
Making Precise Statements
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Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 3
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Today

• Making a precise statement: the proposition

• Complicated precise statements: the compound proposition

– Truth tables

• Claims about many things

– Predicates

– Quantifiers

– Proofs with quantifiers
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Statements can be ambiguous

• Precise statements

2 + 2 = 4 (True)

2 + 2 = 5 (False)

• Not-so-precise statements

– You can have ice cream or cake

• Can I have both?

• Exclusive or Inclusive Or?

– If pigs can fly, then you get an A

• Pigs can’t fly, so do you still get an A? 

• False → Anything

– There is a room for every student

• Do all students share the same room?

• Does each student get an individual room?
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Why is ambiguity bad?

• We want to prove things!

• Need to know when and if computers implement correct algorithms!

• Beware of ambiguous statements

– Natural language is ambiguous by design

– That’s why we have math
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Propositions are True (T) or False (F)

• Propositions are represented using lowercase letters
𝑝, 𝑞, 𝑟, 𝑠, …

• Piglet can fly

– False

• You got an A

– Hmmm.. T?

• 42 is even

– True

• There are actually many types of logics out there

– E.g., fuzzy logic includes probabilities

– There are logics that also include a third value, Maybe/Don’t know

– We are only going to focus on classical logic

• If something is not T, then it must be F
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Compound Statements

• Piglet can fly OR 42 is even

– True

• Piglet can fly → You got an A

– True

– False → anything

• Piglet cannot fly → You got an A

– ?

– Depends on the value of “You got an A”
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Notation

• Conjunction
𝑝 ∧ 𝑞

𝑝 AND 𝑞

• Disjunction
𝑝 ∨ 𝑞

𝑝 OR 𝑞

• Negation
¬𝑝

NOT 𝑝

• Implication
𝑝 → 𝑞

𝑝 IMPLIES 𝑞

8



Negation

• The negation ¬𝑝 is F when 𝑝 is T

• The negation ¬𝑝 is T when 𝑝 is F

• Piglet can fly is F

• ¬(Piglet can fly) is T

• Notice how English quickly becomes redundant/ambiguous

– Piglet cannot fly

– It is not the case that Piglet can fly
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Conjunction

• Both 𝑝 and 𝑞 must be T for 𝑝 ∧ 𝑞 to be T

– Otherwise 𝑝 ∧ 𝑞 is F

• Piglet can fly AND You got an A

– F(alse)

– (Piglet can fly) ∧ (You got an A) = F

• Piglet cannot fly AND You got an A

– ?

– Depends on the value of (You got an A)
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Disjunction

• Both 𝑝 and 𝑞 must be F for 𝑝 ∨ 𝑞 to be F

– Otherwise it is T

• (Piglet cannot fly) ∨ (You got an A)

– Depends on the value of (You got an A)

• ¬(Piglet cannot fly) ∨ (You got an A) = T

– Why?

– Because ¬(Piglet cannot fly) = T

• (You can have cake) OR (You can have ice-cream) 

– Can you have both?

– Yes, this is Inclusive OR

– Exclusive OR is true when exactly one is true
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Truth Table

• Essentially a function that maps the value of 𝑝 and 𝑞 to the statement we’re trying 
to make

• Defines the meaning of these operators

• Can also use this in the case of any logic formula
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Implication

• Piglet can fly → You got an A

– IF Piglet can fly THEN You got an A

• IF 𝑛2 is even, THEN 𝑛 is even

– Is every even square the square of an even number?

• IF (it rained last night) THEN (the grass is wet)

𝑝 = (it rained last night)

𝑞 = (the grass is wet)

– In logic notation: 𝑝 → 𝑞

– What does it mean for this common-sense implication to be true?

• We have built a model of the world

• Whenever we observe 𝑝, we can make conclusions about 𝑞

• If we don’t observe 𝑝, our model tells us nothing about 𝑞

• If only observe 𝑞, can’t conclude anything about 𝑝

– What can you conclude? Did it rain last night? Is the grass wet?
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Implication, cont’d

• IF (it rained last night) THEN (the grass is wet)

– What does it mean for this common-sense implication to be true?

– What can you conclude? Did it rain last night? Is the grass wet?

• Suppose you look at the weather report for last night, and it indeed rained

• Is the grass wet?

– YES

• For a true implication 𝑝 → 𝑞, you can conclude 𝑞 = 𝑇 when 𝑝 = 𝑇
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Implication, cont’d

• IF (it rained last night) THEN (the grass is wet)

– What does it mean for this common-sense implication to be true?

– What can you conclude? Did it rain last night? Is the grass wet?

• Suppose you see wet grass in the morning

– Did it rain?

– Can’t tell

• For a true implication 𝑝 → 𝑞, when 𝑞 = 𝑇 you cannot conclude 𝑝 = 𝑇
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Implication, cont’d

• IF (it rained last night) THEN (the grass is wet)

– What does it mean for this common-sense implication to be true?

– What can you conclude? Did it rain last night? Is the grass wet?

• Suppose you see dry grass in the morning

– Did it rain?

– No

• Our model of the world assumes the grass MUST BE wet if it rained

• For a true implication 𝑝 → 𝑞, when 𝑞 is F, you can conclude 𝑝 is F
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Implication, cont’d

• IF (it rained last night) THEN (the grass is wet)

– What does it mean for this common-sense implication to be true?

– What can you conclude? Did it rain last night? Is the grass wet?

• Suppose you see no rain in the weather report

– Is the grass wet?

– Can’t tell

• For a true implication 𝑝 → 𝑞, when 𝑝 is F, you cannot conclude 𝑞 is F
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Implication: inferences when new information 

comes
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Falsifying IF (it rained last night) THEN (the 

grass is wet) 

• You are a scientist collecting data to verify that the implication is valid (true)

• One night it rained. That morning the grass was dry.

– New information

• What do you think about the implication now?

• This is a falsifying scenario

– IF (it rains) THEN (the grass is wet)

– False

• Our model of the world was wrong

• 𝑝 → 𝑞 is only F when 𝑝 = 𝑇 and 𝑞 = 𝐹

– In all other cases, 𝑝 → 𝑞 = 𝑇
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Implication is EXTREMELY important

• All these are 𝑝 → 𝑞 (𝑝 = “it rained last night” and 𝑞 = “the grass is wet”):

– If it rained last night then the grass is wet (IF 𝑝 THEN 𝑞)

– It rained last night implies the grass is wet (𝑝 IMPLIES 𝑞)

– It rained last night only if the grass is wet (𝑝 ONLY IF 𝑞)

– The grass is wet if it rained last night (𝑞 IF 𝑝)

– The grass is wet whenever it rains (𝑞 WHENEVER 𝑝)

• Notice that there are multiple English descriptions the same logical statement
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Implication Truth Table
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Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

• 𝑝 ∨ 𝑞 → 𝑟

– where 𝑝 = you are hungry, 𝑞 = you are thirsty, 𝑟 = you visit the cafeteria

• You are thirsty: 𝑞 is T. 

– There are two rows where 𝑞 is T and 𝑝 ∨ 𝑞 → 𝑟 is T

– In both cases 𝑟 is T
(you visit the cafeteria)
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1. F F F F T

2. F F T F T

3. F T F T F

4. F T T T T

5. T F F T F

6. T F T T T

7. T T F T F

8. T T T T T



Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

• 𝑝 ∨ 𝑞 → 𝑟

– where 𝑝 = you are hungry, 𝑞 = you are thirsty, 𝑟 = you visit the cafeteria

• You are thirsty: 𝑞 is T. 

– There are two rows where 𝑞 is T and 𝑝 ∨ 𝑞 → 𝑟 is T

– In both cases 𝑟 is T
(you visit the cafeteria)
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Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

• 𝑝 ∨ 𝑞 → 𝑟

– where 𝑝 = you are hungry, 𝑞 = you are thirsty, 𝑟 = you visit the cafeteria

• You are thirsty: 𝑞 is T. 

– There are two rows where 𝑞 is T and 𝑝 ∨ 𝑞 → 𝑟 is T

– In both cases 𝑟 is T 
(you visit the cafeteria)

• You did visit the cafeteria: 𝑟 is T.

– Are you hungry? 

• We don’t know.

– Are you thirsty? 

• We don’t know.

– (You accompanied your hungry friend)
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Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

• 𝑝 ∨ 𝑞 → 𝑟

– where 𝑝 = you are hungry, 𝑞 = you are thirsty, 𝑟 = you visit the cafeteria

• You are thirsty: 𝑞 is T. In both cases 𝑟 is T
(you visit the cafeteria)

• You did visit the cafeteria: 𝑟 is T.

– Are you hungry? We don’t know.

– Are you thirsty? We don’t know.

– (You accompanied your hungry friend)
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Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

• 𝑝 ∨ 𝑞 → 𝑟

– where 𝑝 = you are hungry, 𝑞 = you are thirsty, 𝑟 = you visit the cafeteria

• You are thirsty: 𝑞 is T. 

– There are two rows where 𝑞 is T and 𝑝 ∨ 𝑞 → 𝑟 is T

– In both cases 𝑟 is T 
(you visit the cafeteria)

• You did visit the cafeteria: 𝑟 is T.

– Are you hungry? We don’t know.

– Are you thirsty? We don’t know.

– (You accompanied your hungry friend)

• You did not visit the cafeteria: 𝑟 is F

– 𝑝 and 𝑞 are both F 

– (You are neither hungry nor thirsty.)
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Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

• 𝑝 ∨ 𝑞 → 𝑟

– where 𝑝 = you are hungry, 𝑞 = you are thirsty, 𝑟 = you visit the cafeteria

• You are thirsty: 𝑞 is T. 

– There are two rows where 𝑞 is T and 𝑝 ∨ 𝑞 → 𝑟 is T

– In both cases 𝑟 is T 
(you visit the cafeteria)

• You did visit the cafeteria: 𝑟 is T.

– Are you hungry? We don’t know.

– Are you thirsty? We don’t know.

– (You accompanied your hungry friend)

• You did not visit the cafeteria: 𝑟 is F

– 𝑝 and 𝑞 are both F 

– (You are neither hungry nor thirsty.)
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Equivalent Compound Statements

• Order is very important!

– In particular, 𝑝 → 𝑞 and 𝑞 → 𝑝 do not mean the same thing!

• IF I’m dead, THEN my eyes are closed vs. IF my eyes are closed, THEN I’m dead
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Proving an Implication: Reasoning without Facts

• IF (𝑛2 is even) THEN (𝑛 is even)

• What is 𝑛? How to prove?

– We must show that the highlighted row cannot occur.

– i.e., 𝑛 is odd cannot be the case

• In this row, 𝑞 is F: 𝑛 = 2𝑘 + 1

• 𝑛2 = 2𝑘 + 1 2 = 2(2𝑘2 + 2𝑘) + 1

• 𝑝 cannot be T. This row cannot happen: 𝑝 → 𝑞 is always T
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Quantifiers

• Every person has a soulmate

• John has some gray hair

• Everyone has some gray hair

• Any map can be colored with 4 colors with adjacent countries having different 
colors

• Every even integer 𝑛 > 2 is the sum of 2 primes (Goldbach conjecture, 1742)

– Still not proven, but holds for numbers up to at least 4 × 1018

• Someone broke this faucet

• There exists a creature with blue eyes and blonde hair

• All cars have four wheels
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Quantifiers, etc.

• These statements are more complex because of quantifiers:

– EVERY; A; SOME; ANY; ALL; THERE EXISTS

• Compare:

– My Tesla has four wheels

– ALL cars have four wheels
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Predicates are like functions

• ALL cars have four wheels

• Define predicate 𝑃(𝑐) and its domain

• 𝐶 = 𝑐 𝑐 𝑖𝑠 𝑎 𝑐𝑎𝑟}

– set of cars

• 𝑃(𝑐) = “car c has four wheels”

• “for all 𝑐 in 𝐶, the statement 𝑃(𝑐) is true.”
∀𝑐 ∈ 𝐶: 𝑃(𝑐)

– (∀ means “for all”)

33



Predicates are like functions, cont’d

• Predicates

𝑃(𝑐) = “car 𝑐 has four wheels”

– Input: parameter 𝑐 ∈ 𝐶

– Output: statement 𝑃(𝑐)

– Example: 𝑃 𝐽𝑒𝑛′𝑠 𝐶𝑎𝑟 = “car 𝐽𝑒𝑛′𝑠 𝐶𝑎𝑟 has four wheels”
∀𝑐 ∈ 𝐶: 𝑃(𝑐)

• Meaning: for all 𝑐 ∈ 𝐶, the statement 𝑃 𝑐 is T

• Functions:
𝑓 𝑥 = 𝑥2

– Input: parameter 𝑥 ∈ ℝ

– Output: value 𝑓(𝑥)

– Example: 𝑓 5 = 25
∀𝑥 ∈ ℝ, 𝑓 𝑥 ≥ 0

– Meaning: for all 𝑥 ∈ ℝ, 𝑓(𝑥) is ≥ 0
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Example

• There EXISTS a creature with blue eyes and blonde hair

• Define predicate 𝑄(𝑎) and its domain

𝐴 = {𝑎|𝑎 is a creature}

– set of creatures

𝑄(𝑎) = “𝑎 has blue eyes and blonde hair”

• “there exists 𝑎 in 𝐴 for which the statement 𝑄(𝑎) is true.”
∃𝑎 ∈ 𝐴: 𝑄(𝑎)

∃ means “there exists”

• 𝐺(𝑎) = “𝑎 has blue eyes”

• 𝐻(𝑎) = “𝑎 has blonde hair”

• ∃𝑎 ∈ 𝐴: (𝐺 𝑎 ∧ 𝐻(𝑎))
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Example, cont’d

• 𝐺(𝑎) = “𝑎 has blue eyes”

• 𝐻(𝑎) = “𝑎 has blonde hair”

• ∃𝑎 ∈ 𝐴: (𝐺 𝑎 ∧ 𝐻(𝑎))

– compound predicate

• When the domain is understood, we don’t need to keep repeating it

– We write
∃𝑎: 𝑄(𝑎)

– or 
∃𝑎: (𝐺 𝑎 ∧ 𝐻(𝑎))
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Negative Quantifiers

• IT IS NOT THE CASE THAT (There EXISTS a creature with blue eyes and blonde hair)

• Same as: “All creatures don’t have blue eyes and blonde hair”
¬ ∃𝑎 ∈ 𝐴: 𝑄(𝑎) ≡ ∀𝑎 ∈ 𝐴:¬𝑄(𝑎)

(≡ means they are equivalent/same)

• IT IS NOT THE CASE THAT (All cars have four wheels)

• Same as: “There is a car which does not have four wheels”

¬ ∀𝑐 ∈ 𝐶: 𝑃 𝑐 ≡ ∃𝑐 ∈ 𝐶:¬𝑃(𝑐)

• When you take the negation inside the quantifier and negate the predicate, you 
must switch quantifiers:

∃→ ∀
∀→ ∃

37



There is a soulmate for EVERY person

• Define domains and a predicate
𝐴 = 𝑎 𝑎 𝑖𝑠 𝑎 𝑝𝑒𝑟𝑠𝑜𝑛

• 𝑃(𝑎, 𝑏) = “Person 𝑎 has as a soul mate person 𝑏”

• There is some special person 𝑏 who is a soul mate to every person 𝑎
∃𝑏: (∀𝑎: 𝑃(𝑎, 𝑏))

• For every person 𝑎, they have their own personal soul mate 𝑏
∀𝑎: (∃𝑏: 𝑃(𝑎, 𝑏))

• When quantifiers are mixed, the order in which they appear is important for the 
meaning

– Order generally cannot be switched
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Proofs with quantifiers

• Claim 1. ∀𝑛 > 2: if 𝑛 is even, then 𝑛 is a sum of two primes. (Goldbach, 1742)

• Claim 2. ∃ 𝑎, 𝑏, 𝑐 ∈ ℕ3: 𝑎2 + 𝑏2 = 𝑐2

– where (𝑎, 𝑏, 𝑐) ∈ ℕ3 means triples of natural numbers

• Claim 3. ¬∃ 𝑎, 𝑏, 𝑐 ∈ ℕ3: 𝑎3 + 𝑏3 = 𝑐3

• Claim 4. ∀ 𝑎, 𝑏, 𝑐 ∈ ℕ3: 𝑎3 + 𝑏3 = 𝑐3

• Think about what it would take to prove these claims
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