- We use contraposition. Assume x is not divisible by 3. Then there are 2 cases:
- Case 1: $x=3 k+1$
- i.e., $x^{2}=9 k^{2}+6 k+1=3 k(3 k+2)+1$
- (still not a multiple of 3)
- Case 2: $x=3 k+2$
- i.e., $x^{2}=9 k^{2}+12 k+4=3\left(3 k^{2}+4 k+1\right)+1$
- (still not a multiple of 3)
- In both cases x^{2} is not divisible by 3. QED.
- IF AND ONLY IF proof contains the proofs of two implications
- Each implication may need to be proved differently

Contradictions

- Example contradictions

$$
\begin{aligned}
& 1=2 \\
& n^{2}<n(\text { for integer } n) \\
& |x|<x \\
& p \wedge \neg p
\end{aligned}
$$

- Contradictions are FISHY. In mathematics you cannot derive contradictions.
- Principle of Contradiction: If you derive something FISHY, something's wrong with your derivation.

Contradictions, cont'd

- Look at this argument

1. Assume $\sqrt{2}$ is rational.
2. This means $\sqrt{2}=a_{*} / b_{*}$

- Here b_{*} is the smallest denominator (well-ordering)

3. That is, a_{*} and b_{*} cannot have 2 as a common factor
4. We have: $2=a_{*}^{2} / b_{*}^{2}$

- i.e., $a_{*}^{2}=2 b_{*}^{2}$ is even
- i.e., $a_{*}=2 k$ is even [we proved this]

5. Therefore, $4 k^{2}=2 b_{*}^{2}$, so $b_{*}^{2}=2 k^{2}$

- Hence b_{*} is even

6. Hence, a_{*} and b_{*} are both divisible by 2. (FISHY)

- What could possibly be wrong with this derivation? It must be step 1

Template: Proof by Contradiction p is T

- You can use contradiction to prove anything
- Start by assuming it's false.
- Powerful because the starting assumption gives you something to work with
- Proof.

1. To derive a contradiction, assume that p is F
2. Restate your assumption in mathematical terms
3. Derive a FISHY statement - a contradiction that must be false
4. Therefore, the assumption in step 1 is false, and p is T

Template: Proof by Contradiction p is T , cont'd

- DANGER: Be especially careful in contradiction proofs! Any small mistake can easily lead to a contradiction and a false sense that you proved your claim.
- Exercise: Let a, b be integers. Prove that $a^{2}-4 b \neq 2$.

Proofs about Sets

- Venn diagram proofs:

$$
- \text { E.g., } A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

A

$A \cup B$

$A \cup C$

- Formal proofs:
- One set is a subset of another, $A \subseteq B$:
- $x \in A \rightarrow x \in B$
- One set is a not a subset of another, $A \nsubseteq B$:
- $\exists x \in A: x \notin B$
- Two sets are equal, $A=B$:
- $x \in A \leftrightarrow x \in B$

Proofs about Sets, Exercise

- $A=\{$ multiples of 2$\}$
- $B=\{$ multiples of 9$\}$
- $C=\{$ multiples of 6$\}$
- Prove that $A \cap B \subseteq C$
- What is common about the elements of A and B ?

Picking a Proof Template

- Clear how result follows from assumption
- Direct proof
- Clear that if result is false, the assumption is false
- Contraposition
- Prove something exists
- Show an example
- Prove something does not exist
- Contradiction
- Prove something is unique
- Contradiction
- Prove something is not true for all objects
- Show a counter-example
- Show something is true for all objects
- Show for general object

Practice

- Exercise 4.8

