Proofs

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 4

Today

- Proving "IF ..., THEN ..."
- Proof patterns
 - Direct proof
 - Proof by contraposition
 - Proof by contradiction
- Proofs about sets

Implications: reasoning in the absence of facts

- Reasoning:
 - It rained last night (fact); the grass is wet ("deduced").
- Reasoning in the absence of facts:
 - IF it rained last night, THEN the grass is wet
- We like to prove such statements even though, at this moment, it is not much use
 - Later, you may learn that it rained last night and infer the grass is wet
- More relevant example from CS:

IF we can quickly find the largest friend-clique in a friendship network,

THEN we can quickly determine how to assign non-conflicting frequencies to radio stations using a minimum number of frequencies

Implications, cont'd

- Mathematical example, quadratic formula:
- IF $ax^2 + bx + c = 0$ AND $a \neq 0$, THEN

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 or $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Proving an implication

- IF x and y are rational, THEN x + y is rational
 - What are the predicates p and q?
 - p = x and y are rational q = x + y is rational
 - Formally, we write this as

$$\forall (x, y) \in \mathbb{Q}^2 : (x + y) \in \mathbb{Q}$$

$$-$$
 i.e., $P(x, y) = (x + y) \in \mathbb{Q}$

- Proof:
 - We must show that the row p = T, q = F cannot happen
 - Let's see what happens if p = T, i.e., $(x, y) \in \mathbb{Q}^2$

$$x = \frac{a}{b}$$
, $y = \frac{c}{d}$, where $a, c \in \mathbb{Z}$ and $b, d \in \mathbb{N}$

• What is
$$x + y$$
?

$$x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$
. Is that number rational?
- Yes, $ad + bc \in \mathbb{Z}$, $bd \in \mathbb{N}$

• i.e., q = T (the row p = T, q = F cannot happen!)

 p	q	$p \to q$
\mathbf{F}	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

QED.

1

Template for direct proof of an implication $p \rightarrow q$ (1) Renselaer

- *Proof.* We prove the implication using a direct proof. ٠
 - 1. Start by assuming that the statement claimed in p is T
 - 2. Restate your assumption in mathematical terms
 - 3. Use mathematical and logical derivations to relate your assumption to q
 - Argue that you have shown that q must be T 4.
 - 5. End by concluding that q is T

Formal proof example

- *Theorem:* If $x, y \in \mathbb{Q}$, then $x + y \in \mathbb{Q}$
- *Proof*. We prove the theorem using a direct proof.
 - 1. Assume that $x, y \in \mathbb{Q}$, that is x and y are rational
 - 2. Then there are integers a, c and natural numbers b, d such that x = a/b and y = c/d
 - (because this is what it means for x and y to be rational)
 - 3. Then x + y = (ad + bc)/bd
 - (high-school algebra)
 - 4. Since $ad + bc \in \mathbb{Z}$ and $bd \in \mathbb{N}$, (ad + bc)/bd is rational
 - 5. Thus, we conclude (from steps 3 and 4) that $x + y \in \mathbb{Q}$

A proof is a mathematical essay

- A proof must be well written
 - The goal of a proof is to convince a reader of a theorem
 - A badly written proof that leaves a reader with some doubts has failed

Steps for Writing Readable Proofs

- **1.** State your strategy.
 - Start with proof type.
 - Structure long proofs into parts and tie up the parts at the end.
 - Readers must have no doubts.

2. The proof should have a logical flow.

- It is difficult to follow movies that jump between story lines or back and forth in time.
- A reader follows a proof linearly, from beginning to end.

3. Keep it simple.

- Make the idea at the heart of your proof clear.
- Avoid excessive symbols and unnecessary notation.

4. Justify your steps.

- The reader must have no doubts.
- Avoid phrases like "It's obvious that . . . " If it is so obvious, explain.
- 5. End your proof. Explain why what you set out to show is true.
- 6. Read your proof. Finally, check correctness; edit; simplify

Example: direct proof

- Theorem: Let x be any real number, i.e., $x \in \mathbb{R}$. IF $4^x 1$ is divisible by 3, THEN $4^{x+1} 1$ is divisible by 3.
- What are the predicates *p* and *q*?

 $p = 4^{x} - 1$ is divisible by 3 $q = 4^{x+1} - 1$ is divisible by 3

Example: direct proof

- Theorem: Let x be any real number, i.e., $x \in \mathbb{R}$. IF $4^x 1$ is divisible by 3, THEN $4^{x+1} 1$ is divisible by 3.
- *Proof*: We prove the claim using a direct proof.
 - 1. Assume that p is T, that is $4^x 1$ is divisible by 3.
 - 2. This means that $4^x 1 = 3k$ for an integer k, or that $4^x = 3k + 1$
 - 3. Observe that $4^{x+1} = 4 \times 4^x$. Using $4^x = 3k + 1$, $4^{x+1} = 4(3k + 1) = 12k + 4$
 - 4. Therefore

$$4^{x+1} - 1 = 12k + 3$$

= 3(4k + 1)

is a multiple of 3 (4k + 1 is an integer)

- 5. Since $4^{x+1} 1$ is a multiple of 3, we have shown that $4^{x+1} 1$ is divisible by 3
- 6. Therefore, the statement claimed in q is T
- **Question:** Is $4^x 1$ divisible by 3?

We made no assumptions about *x*!

- P(x): "IF $4^x 1$ is divisible by 3, THEN $4^{x+1} 1$ is divisible by 3"
- Since we made no assumptions about *x*, we proved:

$$\forall x \in \mathbb{R} : P(x)$$

- Exercise:
- *Prove*: For all pairs of odd integers m, n, the sum m + n is an even integer

 $1. \quad m = 2k + 1 \text{ for some } k \in \mathbb{Z}$

2. n = 2p + 1 for some $p \in \mathbb{Z}$

3. m + n = 2(p + k + 1)

4. Why is this sufficient proof?

• IF $x^2 > y^2$, THEN x > y- What are p and q?

$$p = (x^2 > y^2)$$
$$q = (x > y)$$

- Is this statement true or false?
- False!

• Counter example:
$$x = -8$$
, $y = -4$
 $p: 64 = x^2 > y^2 = 16$
 $q: -8 = x < y = -4$

- The row p = T, q = F has occurred!
- A single counter-example suffices to disprove an implication

Contraposition

- IF x² is even, THEN x is even
 What are p and q?
- $p = (x^2 \text{ is even})$ q = (x is even)
- *Proof*: We must show that the row *p* = T, *q* = F can't happen
- Let us see what happens if q = F
 - If x is odd, x = 2k + 1
 - Then $x^2 = 4k^2 + 4k + 1$
 - i.e., $x^2 = 2(2k^2 + 2k) + 1$ (x^2 is odd!)
- That means p is F
 - The row p = T, q = F cannot occur!
 - The implication is proved

Template: Contraposition Proof of an Implication $p \rightarrow q$

- *Proof*. We prove the theorem using contraposition.
 - 1. Start by assuming that the statement claimed in q is F.
 - 2. Restate your assumption in mathematical terms.
 - 3. Use mathematical and logical derivations to relate your assumption to *p*.
 - 4. Argue that you have shown that p must be F.
 - 5. End by concluding that p is F.

Example Contraposition Proof of an Implication $p \rightarrow q$

- *Theorem*: If x^2 is even, then x is even.
- Proof:
 - 1. Assume *x* is odd
 - 2. Then x = 2k + 1 for some $k \in \mathbb{Z}$ (definition of what it means for x to be odd)
 - 3. Then $x^2 = 2(2k^2 + 2k) + 1$ (high-school algebra)
 - 4. Which means x^2 is 1 plus a multiple of 2, and hence is odd
 - 5. We have shown that x^2 is odd, concluding the proof. QED.
- **Exercise**: Prove: IF x is irrational, THEN \sqrt{x} is irrational

Equivalence: ... IF AND ONLY IF ...

- p and q are equivalent means they are either both T or both F
- We write (*p* IF AND ONLY IF *q*) or ($p \leftrightarrow q$)
- You are a US citizen if and only if you were born on US soil
 - (This is not an equivalence according to current US law)
- Sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$
- Integer x is divisible by 3 if and only if x^2 is divisible by 3
- To prove $p \leftrightarrow q$ is T, you must prove:
 - Row p = T, q = F cannot occur: that is $p \rightarrow q$
 - Row p = F, q = T cannot occur: that is $q \rightarrow p$

p	q	$p \leftrightarrow q$
\mathbf{F}	F	Т
\mathbf{F}	Т	\mathbf{F}
Т	F	\mathbf{F}
Т	Т	Т

Integer x is divisible by 3 IF AND ONLY IF x^2 is divisible by 3

• What are *p* and *q*?

p = (x is divisible by 3) $q = (x^2 \text{ is divisible by 3})$

- *Proof.* The proof has two main steps (one for each implication):
- 1. Prove $p \rightarrow q$: IF x is divisible by 3 THEN x^2 is divisible by 3
 - We use a direct proof
 - Assume x is divisible by 3, so x = 3k for some $k \in \mathbb{Z}$
 - Then $x^2 = 9k^2$
 - i.e., $x^2 = 3 \times (3k^2)$, so it is divisible by 3

Integer x is divisible by 3 IF AND ONLY IF x^2 is divisible by 3

• What are *p* and *q*?

p = (x is divisible by 3) $q = (x^2 \text{ is divisible by 3})$

- *Proof*. The proof has two main steps (one for each implication):
- 2. Prove $q \rightarrow p$: IF x^2 is divisible by 3 THEN x is divisible by 3
 - We use contraposition. Assume x is **not** divisible by 3. Then there are 2 cases:
 - Case 1: x = 3k + 1
 - i.e., $x^2 = 9k^2 + 6k + 1 = 3k(3k + 2) + 1$
 - (still not a multiple of 3)
 - Case 2: x = 3k + 2
 - i.e., $x^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$
 - (still not a multiple of 3)
 - In both cases x^2 is not divisible by 3. QED.

...IF AND ONLY IF... Proofs

- IF AND ONLY IF proof contains the proofs of *two* implications
- Each implication may need to be proved differently

Contradictions

• Example contradictions

1 = 2 $n^{2} < n \text{ (for integer } n\text{)}$ |x| < x $p \land \neg p$

- Contradictions are **FISHY**. In mathematics you cannot derive contradictions.
- **Principle of Contradiction:** If you derive something **FISHY**, something's wrong with your derivation.

Contradictions, cont'd

- Look at this argument
 - 1. Assume $\sqrt{2}$ is rational.
 - 2. This means $\sqrt{2} = a_*/b_*$
 - Here b_* is the smallest denominator (well-ordering)
 - 3. That is, a_* and b_* cannot have 2 as a common factor
 - 4. We have: $2 = a_*^2/b_*^2$
 - i.e., $a_*^2 = 2b_*^2$ is even
 - i.e., $a_* = 2k$ is even [we proved this]
 - 5. Therefore, $4k^2 = 2b_*^2$, so $b_*^2 = 2k^2$
 - Hence b_* is even
 - 6. Hence, a_* and b_* are both divisible by 2. (FISHY)
- What could possibly be wrong with this derivation? It must be step 1

Template: Proof by Contradiction *p* is T

- You can use contradiction to prove *anything*
 - Start by assuming it's false.
- Powerful because the starting assumption gives you something to work with
- Proof.
 - 1. To derive a contradiction, assume that p is F
 - 2. Restate your assumption in mathematical terms
 - 3. Derive a **FISHY** statement a contradiction that must be false
 - 4. Therefore, the assumption in step 1 is false, and p is T

Template: Proof by Contradiction *p* is T, cont'd

- **DANGER**: Be especially careful in contradiction proofs! Any small mistake can easily lead to a contradiction and a false sense that you proved your claim.
- **Exercise**: Let a, b be integers. Prove that $a^2 4b \neq 2$.

Proofs about Sets

• Venn diagram proofs:

 $- E.g., A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- Formal proofs:
 - One set is a subset of another, $A \subseteq B$:
 - $x \in A \rightarrow x \in B$
 - One set is a not a subset of another, $A \not\subseteq B$:
 - $\exists x \in A : x \notin B$
 - Two sets are equal, A = B:
 - $x \in A \leftrightarrow x \in B$

- $A = \{multiples of 2\}$
- $B = \{multiples of 9\}$
- $C = \{multiples of 6\}$
- Prove that $A \cap B \subseteq C$
- What is common about the elements of A and B?

Picking a Proof Template

- Clear how result follows from assumption
 Direct proof
- Clear that if result is false, the assumption is false
 - Contraposition
- Prove something exists
 - Show an example
- Prove something does not exist
 - Contradiction
- Prove something is unique
 - Contradiction
- Prove something is *not true* for *all* objects
 - Show a counter-example
- Show something is *true* for *all* objects
 - Show for general object

Practice

• Exercise 4.8