Making Precise Statements

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 3

Today

- Making a precise statement: the proposition
- Complicated precise statements: the compound proposition
 - Truth tables
- Claims about many things
 - Predicates
 - Quantifiers
 - Proofs with quantifiers

🕲 Rensselaer

- Precise statements
 - 2 + 2 = 4 (True)
 - 2 + 2 = 5 (False)
- Not-so-precise statements
 - You can have ice cream or cake
 - Can I have both?
 - Exclusive or Inclusive Or?
 - If pigs can fly, then you get an A
 - Pigs can't fly, so do you still get an A?
 - False \rightarrow Anything
 - There is a room for every student
 - Do all students share the same room?
 - Does each student get an individual room?

Why is ambiguity bad?

- We want to **prove** things!
- Need to know when and if computers implement correct algorithms!
- Beware of ambiguous statements
 - Natural language is ambiguous by design
 - That's why we have math

Propositions are True (T) or False (F)

• Propositions are represented using lowercase letters

 p,q,r,s,\dots

- Piglet can fly
 - False
- You got an A
 - Hmmm.. T?
- 4² is even
 - True
- There are actually many types of logics out there
 - E.g., fuzzy logic includes probabilities
 - There are logics that also include a third value, Maybe/Don't know
 - We are only going to focus on classical logic
 - If something is not T, then it must be F

Compound Statements

- Piglet can fly OR 4² is even
 True
- Piglet can fly \rightarrow You got an A
 - True
 - False \rightarrow anything
- Piglet cannot fly \rightarrow You got an A
 - ?
 - Depends on the value of "You got an A"

Notation

- Conjunction $p \land q$ p AND q
- Disjunction $p \lor q$ $p \mathsf{OR} q$
- Negation
 ¬p
 NOT p
- Implication

$$p \rightarrow q$$

 p IMPLIES q

Negation

- The negation $\neg p$ is F when p is T
- The negation $\neg p$ is T when p is F
- Piglet can fly is F
- ¬(Piglet can fly) is T
- Notice how English quickly becomes redundant/ambiguous
 - Piglet cannot fly
 - It is not the case that Piglet can fly

Conjunction

- Both p and q must be T for p ∧ q to be T
 Otherwise p ∧ q is F
- Piglet can fly AND You got an A
 - F(alse)
 - (Piglet can fly) \land (You got an A) = F
- Piglet cannot fly AND You got an A
 - ?
 - Depends on the value of (You got an A)

Disjunction

- Both p and q must be F for p ∨ q to be F
 Otherwise it is T
- (Piglet cannot fly) V (You got an A)
 - Depends on the value of (You got an A)
- ¬(Piglet cannot fly) ∨ (You got an A) = T
 - Why?
 - Because ¬(Piglet cannot fly) = T
- (You can have cake) OR (You can have ice-cream)
 - Can you have both?
 - Yes, this is Inclusive OR
 - Exclusive OR is true when exactly one is true

Truth Table

Rensselaer

- Essentially a function that maps the value of p and q to the statement we're trying to make
- Defines the meaning of these operators

p	q	$\neg p$	$p \wedge q$	$p \lor q$
F	\mathbf{F}	Т	F	\mathbf{F}
\mathbf{F}	Т	Т	\mathbf{F}	Т
Т	\mathbf{F}	\mathbf{F}	F	Т
Т	Т	F	Т	Т

• Can also use this in the case of any logic formula

Implication

- Piglet can fly \rightarrow You got an A
 - IF Piglet can fly THEN You got an A
- IF n^2 is even, THEN n is even
 - Is every even square the square of an even number?
- IF (it rained last night) THEN (the grass is wet)

p = (it rained last night)

q = (the grass is wet)

- In logic notation: $p \rightarrow q$
- What does it mean for this common-sense implication to be true?
 - We have built a model of the world
 - Whenever we observe *p*, we can make conclusions about *q*
 - If we don't observe p, our model tells us nothing about q
 - If only observe q, can't conclude anything about p
- What can you conclude? Did it rain last night? Is the grass wet?

- IF (it rained last night) THEN (the grass is wet)
 - What does it *mean* for this common-sense implication to be true?
 - What can you conclude? Did it rain last night? Is the grass wet?
- Suppose you look at the weather report for last night, and it indeed rained
- Is the grass wet?
 - YES
- For a true implication $p \rightarrow q$, you can conclude q = T when p = T

- IF (it rained last night) THEN (the grass is wet)
 - What does it mean for this common-sense implication to be true?
 - What can you conclude? Did it rain last night? Is the grass wet?
- Suppose you see wet grass in the morning
 - Did it rain?
 - Can't tell
- For a true implication $p \rightarrow q$, when q = T you **cannot** conclude p = T

- IF (it rained last night) THEN (the grass is wet)
 - What does it mean for this common-sense implication to be true?
 - What can you conclude? Did it rain last night? Is the grass wet?
- Suppose you see dry grass in the morning
 - Did it rain?
 - No
 - Our model of the world assumes the grass MUST BE wet if it rained
- For a true implication $p \rightarrow q$, when q is F, you can conclude p is F

- IF (it rained last night) THEN (the grass is wet)
 - What does it mean for this common-sense implication to be true?
 - What can you conclude? Did it rain last night? Is the grass wet?
- Suppose you see no rain in the weather report
 - Is the grass wet?
 - Can't tell
- For a true implication $p \rightarrow q$, when p is F, you cannot conclude q is F

For a **true** implication $p \rightarrow q$:

When p is T, you can conclude that q is T.

When q is T, you **cannot** conclude p is T.

When p is F, you **cannot** conclude q is F.

When q is F, you can conclude p is F.

Falsifying IF (it rained last night) THEN (the grass is wet)

- You are a scientist collecting data to *verify* that the implication is valid (true)
- One night it rained. That morning the grass was dry.
 - New information
- What do you think about the implication now?
- This is a *falsifying scenario*
 - IF (it rains) THEN (the grass is wet)
 - False
- Our model of the world was wrong
- p → q is only F when p = T and q = F
 In all other cases, p → q = T

Implication is EXTREMELY important

- All these are $p \rightarrow q$ (p = "it rained last night" and q = "the grass is wet"):
 - If it rained last night then the grass is wet (IF p THEN q)
 - It rained last night implies the grass is wet (p IMPLIES q)
 - It rained last night only if the grass is wet (p ONLY IF q)
 - The grass is wet if it rained last night ($q \mid F p$)
 - The grass is wet whenever it rains (q WHENEVER p)
- Notice that there are multiple English descriptions the same logical statement

p	q	$\neg p$	$p \wedge q$	$p \lor q$	p ightarrow q
\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	Т
\mathbf{F}	Т	Т	\mathbf{F}	Т	Т
Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}
Т	Т	\mathbf{F}	Т	Т	Т

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \lor q) \to r$
 - where p = you are hungry, q = you are thirsty, r = you visit the cafeteria
- You are thirsty: q is T.
 - There are two rows where q is T and $(p \lor q) \rightarrow r$ is T
 - In both cases r is T
 - (you visit the cafeteria)

	р	q	r	$(p \lor q)$	$(p \lor q) ightarrow r$
1.	F	F	F	F	Т
2.	F	F	Т	F	Т
3.	F	Т	F	Т	F
4.	F	Т	Т	Т	Т
5.	Т	F	F	Т	F
6.	Т	F	Т	Т	Т
7.	Т	Т	F	Т	F
8.	Т	Т	Т	Т	Т

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \lor q) \to r$
 - where p = you are hungry, q = you are thirsty, r = you visit the cafeteria
- You are thirsty: q is T.
 - There are two rows where q is T and $(p \lor q) \rightarrow r$ is T
 - In both cases r is T
 - (you visit the cafeteria)

	p	q	r	$(p \lor q)$	$(p \lor q) \rightarrow r$
1.	F	F	F	F	Т
2.	F	F	Т	F	Т
3.	F	Т	F	Т	F
4.	F	Т	Т	Т	Т
5.	Т	F	F	Т	F
6.	Т	F	Т	Т	Т
7.	Т	Т	F	Т	F
8.	Т	Т	Т	Т	Т

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \lor q) \to r$
 - where p = you are hungry, q = you are thirsty, r = you visit the cafeteria
- You are thirsty: q is T.
 - There are two rows where q is T and $(p \lor q) \rightarrow r$ is T
 - In both cases r is T
 (you visit the cafeteria)
- You did visit the cafeteria: r is T.
 - Are you hungry?
 - We don't know.
 - Are you thirsty?
 - We don't know.
 - (You accompanied your hungry friend)

	р	q	r	$(p \lor q)$	$(p \lor q) \to r$
1.	F	F	F	F	Т
2.	F	F	Т	F	т
3.	F	Т	F	Т	F
4.	F	Т	Т	Т	Т
5.	Т	F	F	Т	F
6.	Т	F	Т	Т	Т
7.	Т	Т	F	Т	F
8.	Т	Т	Т	Т	Т

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \lor q) \to r$
 - where p = you are hungry, q = you are thirsty, r = you visit the cafeteria
- You are thirsty: q is T. In both cases r is T (you visit the cafeteria)
- You did visit the cafeteria: r is T.
 - Are you hungry? We don't know.
 - Are you thirsty? We don't know.
 - (You accompanied your hungry friend)

	р	q	r	$(p \lor q)$	$(p \lor q) ightarrow r$
1.	F	F	F	F	Т
2.	F	F	Т	F	Т
3.	F	Т	F	Т	F
4.	F	Т	Т	Т	Т
5.	Т	F	F	Т	F
6.	Т	F	Т	Т	Т
7.	Т	Т	F	Т	F
8.	Т	Т	Т	Т	Т

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \lor q) \to r$
 - where p = you are hungry, q = you are thirsty, r = you visit the cafeteria
- You are thirsty: q is T.
 - There are two rows where q is T and $(p \lor q) \rightarrow r$ is T
 - In both cases r is T
 (you visit the cafeteria)
- You did visit the cafeteria: r is T.
 - Are you hungry? We don't know.
 - Are you thirsty? We don't know.
 - (You accompanied your hungry friend)
- You did not visit the cafeteria: r is F
 - p and q are both F
 - (You are neither hungry nor thirsty.)

	p	q	r	$(p \lor q)$	$(p \lor q) ightarrow r$
1.	F	F	F	F	Т
2.	F	F	Т	F	Т
3.	F	Т	F	Т	F
4.	F	Т	Т	Т	Т
5.	Т	F	F	Т	F
6.	Т	F	Т	Т	Т
7.	Т	Т	F	Т	F
8.	Т	Т	Т	Т	Т

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \lor q) \to r$
 - where p = you are hungry, q = you are thirsty, r = you visit the cafeteria
- You are thirsty: q is T.
 - There are two rows where q is T and $(p \lor q) \rightarrow r$ is T
 - In both cases r is T
 (you visit the cafeteria)
- You did visit the cafeteria: r is T.
 - Are you hungry? We don't know.
 - Are you thirsty? We don't know.
 - (You accompanied your hungry friend)
- You did not visit the cafeteria: r is F
 - p and q are both F
 - (You are neither hungry nor thirsty.)

	p	q	r	$(p \lor q)$	$(p \lor q) \rightarrow r$
1.	F	F	F	F	Т
2.	F	F	Т	F	Т
3.	F	Т	F	Т	F
4.	F	Т	Т	Т	Т
5.	Т	F	F	Т	F
6.	Т	F	Т	Т	Т
7.	Т	Т	F	Т	F
8.	Т	Т	Т	Т	Т

Equivalent Compound Statements

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$\neg p \lor q$	$q \rightarrow p$
F	\mathbf{F}	Т	Т	Т	Т
\mathbf{F}	Т	Т	Т	Т	\mathbf{F}
Т	\mathbf{F}	\mathbf{F}	F	\mathbf{F}	Т
Т	Т	Т	Т	Т	Т
		rains \rightarrow wet grass	dry grass \rightarrow no rain	no rain \lor wet grass	wet grass \rightarrow rain
		<i>n</i> –	$a \stackrel{\text{eqv}}{=} \neg a \rightarrow \neg n \stackrel{\text{eq}}{=}$	$\sum_{n=1}^{\infty} n \vee a$	

• Order is very important!

- In particular, $p \rightarrow q$ and $q \rightarrow p$ **do not** mean the same thing!
- IF I'm dead, THEN my eyes are closed vs. IF my eyes are closed, THEN I'm dead

Proving an Implication: Reasoning without Facts (1) Rensselaer

• IF $(n^2 \text{ is even})$ THEN (n is even)

	p	q	$p \to q$
$p: n^2$ is even	\mathbf{F}	\mathbf{F}	Т
q: n is even	\mathbf{F}	Т	Т
$p \rightarrow q$	Т	F	F
	Т	Т	T

- What is *n*? How to prove?
 - We must show that the highlighted row *cannot* occur.
 - i.e., n is odd cannot be the case
- In this row, q is F: n = 2k + 1
- $n^2 = (2k+1)^2 = 2(2k^2+2k)+1$
- p cannot be T. This row cannot happen: $p \rightarrow q$ is always T

Quantifiers

- <u>Every</u> person has a soulmate
- John has <u>some</u> gray hair
- Everyone has some gray hair
- <u>Any map can be colored with 4 colors with adjacent countries having different</u> colors
- <u>Every</u> even integer n > 2 is the sum of 2 primes (Goldbach conjecture, 1742)
 - Still not proven, but holds for numbers up to at least 4×10^{18}
- <u>Someone</u> broke this faucet
- There exists a creature with blue eyes and blonde hair
- All cars have four wheels

Quantifiers, etc.

- These statements are more complex because of *quantifiers*:
 EVERY; A; SOME; ANY; ALL; THERE EXISTS
- Compare:
 - My Tesla has four wheels
 - ALL cars have four wheels

Predicates are like functions

- ALL cars have four wheels
- Define predicate P(c) and its domain
- $C = \{c \mid c \text{ is a car}\}$
 - set of cars
- P(c) = "car c has four wheels"
- "for all c in C, the statement P(c) is true."

 $\forall c \in C : P(c)$

- (\forall means "for all")

• Predicates

P(c) = "car c has four wheels"

- Input: parameter $c \in C$
- Output: **statement** P(c)
- Example: P(Jen's Car) = ``car Jen's Car has four wheels'' $\forall c \in C: P(c)$
 - Meaning: for all $c \in C$, the statement P(c) is T
- Functions:

$$f(x) = x^2$$

- Input: parameter $x \in \mathbb{R}$
- Output: **value** f(x)
- Example: f(5) = 25

 $\forall x \in \mathbb{R}, f(x) \ge 0$

- Meaning: for all $x \in \mathbb{R}$, f(x) is ≥ 0

- There EXISTS a creature with blue eyes and blonde hair
- Define predicate Q(a) and its *domain*

 $A = \{a | a \text{ is a creature}\}$

set of creatures

Q(a) = "a has blue eyes and blonde hair"

• "there exists *a* in *A* for which the statement Q(a) is true." $\exists a \in A: Q(a)$

∃ means "there exists"

- G(a) = a has blue eyes"
- H(a) = a has blonde hair"
- $\exists a \in A: (G(a) \land H(a))$

Example, cont'd

- G(a) = a has blue eyes"
- H(a) = a has blonde hair"
- $\exists a \in A: (G(a) \land H(a))$
 - compound predicate
- When the domain is understood, we don't need to keep repeating it
 - We write

 $\exists a: Q(a)$

– or

 $\exists a : (G(a) \wedge H(a))$

Negative Quantifiers

- IT IS NOT THE CASE THAT (There EXISTS a creature with blue eyes and blonde hair)
- Same as: "All creatures don't have blue eyes and blonde hair" ¬(∃a ∈ A: Q(a)) ≡ ∀a ∈ A: ¬Q(a)

 $(\equiv$ means they are equivalent/same)

- IT IS NOT THE CASE THAT (All cars have four wheels)
- Same as: "There is a car which does not have four wheels" $\neg (\forall c \in C: P(c)) \equiv \exists c \in C: \neg P(c)$
- When you take the negation inside the quantifier and negate the predicate, you must switch quantifiers:

$$\exists \rightarrow \forall$$
$$\forall \rightarrow \exists$$

There is a soulmate for EVERY person

• Define domains and a predicate

 $A = \{a | a \text{ is a person}\}$

- P(a, b) = "Person a has as a soul mate person b"
- There is some special person b who is a soul mate to every person a $\exists b: (\forall a: P(a, b))$
- For every person a, they have their own personal soul mate $b \forall a: (\exists b: P(a, b))$
- When quantifiers are mixed, the order in which they appear is important for the meaning
 - Order generally cannot be switched

Proofs with quantifiers

- Claim 1. $\forall n > 2$: if *n* is even, then *n* is a sum of two primes. (Goldbach, 1742)
- Claim 2. $\exists (a, b, c) \in \mathbb{N}^3$: $a^2 + b^2 = c^2$ - where $(a, b, c) \in \mathbb{N}^3$ means triples of natural numbers
- Claim 3. $\neg \exists (a, b, c) \in \mathbb{N}^3$: $a^3 + b^3 = c^3$
- Claim 4. $\forall (a, b, c) \in \mathbb{N}^3$: $a^3 + b^3 = c^3$
- Think about what it would take to prove these claims