Making Precise Statements

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 3

Today

- Making a precise statement: the proposition
- Complicated precise statements: the compound proposition
- Truth tables
- Claims about many things
- Predicates
- Quantifiers
- Proofs with quantifiers
- Precise statements
$2+2=4$ (True)
$2+2=5$ (False)
- Not-so-precise statements
- You can have ice cream or cake
- Can I have both?
- Exclusive or Inclusive Or?
- If pigs can fly, then you get an A
- Pigs can't fly, so do you still get an A?
- False \rightarrow Anything
- There is a room for every student
- Do all students share the same room?
- Does each student get an individual room?

Why is ambiguity bad?

- We want to prove things!
- Need to know when and if computers implement correct algorithms!
- Beware of ambiguous statements
- Natural language is ambiguous by design
- That's why we have math

Propositions are True (T) or False (F)

- Propositions are represented using lowercase letters

$$
p, q, r, s, \ldots
$$

- Piglet can fly
- False
- You got an A
- Hmmm.. T?
- 4^{2} is even
- True
- There are actually many types of logics out there
- E.g., fuzzy logic includes probabilities
- There are logics that also include a third value, Maybe/Don't know
- We are only going to focus on classical logic
- If something is not T, then it must be F

Compound Statements

- Piglet can fly OR 4^{2} is even
- True
- Piglet can fly \rightarrow You got an A
- True
- False \rightarrow anything
- Piglet cannot fly \rightarrow You got an A
- ?
- Depends on the value of "You got an A"

Notation

- Conjunction

$$
\begin{aligned}
& p \wedge q \\
& p \text { AND } q
\end{aligned}
$$

- Disjunction

$$
p \vee q
$$

p OR q

- Negation
$\neg p$
NOT p
- Implication
$p \rightarrow q$
p IMPLIES q
- The negation $\neg p$ is F when p is T
- The negation $\neg p$ is T when p is F
- Piglet can fly is F
- \neg (Piglet can fly) is T
- Notice how English quickly becomes redundant/ambiguous
- Piglet cannot fly
- It is not the case that Piglet can fly

Conjunction

- Both p and q must be T for $p \wedge q$ to be T
- Otherwise $p \wedge q$ is F
- Piglet can fly AND You got an A
- F(alse)
$-($ Piglet can fly) $\wedge($ You got an $A)=F$
- Piglet cannot fly AND You got an A
- ?
- Depends on the value of (You got an A)

Disjunction

- Both p and q must be F for $p \vee q$ to be F
- Otherwise it is T
- (Piglet cannot fly) V (You got an A)
- Depends on the value of (You got an A)
- \neg (Piglet cannot fly) \vee (You got an $A)=T$
- Why?
- Because \neg (Piglet cannot fly) $=T$
- (You can have cake) OR (You can have ice-cream)
- Can you have both?
- Yes, this is Inclusive OR
- Exclusive OR is true when exactly one is true

Truth Table

- Essentially a function that maps the value of p and q to the statement we're trying to make
- Defines the meaning of these operators

p	q	$\neg p$	$p \wedge q$	$p \vee q$
F	F	T	F	F
F	T	T	F	T
T	F	F	F	T
T	T	F	T	T

- Can also use this in the case of any logic formula

Implication

- Piglet can fly \rightarrow You got an A
- IF Piglet can fly THEN You got an A
- IF n^{2} is even, THEN n is even
- Is every even square the square of an even number?
- IF (it rained last night) THEN (the grass is wet)

$$
\begin{aligned}
& p=\text { (it rained last night }) \\
& q=\text { (the grass is wet) }
\end{aligned}
$$

- In logic notation: $p \rightarrow q$
- What does it mean for this common-sense implication to be true?
- We have built a model of the world
- Whenever we observe p, we can make conclusions about q
- If we don't observe p, our model tells us nothing about q
- If only observe q, can't conclude anything about p
- What can you conclude? Did it rain last night? Is the grass wet?

Implication, cont'd

- IF (it rained last night) THEN (the grass is wet)
- What does it mean for this common-sense implication to be true?
- What can you conclude? Did it rain last night? Is the grass wet?
- Suppose you look at the weather report for last night, and it indeed rained
- Is the grass wet?
- YES
- For a true implication $p \rightarrow q$, you can conclude $q=T$ when $p=T$

Implication, cont'd

- IF (it rained last night) THEN (the grass is wet)
- What does it mean for this common-sense implication to be true?
- What can you conclude? Did it rain last night? Is the grass wet?
- Suppose you see wet grass in the morning
- Did it rain?
- Can't tell
- For a true implication $p \rightarrow q$, when $q=T$ you cannot conclude $p=T$

Implication, cont'd

- IF (it rained last night) THEN (the grass is wet)
- What does it mean for this common-sense implication to be true?
- What can you conclude? Did it rain last night? Is the grass wet?
- Suppose you see dry grass in the morning
- Did it rain?
- No
- Our model of the world assumes the grass MUST BE wet if it rained
- For a true implication $p \rightarrow q$, when q is F, you can conclude p is F

Implication, cont'd

- IF (it rained last night) THEN (the grass is wet)
- What does it mean for this common-sense implication to be true?
- What can you conclude? Did it rain last night? Is the grass wet?
- Suppose you see no rain in the weather report
- Is the grass wet?
- Can't tell
- For a true implication $p \rightarrow q$, when p is F , you cannot conclude q is F

Implication: inferences when new information comes

For a true implication $p \rightarrow q$:
When p is T , you can conclude that q is T .
When q is T , you cannot conclude p is T .
When p is F , you cannot conclude q is F .
When q is F , you can conclude p is F .

Falsifying IF (it rained last night) THEN (the grass is wet)

- You are a scientist collecting data to verify that the implication is valid (true)
- One night it rained. That morning the grass was dry.
- New information
- What do you think about the implication now?
- This is a falsifying scenario
- IF (it rains) THEN (the grass is wet)
- False
- Our model of the world was wrong
- $p \rightarrow q$ is only F when $p=T$ and $q=F$
- In all other cases, $p \rightarrow q=T$

Implication is EXTREMELY important

- All these are $p \rightarrow q$ ($p=$ "it rained last night" and $q=$ "the grass is wet"):
- If it rained last night then the grass is wet (IF p THEN q)
- It rained last night implies the grass is wet (p IMPLIES q)
- It rained last night only if the grass is wet (p ONLY IF q)
- The grass is wet if it rained last night (q IF p)
- The grass is wet whenever it rains (q WHENEVER p)
- Notice that there are multiple English descriptions the same logical statement

Implication Truth Table

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$\boldsymbol{p} \rightarrow \boldsymbol{q}$
F	F	T	F	F	T
F	T	T	F	T	T
T	F	F	F	T	F
T	T	F	T	T	T

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \vee q) \rightarrow r$
- where $p=$ you are hungry, $q=$ you are thirsty, $r=$ you visit the cafeteria
- You are thirsty: q is T.
- There are two rows where q is T and $(p \vee q) \rightarrow r$ is T
- In both cases r is T (you visit the cafeteria)

	p	q	r	$(p \vee q)$	$(\boldsymbol{p} \vee \boldsymbol{q}) \rightarrow \boldsymbol{r}$
1.	F	F	F	F	T
2.	F	F	T	F	T
3.	F	T	F	T	F
4.	F	T	T	T	T
5.	T	F	F	T	F
6.	T	F	T	T	T
7.	T	T	F	T	F
8.	T	T	T	T	T

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \vee q) \rightarrow r$
- where $p=$ you are hungry, $q=$ you are thirsty, $r=$ you visit the cafeteria
- You are thirsty: q is T.
- There are two rows where q is T and $(p \vee q) \rightarrow r$ is T
- In both cases r is T (you visit the cafeteria)

	p	q	r	$(p \vee q)$	$(\boldsymbol{p} \vee \boldsymbol{q}) \rightarrow \boldsymbol{r}$
1.	F	F	F	F	T
2.	F	F	T	F	T
3.	F	T	F	T	F
4.	F	T	T	T	T
5.	T	F	F	T	F
6.	T	F	T	T	T
7.	T	T	F	T	F
8.	T	T	T	T	T

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \vee q) \rightarrow r$
- where $p=$ you are hungry, $q=$ you are thirsty, $r=$ you visit the cafeteria
- You are thirsty: q is T.
- There are two rows where q is T and $(p \vee q) \rightarrow r$ is T
- In both cases r is T (you visit the cafeteria)
- You did visit the cafeteria: r is T.
- Are you hungry?
- We don't know.
- Are you thirsty?
- We don't know.
- (You accompanied your hungry friend)

	p	q	r	$(p \vee q)$	$(\boldsymbol{p} \vee \boldsymbol{q}) \rightarrow \boldsymbol{r}$
1.	F	F	F	F	T
2.	F	F	T	F	T
3.	F	T	F	T	F
4.	F	T	T	T	T
5.	T	F	F	T	F
6.	T	F	T	T	T
7.	T	T	F	T	F
8.	T	T	T	T	T

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \vee q) \rightarrow r$
- where $p=$ you are hungry, $q=$ you are thirsty, $r=$ you visit the cafeteria
- You are thirsty: q is T . In both cases r is T (you visit the cafeteria)
- You did visit the cafeteria: r is T.
- Are you hungry? We don't know.
- Are you thirsty? We don't know.
- (You accompanied your hungry friend)

	p	q	r	$(p \vee q)$	$(\boldsymbol{p} \vee \boldsymbol{q}) \rightarrow \boldsymbol{r}$
1.	F	F	F	F	T
2.	F	F	T	F	T
3.	F	T	F	T	F
4.	F	T	T	T	T
5.	T	F	F	T	F
6.	T	F	T	T	T
7.	T	T	F	T	F
8.	T	T	T	T	T

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \vee q) \rightarrow r$
- where $p=$ you are hungry, $q=$ you are thirsty, $r=$ you visit the cafeteria
- You are thirsty: q is T.
- There are two rows where q is T and $(p \vee q) \rightarrow r$ is T
- In both cases r is T (you visit the cafeteria)
- You did visit the cafeteria: r is T.
- Are you hungry? We don't know.
- Are you thirsty? We don't know.
- (You accompanied your hungry friend)
- You did not visit the cafeteria: r is F
- p and q are both F
- (You are neither hungry nor thirsty.)

	p	q	r	$(p \vee q)$	$(\boldsymbol{p} \vee \boldsymbol{q}) \rightarrow \boldsymbol{r}$
1.	F	F	F	F	T
2.	F	F	T	F	T
3.	F	T	F	T	F
4.	F	T	T	T	T
5.	T	F	F	T	F
6.	T	F	T	T	T
7.	T	T	F	T	F
8.	T	T	T	T	T

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
- $(p \vee q) \rightarrow r$
- where $p=$ you are hungry, $q=$ you are thirsty, $r=$ you visit the cafeteria
- You are thirsty: q is T.
- There are two rows where q is T and $(p \vee q) \rightarrow r$ is T
- In both cases r is T (you visit the cafeteria)
- You did visit the cafeteria: r is T.
- Are you hungry? We don't know.
- Are you thirsty? We don't know.
- (You accompanied your hungry friend)
- You did not visit the cafeteria: r is F
- p and q are both F
- (You are neither hungry nor thirsty.)

	p	q	r	$(p \vee q)$	$(\boldsymbol{p} \vee \boldsymbol{q}) \rightarrow \boldsymbol{r}$
1.	F	F	F	F	T
2.	F	F	T	F	T
3.	F	T	F	T	F
4.	F	T	T	T	T
5.	T	F	F	T	F
6.	T	F	T	T	T
7.	T	T	F	T	F
8.	T	T	T	T	T

Equivalent Compound Statements

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$\neg p \vee q$	$q \rightarrow p$
F	F	T	T	T	T
F	T	T	T	T	F
T	F	F	F	F	
T	T	T	T	T	T
		rains \rightarrow wet grass	dry grass \rightarrow no rain	no rain \vee wet grass	wet grass \rightarrow rain
		$p \rightarrow q \stackrel{\text { eqv }}{=} \neg q \rightarrow \neg p \stackrel{\text { eqv }}{=} \neg p \vee q$			

- Order is very important!
- In particular, $p \rightarrow q$ and $q \rightarrow p$ do not mean the same thing!
- IF I'm dead, THEN my eyes are closed vs. IF my eyes are closed, THEN I'm dead

Proving an Implication: Reasoning without Facts

- IF (n^{2} is even) THEN (n is even)

$$
\begin{aligned}
& p: n^{2} \text { is even } \\
& q: n \text { is even } \\
& p \rightarrow q
\end{aligned}
$$

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

- What is n ? How to prove?
- We must show that the highlighted row cannot occur.
- i.e., n is odd cannot be the case
- In this row, q is $\mathrm{F}: n=2 k+1$
- $n^{2}=(2 k+1)^{2}=2\left(2 k^{2}+2 k\right)+1$
- p cannot be T . This row cannot happen: $p \rightarrow q$ is always T

Quantifiers

- Every person has a soulmate
- John has some gray hair
- Everyone has some gray hair
- Any map can be colored with 4 colors with adjacent countries having different colors
- Every even integer $n>2$ is the sum of 2 primes (Goldbach conjecture, 1742)
- Still not proven, but holds for numbers up to at least 4×10^{18}
- Someone broke this faucet
- There exists a creature with blue eyes and blonde hair
- All cars have four wheels

Quantifiers, etc.

- These statements are more complex because of quantifiers:
- EVERY; A; SOME; ANY; ALL; THERE EXISTS
- Compare:
- My Tesla has four wheels
- ALL cars have four wheels

Predicates are like functions

- ALL cars have four wheels
- Define predicate $P(c)$ and its domain
- $C=\{c \mid c$ is a car $\}$
- set of cars
- $P(c)=$ "car c has four wheels"
- "for all c in C, the statement $P(c)$ is true."

$$
\forall c \in C: P(c)
$$

- (\forall means "for all")

Predicates are like functions, cont'd

- Predicates

$$
P(c)=\text { "car } c \text { has four wheels" }
$$

- Input: parameter $c \in C$
- Output: statement $P(c)$
- Example: P(Jen's Car) = "car Jen's Car has four wheels"

$$
\forall c \in C: P(c)
$$

- Meaning: for all $c \in C$, the statement $P(c)$ is T
- Functions:

$$
f(x)=x^{2}
$$

- Input: parameter $x \in \mathbb{R}$
- Output: value $f(x)$
- Example: $f(5)=25$

$$
\forall x \in \mathbb{R}, f(x) \geq 0
$$

- Meaning: for all $x \in \mathbb{R}, f(x)$ is ≥ 0

Example

- There EXISTS a creature with blue eyes and blonde hair
- Define predicate $Q(a)$ and its domain

$$
A=\{a \mid a \text { is a creature }\}
$$

- set of creatures

$$
Q(a)=\text { " } a \text { has blue eyes and blonde hair" }
$$

- "there exists a in A for which the statement $Q(a)$ is true."

$$
\exists a \in A: Q(a)
$$

\exists means "there exists"

- $G(a)=$ " a has blue eyes"
- $H(a)=$ " a has blonde hair"
- $\exists a \in A:(G(a) \wedge H(a))$
- $G(a)=$ " a has blue eyes"
- $H(a)=$ " a has blonde hair"
- $\exists a \in A:(G(a) \wedge H(a))$
- compound predicate
- When the domain is understood, we don't need to keep repeating it
- We write

$$
\exists a: Q(a)
$$

- or

$$
\exists a:(G(a) \wedge H(a))
$$

Negative Quantifiers

- IT IS NOT THE CASE THAT (There EXISTS a creature with blue eyes and blonde hair)
- Same as: "All creatures don't have blue eyes and blonde hair"

$$
\neg(\exists a \in A: Q(a)) \equiv \forall a \in A: \neg Q(a)
$$

(\equiv means they are equivalent/same)

- IT IS NOT THE CASE THAT (All cars have four wheels)
- Same as: "There is a car which does not have four wheels"

$$
\neg(\forall c \in C: P(c)) \equiv \exists c \in C: \neg P(c)
$$

- When you take the negation inside the quantifier and negate the predicate, you must switch quantifiers:

$$
\begin{aligned}
& \exists \rightarrow \forall \\
& \forall \rightarrow \exists
\end{aligned}
$$

There is a soulmate for EVERY person

- Define domains and a predicate

$$
A=\{a \mid a \text { is a person }\}
$$

- $P(a, b)=$ "Person a has as a soul mate person b "
- There is some special person b who is a soul mate to every person a

$$
\exists b:(\forall a: P(a, b))
$$

- For every person a, they have their own personal soul mate b

$$
\forall a:(\exists b: P(a, b))
$$

- When quantifiers are mixed, the order in which they appear is important for the meaning
- Order generally cannot be switched
- Claim 1. $\forall n>2$: if n is even, then n is a sum of two primes. (Goldbach, 1742)
- Claim 2. $\exists(a, b, c) \in \mathbb{N}^{3}: a^{2}+b^{2}=c^{2}$
- where $(a, b, c) \in \mathbb{N}^{3}$ means triples of natural numbers
- Claim 3. $\neg \exists(a, b, c) \in \mathbb{N}^{3}: a^{3}+b^{3}=c^{3}$
- Claim 4. $\forall(a, b, c) \in \mathbb{N}^{3}: a^{3}+b^{3}=c^{3}$
- Think about what it would take to prove these claims

