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Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 28
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The Path Forward: Focus on Decidable Problems
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Overview

• Time complexity: Asymptotic worst-case analysis.

• The class P: Efficiently solvable problems.

• Polynomial on one architecture means polynomial on pretty much any architecture.
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Running Time

• Suppose you are a traveling salesman

– You want to visit all cities in your state and sell your stuff

– Suppose the road network looks like this

– The numbers give the length of each road

– What’s the shortest path that starts at 𝐴, visits each city once, and returns to 𝐴?

𝐴, 𝐵, 𝐶, 𝐷, 𝐴  (cost of 17)

– How did you find it?

– Enumerated all possible paths and took the fastest
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Running Time, cont’d

• What if we had 50 cities? How many paths would we have to check?

– There are 49 options for the 1st city, then 48, etc.

– In total, there are 49! paths

• How many paths are there in a general graph with 𝑛 nodes?

– There are 𝑛 − 1 options for the first node, then 𝑛 − 2, etc.

– In total there are 𝑛 − 1 ! paths

• Even for 50 cities, checking all paths on a 10GHz computer would take 1050 years!

– The universe is 1012 years old…

• There’s got to be a faster way to find the optimal path!
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Running Time, cont’d

• Efficiently solving a problem, with low runtime, is as important as solving it!

– I don’t care about your algorithm if it will finish after there is no more Earth!

• How do we analyze algorithms?

• Let’s look at our Turing Machine for balanced strings

𝑀 = Turing Machine that solves 0•𝑘#1•𝑘

Input: Binary string 𝑤
1. Check that input has the correct format and return to ∗
2. Match each 0 left of # with a 1 right of #
3. If a match fails or there are more 1s, REJECT. Otherwise ACCEPT

• How fast is that algorithm?

– Hard to tell from this high-level sketch

– Machine is in reality doing a zig-zag
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Running Time, cont’d

• Let’s be more specific with our step 2:

𝑀 = Turing Machine that solves 0•𝑘#1•𝑘

Input: Binary string 𝑤
1. Check that input has the correct format and return to ∗
2. Match each 0 left of # with a 1 right of #
 Move right and mark the first unmarked 0 (if none, GOTO step 3)
 Move right and mark the first unmarked 1 (if none, REJECT)
 Move left until you come to a marked 0.
3. If a match fails or there are more 1s, REJECT. Otherwise ACCEPT

• Now we can at least count how many operations each step takes depending on 
string size

8



Time Complexity

• To analyze the runtime of 𝑀, we must specify the input

• Runtime increase with the input size. What size input shall we take?

• Runtime can vary within inputs of the same size. What do we do about this?

• Worst case analysis!

– This is the norm in computer science

– How does our algorithm perform over the worst possible input
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Worst Case Analysis

• The steps to get the worst case runtime are:

1. Fix the size of the input to 𝑛 and identify the worst input 𝑤∗ of size 𝑛

2. Determine the runtime for the input 𝑤∗. This worst case runtime will depend on 𝑛

• To determine the runtime, recall the definitions

• In practice, inputs are very large, i.e., 𝑛 → ∞

– We care about runtimes in the asymptotic regime

• Additive and multiplicative constants are minor

– We care about the growth rate of the runtime with 𝑛
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Analyzing the decider for 𝟎•𝒌#𝟏•𝒌  

• How many operations does this machine perform?

• During step 1, in the worst case, go through the entire input twice

• During step 2, machine zig-zags for each 0

– For a well-formatted string, there are at most 
𝑛

2
 zig-zags and each zig-zag is at 

most 2𝑛 steps

• Finally, step 3 takes one full scan

• So in total:

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 ≤ 2𝑛 +
𝑛

2
× 2𝑛 + 𝑛

• What is 𝑂(2𝑛 +
𝑛

2
× 2𝑛 + 𝑛) simplified to? 11



Can we do better than 𝑶 𝒏𝟐 ?

• What if we instead scan every other 0 and then every other 1?

• We cover roughly half the string in a single scan! Then the next scan is similar

• The final scan completes the last missing 0 and 1

• Exercise. Finish the details of this algorithm and prove it is correct

• How many passes does the above algorithm make?

– Input is halved after each pass, so at most log2 𝑛

• How long is each pass at most?

– Can’t go further than full input, so 𝑛 (rough analysis gets you far in algorithm 
analysis!)

• Total runtime is 𝑂 𝑛𝑙𝑜𝑔2 𝑛
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Can we do better than 𝑶 𝒏𝒍𝒐𝒈𝟐 𝒏 ? Two Tapes

• Suppose we had a Turing Machine with two tapes

– Computer scientists like convoluted devices!

• How can we use the second tape?

– Copy the 0s from tape 1 and then match 1s on tape 1 with 0s on tape 2

• Only need 2 passes now!

– Runtime is 𝑂(𝑛), but we require better hardware
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Efficiently Solvable Problems: The Class P

• So far, we’ve seen three algorithms to decide 0•𝑘#1•𝑘

– Brute-force, 𝑂 𝑛2

– Smart halving algorithm, 𝑂 𝑛𝑙𝑜𝑔2𝑛

– Fast algorithm using a better architecture, 𝑂(𝑛)

• Efficiency is all about faster algorithms!

• Contrast with computability

– There EXISTS NO algorithm for the halting problem!

– I don’t care how many Turing Machines with how many tapes you throw at it

• So when we talk about efficiency, we’re talking about decidable problems

• But then you might ask, “Fine, 𝑂(𝑛) is faster but is 𝑂 𝑛2  really so bad?”

– Obviously, it depends on what input sizes you’re dealing with

– If input sizes are in the 1000s, you won’t notice a big difference

– If input sizes are in the 1000000s, you might have to wait a while in one case!
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The Class P, cont’d

• Typically, we measure “fastness” with respect to a target function 𝑓 that we deem 
to be sufficiently fast

• What choices of 𝑓 are there?

– Linear, quadratic, polynomial, exponential

– Turns out polynomial is a good compromise

• A Turing Machine is fast if the worst case runtime is bounded by a function 𝑓 𝑛  
which increases by at most a constant factor when you double the size of the input 
from 𝑛 to 2𝑛

worst-case runtime ≤ 𝑓(𝑛)   AND    𝑓 2𝑛 ≤ 𝜆𝑓(𝑛)
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The Class P, cont’d

• Theorem [Fast means polynomial]. A Turing Machine 𝑀 is fast if and only if its 

worst-case runtime on an input of size 𝑛 is in 𝑂 𝑛𝑘 , for a constant 𝑘.

– See book for proof.

• Definition [The Class P]. A problem ℒ is in P if there exists a fast, polynomial-time, 
Turing machine that decides ℒ. The class P is a set of computing problems, i.e., 
languages.

• The class P is one of the most important classes in computer science

– Generally, these are the problems that can be solved for very large inputs

• Examples include sorting, shortest path, hashing, search…

– Problems not in P are HARD!!

• For example, factorization is not believed to be in P

• The main encryption algorithms only work because we don’t know how to 
quickly factorize very large numbers
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How About Turing Machines with Two Tapes?

• Already saw that a Turing Machine with two tapes gets us from 𝑂 𝑛𝑙𝑜𝑔2𝑛  to 𝑂 𝑛

• So you should be asking yourselves: what if we define P in terms of two-tape Turing 
Machines?

– How about 21000 tapes?

• Well, both 𝑂 𝑛𝑙𝑜𝑔2𝑛  and 𝑂 𝑛  are polynomial, so they’re still in P

– Adding more tapes didn’t bring a “qualitative” change

• Extended Church-Turing Thesis. Any efficiently solvable problem can be decided by a 
fast Turing Machine with a single tape. The class P is independent of Turing Machine 
architecture.

– (Within limits – if I can choose number of tapes depending on the input size, 
then the above doesn’t hold)

– Turns out a single-tape Turing Machine can simulate multi-tape machines in 
polynomial time (see book)

• The class P is robust. Also, Turing Machines are a very general computing framework
17



A Decidable Non-Polynomial Problem

• We know that there exists no Turing Machine that can tells us whether a given 
other Turing Machine will halt

• How about whether another Turing Machine will terminate “fast”?

• Consider the language:

ℒ𝐸𝑋𝑃 = < 𝑀 > #𝑤 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑡 𝑚𝑜𝑠𝑡 2 𝑤  𝑠𝑡𝑒𝑝𝑠

– What is this language?

• All Turing Machines that run within at most exponential time

– Is this language decidable?

• Yes, use our simulator Turing Machine 𝑈𝑇𝑀

– Simulate 𝑀 on each input 𝑤 for exactly 2|𝑤| steps

– If 𝑀 terminates, output YES; otherwise output NO

– Is this language in P?

• Ah, trickyyy

• How can you tell if 𝑀 will terminate if you don’t run it for all 2|𝑤| steps??
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A Decidable Non-Polynomial Problem, cont’d

• Consider the language:

ℒ𝐸𝑋𝑃 = < 𝑀 > #𝑤 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑡 𝑚𝑜𝑠𝑡 2 𝑤  𝑠𝑡𝑒𝑝𝑠

• Theorem. ℒ𝐸𝑋𝑃 is not in P.

• Proof. By contradiction. Suppose there exists a decider 𝐸𝑇𝑀 with polynomial worst-
case runtime, i.e.,

𝐸𝑇𝑀 = ቊ
𝐴𝐶𝐶𝐸𝑃𝑇 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑡 𝑚𝑜𝑠𝑡 2|𝑤| 𝑠𝑡𝑒𝑝𝑠
𝑅𝐸𝐽𝐸𝐶𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

– Let’s build our diabolical diagonal Turing Machine 𝐷 again:

𝐷: “Diagonal” Turing Machine derived from 𝐸𝑇𝑀

input: < 𝑀 > where 𝑀 is a Turing Machine

1. Run 𝐸𝑇𝑀 with input < 𝑀 > # < 𝑀 >

2. If 𝐸𝑇𝑀 accepts then REJECT; otherwise (𝐸𝑇𝑀 rejects) ACCEPT
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A Decidable Non-Polynomial Problem, cont’d

• Proof. By contradiction. Suppose there exists a decider 𝐸𝑇𝑀 with polynomial worst-
case runtime, i.e.,

𝐸𝑇𝑀 = ቊ
𝐴𝐶𝐶𝐸𝑃𝑇 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑡 𝑚𝑜𝑠𝑡 2|𝑤| 𝑠𝑡𝑒𝑝𝑠
𝑅𝐸𝐽𝐸𝐶𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

• 𝐸𝑇𝑀 implies 𝐷 exists, hence it will appear on the list of all Turing Machines:
< 𝑀1 >, < 𝑀2 >, < 𝑀3 >, < 𝑀4 >, < 𝐷 >, …
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𝐸𝑇𝑀 < 𝑀𝑖 > # < 𝑀𝑗 > < 𝑀1 > < 𝑀2 > < 𝑀3 > < 𝑀4 > < 𝐷 >

< 𝑀1 > ACCEPT ACCEPT REJECT ACCEPT ACCEPT

< 𝑀2 > ACCEPT REJECT REJECT ACCEPT REJECT

< 𝑀3 > REJECT ACCEPT REJECT REJECT ACCEPT

< 𝑀4 > REJECT ACCEPT REJECT ACCEPT REJECT

< 𝐷 >



A Decidable Non-Polynomial Problem, cont’d

• Proof. By contradiction. Suppose there exists a decider 𝐸𝑇𝑀 with polynomial worst-
case runtime, i.e.,

𝐸𝑇𝑀 = ቊ
𝐴𝐶𝐶𝐸𝑃𝑇 𝑖𝑓 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑡 𝑚𝑜𝑠𝑡 2|𝑤| 𝑠𝑡𝑒𝑝𝑠
𝑅𝐸𝐽𝐸𝐶𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

• If 𝐷 exists, then it will appear on the list of all Turing Machines:
< 𝑀1 >, < 𝑀2 >, < 𝑀3 >, < 𝑀4 >, < 𝐷 >, …
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𝐸𝑇𝑀 < 𝑀𝑖 > # < 𝑀𝑗 > < 𝑀1 > < 𝑀2 > < 𝑀3 > < 𝑀4 > < 𝐷 >

< 𝑀1 > ACCEPT ACCEPT REJECT ACCEPT ACCEPT

< 𝑀2 > ACCEPT REJECT REJECT ACCEPT REJECT

< 𝑀3 > REJECT ACCEPT REJECT REJECT ACCEPT

< 𝑀4 > REJECT ACCEPT REJECT ACCEPT REJECT

< 𝐷 > REJECT ACCEPT ACCEPT REJECT ???



A Decidable Non-Polynomial Problem, cont’d

• 𝐷 < 𝑀𝑖 >  does the opposite of 𝐸𝑇𝑀 < 𝑀𝑖 > # < 𝑀𝑗 >

• Suppose 𝐸𝑇𝑀 < 𝐷 > # < 𝐷 >  accepts

– That means that 𝐷 accepts (fast) on input < 𝐷 >

– But 𝐷 should reject because 𝐸𝑇𝑀 < 𝐷 > # < 𝐷 >  accepted

– FISHY!

• Suppose 𝐸𝑇𝑀 < 𝐷 > # < 𝐷 >  rejects

– That means that 𝐷 either rejects or is slow to accept input < 𝐷 >

• May or may not accept (no contradiction so far)

– We know 𝐷 should accept because 𝐸𝑇𝑀 < 𝐷 > # < 𝐷 >  rejected

– But 𝐸𝑇𝑀 is fast

• Note that 𝐷 runs by simulating 𝐸𝑇𝑀 on < 𝐷 > # < 𝐷 >

• So the runtime of 𝐷 is bounded by the runtime of 𝐸𝑇𝑀, plus the overhead 
of preparing the input to 𝐸𝑇𝑀 (polynomial time to copy < 𝐷 >, etc.)

– The runtime of 𝐸𝑇𝑀 is at most polynomial

– FISHY!
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Boundary Between Efficient and Inefficient

• Turing Machines are the gold standard for defining solvable and efficiently solvable

– We have a robust notion of an efficiently solvable problem, the class P

– There are many interesting problems in P

– There are problems that are not in P (ℒ𝐸𝑋𝑃)

– There are problems that we believe are not in P

• Traveling salesman, factorization, CLIQUE, etc.

• Instant fame if you can prove this (P vs NP)!

• In practice, efficiency has many dimensions

– When a problem has no fast solution but still needs to be solved, we use 
servers, clusters, etc. (salesmen need to travel!)

– Mobile platforms optimize for battery consumption, at the expense of runtime

– Distributed platforms spread data across and must solve problems with limited 
communication

– Streaming platforms may pre-load data

– Machine learning applications may need to preserve privacy, fairness, etc.
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. . . the high technology so celebrated today is essentially 

a mathematical technology.

“To err is human, but to really foul things up you need a computer.” – Paul Ehrlich

• Mariner rocket explodes (1962). Formula into code bug resulted in no smoothing of deviations.

• WWWIII (1983)? Soviet EWS detects 5 US-missiles (bug detected sunlight reflections).

– Luckily Stanislav “funny feeling in my gut” Petrov thought: “surely they’d use more missiles?”

• Therac 25 (1985). Concurrent programming bug killed patients through massive 100× radiation overdose.

• AT&T Lines Go Dead (1990). 75 million calls dropped (one line of buggy code in software upgrade).

• Patriot missile defense fails (1991). 28 soldiers dead, 100 injured (rounding error in scud-detection).

• Pentium floating point long-division bug (1993). Cost: $475 million – flawed division table.

• Ariane rocket explosion (1996). Cost: $500 million – overflow in 64-bit to 16-bit conversion.

• Y2K (1999). Cost: $500 billion spent because year was stored as 2 digits to save space.

• Mars Climate Orbiter Crash (1998). Cost: $125 million lost due to metric to imperial units bug.

• Tesla Self-Driving Car (2016). 1 dead. Auto-pilot didn’t “see” tractor-trailer. (many more since then)

• Financial Disasters: London Stock Exchange down due to single server bug (2009; billions of pounds of trading); Knight Capital computer 
glitch trigers stock sale (2012; 500 million lost and Knight’s value drops by 75%).

• Airline Disasters:

– AirFrance 447 2009, 228 dead: pitot-tube failure feeds inconsistent data to programs which then panic pilot.

– Spanair 5022, 2008, 154 dead: malware virus.

– AdamAir 574, 2007, 102 dead: navigation system errors (and pilot errors).

– KoreanAir 801, 1997, 228 dead: ground proximity warning system bug.

– AeroPerú 603, 1996, 70 dead: altimeter failures.

– Scottish RAF Chinook, 1994, 29 dead: faulty test program

– AirFrance 296, 1988, 3 dead: altimeter bug.

– IranAir 655, 1988, 290 dead: shot down by US Aegis combat system (misidentified as attacking military plane).

– KoreanAir 007, 1983, 269 dead: autopilot took plane into Soviet airspace where it got shot down.

– Boeing 737 Max, 2018,2019, 346 dead: attack sensor + algorithm errors. 24
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