Efficiency

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 28

The Path Forward: Focus on Decidable Problems (i) Rensselaer

Theory Algorithms
AI

Overview

- Time complexity: Asymptotic worst-case analysis.
- The class P: Efficiently solvable problems.
- Polynomial on one architecture means polynomial on pretty much any architecture.

Running Time

- Suppose you are a traveling salesman
- You want to visit all cities in your state and sell your stuff
- Suppose the road network looks like this

- The numbers give the length of each road
- What's the shortest path that starts at A, visits each city once, and returns to A ?

$$
A, B, C, D, A \text { (cost of } 17 \text {) }
$$

- How did you find it?
- Enumerated all possible paths and took the fastest

Running Time, cont'd

- What if we had 50 cities? How many paths would we have to check?
- There are 49 options for the $1^{\text {st }}$ city, then 48 , etc.

- In total, there are 49! paths
- How many paths are there in a general graph with n nodes?
- There are $n-1$ options for the first node, then $n-2$, etc.
- In total there are $(n-1)$! paths
- Even for 50 cities, checking all paths on a 10 GHz computer would take 10^{50} years!
- The universe is 10^{12} years old...
- There's got to be a faster way to find the optimal path!

Running Time, cont'd

- Efficiently solving a problem, with low runtime, is as important as solving it!
- I don't care about your algorithm if it will finish after there is no more Earth!
- How do we analyze algorithms?
- Let's look at our Turing Machine for balanced strings
$M=$ Turing Machine that solves $\left\{0^{\bullet k} \# 1^{\bullet k}\right\}$ Input: Binary string w

1. Check that input has the correct format and return to *
2. Match each 0 left of \# with a 1 right of \#
3. If a match fails or there are more 1 s , REJECT. Otherwise ACCEPT

- How fast is that algorithm?
- Hard to tell from this high-level sketch
- Machine is in reality doing a zig-zag

Running Time, cont'd

- Let's be more specific with our step 2:
$M=$ Turing Machine that solves $\left\{0^{\bullet k} \# 1^{\bullet k}\right\}$ Input: Binary string w

1. Check that input has the correct format and return to *
2. Match each 0 left of \# with a 1 right of \#

Move right and mark the first unmarked 0 (if none, GOTO step 3)
Move right and mark the first unmarked 1 (if none, REJECT)
Move left until you come to a marked 0 .
3. If a match fails or there are more 1 s , REJECT. Otherwise ACCEPT

- Now we can at least count how many operations each step takes depending on string size

Time Complexity

- To analyze the runtime of M, we must specify the input

```
M= Turing Machine that solves {00* #1 * * }
Input: Binary string w
1. Check that input has the correct format and return to *
2. Match each 0 left of # with a 1 right of #
    Move right and mark the first unmarked 0 (if none, GOTO step 3)
    Move right and mark the first unmarked 1 (if none, REJECT)
    Move left until you come to a marked 0.
3. If a match fails or there are more 1s, REJECT. Otherwise ACCEPT
```

- Runtime increase with the input size. What size input shall we take?
- Runtime can vary within inputs of the same size. What do we do about this?
- Worst case analysis!
- This is the norm in computer science
- How does our algorithm perform over the worst possible input

Worst Case Analysis

- The steps to get the worst case runtime are:

1. Fix the size of the input to n and identify the worst input w_{*} of size n
2. Determine the runtime for the input w_{*}. This worst case runtime will depend on n

- To determine the runtime, recall the definitions

$$
\begin{array}{lllll}
T \in o(f) & T \in O(f) & T \in \Theta(f) & T \in \Omega(f) & T \in \omega(f) \\
" T<f " & " T \leq f " & " T=f " & " T \geq f " & " T>f "
\end{array}
$$

- In practice, inputs are very large, i.e., $n \rightarrow \infty$
- We care about runtimes in the asymptotic regime
- Additive and multiplicative constants are minor
- We care about the growth rate of the runtime with n

Analyzing the decider for $\left\{0^{\bullet k} \# 1^{\bullet} k\right\}$

- How many operations does this machine perform?
$M=$ Turing Machine that solves $\left\{0^{\bullet}{ }^{\bullet} 1^{\bullet k}\right\}$
Input: Binary string w

1. Check that input has the correct format and return to $*$
2. Match each 0 left of \# with a 1 right of \#

Move right and mark the first unmarked 0 (if none, GOTO step 3)
Move right and mark the first unmarked 1 (if none, REJECT)

Move left until you come to a marked 0.
3. If a match fails or there are more 1 s , REJECT. Otherwise ACCEPT

- During step 1, in the worst case, go through the entire input twice
- During step 2 , machine zig-zags for each 0
- For a well-formatted string, there are at most $\frac{n}{2}$ zig-zags and each zig-zag is at most $2 n$ steps
- Finally, step 3 takes one full scan
- So in total:

$$
\text { runtime } \leq 2 n+\frac{n}{2} \times 2 n+n
$$

- What is $O\left(2 n+\frac{n}{2} \times 2 n+n\right)$ simplified to?

Can we do better than $O\left(n^{2}\right)$?

- What if we instead scan every other 0 and then every other 1 ?

-	$*$	0	0	0	0	0	0	0	$\#$	1	1	1	1

- We cover roughly half the string in a single scan! Then the next scan is similar
- The final scan completes the last missing 0 and 1

- Exercise. Finish the details of this algorithm and prove it is correct
- How many passes does the above algorithm make?
- Input is halved after each pass, so at most $\log _{2} n$
- How long is each pass at most?
- Can't go further than full input, so n (rough analysis gets you far in algorithm analysis!)
- Total runtime is $O\left(n \log _{2}(n)\right)$

Can we do better than $O\left(n \log _{2}(n)\right)$? Two Tapes

- Suppose we had a Turing Machine with two tapes
- Computer scientists like convoluted devices!
tape 1

tape 2

- How can we use the second tape?
- Copy the 0s from tape 1 and then match 1 s on tape 1 with 0 s on tape 2
tape 1

tape 2

- Only need 2 passes now!
- Runtime is $O(n)$, but we require better hardware

Efficiently Solvable Problems: The Class P

- So far, we've seen three algorithms to decide $\left\{0^{\bullet}{ }^{*} \# 1^{\bullet k}\right\}$
- Brute-force, $O\left(n^{2}\right)$
- Smart halving algorithm, $O\left(n \log _{2} n\right)$
- Fast algorithm using a better architecture, $O(n)$
- Efficiency is all about faster algorithms!
- Contrast with computability
- There EXISTS NO algorithm for the halting problem!
- I don't care how many Turing Machines with how many tapes you throw at it
- So when we talk about efficiency, we're talking about decidable problems
- But then you might ask, "Fine, $O(n)$ is faster but is $O\left(n^{2}\right)$ really so bad?"
- Obviously, it depends on what input sizes you're dealing with
- If input sizes are in the 1000s, you won't notice a big difference
- If input sizes are in the 1000000s, you might have to wait a while in one case!

The Class P, cont'd

- Typically, we measure "fastness" with respect to a target function f that we deem to be sufficiently fast
- What choices of f are there?
- Linear, quadratic, polynomial, exponential
- Turns out polynomial is a good compromise
- A Turing Machine is fast if the worst case runtime is bounded by a function $f(n)$ which increases by at most a constant factor when you double the size of the input from n to $2 n$

$$
\text { worst-case runtime } \leq f(n) \quad \text { AND } \quad f(2 n) \leq \lambda f(n)
$$

The Class P, cont'd

- Theorem [Fast means polynomial]. A Turing Machine M is fast if and only if its worst-case runtime on an input of size n is in $O\left(n^{k}\right)$, for a constant k.
- See book for proof.
- Definition [The Class P]. A problem \mathcal{L} is in P if there exists a fast, polynomial-time, Turing machine that decides \mathcal{L}. The class P is a set of computing problems, i.e., languages.
- The class P is one of the most important classes in computer science
- Generally, these are the problems that can be solved for very large inputs
- Examples include sorting, shortest path, hashing, search...
- Problems not in P are HARD!!
- For example, factorization is not believed to be in P
- The main encryption algorithms only work because we don't know how to quickly factorize very large numbers

How About Turing Machines with Two Tapes?

- Already saw that a Turing Machine with two tapes gets us from $O\left(n \log _{2} n\right)$ to $O(n)$
- So you should be asking yourselves: what if we define P in terms of two-tape Turing Machines?
- How about 2^{1000} tapes?
- Well, both $O\left(n \log _{2} n\right)$ and $O(n)$ are polynomial, so they're still in P
- Adding more tapes didn’t bring a "qualitative" change
- Extended Church-Turing Thesis. Any efficiently solvable problem can be decided by a fast Turing Machine with a single tape. The class P is independent of Turing Machine architecture.
- (Within limits - if I can choose number of tapes depending on the input size, then the above doesn't hold)
- Turns out a single-tape Turing Machine can simulate multi-tape machines in polynomial time (see book)
- The class P is robust. Also, Turing Machines are a very general computing framework

A Decidable Non-Polynomial Problem

- We know that there exists no Turing Machine that can tells us whether a given other Turing Machine will halt
- How about whether another Turing Machine will terminate "fast"?
- Consider the language:

$$
\mathcal{L}_{E X P}=\left\{<M>\# w \mid M \text { accepts } w \text { within at most } 2^{|w|} \text { steps }\right\}
$$

- What is this language?
- All Turing Machines that run within at most exponential time
- Is this language decidable?
- Yes, use our simulator Turing Machine $U_{T M}$
- Simulate M on each input w for exactly $2^{|w|}$ steps
- If M terminates, output YES; otherwise output NO
- Is this language in P ?
- Ah, trickyyy
- How can you tell if M will terminate if you don't run it for all $2^{|w|}$ steps??

A Decidable Non-Polynomial Problem, cont'd

- Consider the language:

$$
\left.\mathcal{L}_{E X P}=\{<M\rangle \# w \mid M \text { accepts } w \text { within at most } 2^{|w|} \text { steps }\right\}
$$

- Theorem. $\mathcal{L}_{E X P}$ is not in P .
- Proof. By contradiction. Suppose there exists a decider $E_{T M}$ with polynomial worstcase runtime, i.e.,

$$
E_{T M}= \begin{cases}\text { ACCEPT } & \text { if } M \text { accepts } w \text { within at most } 2^{|w|} \text { steps } \\ \text { REJECT } & \text { otherwise }\end{cases}
$$

- Let's build our diabolical diagonal Turing Machine D again:

D: "Diagonal" Turing Machine derived from $E_{T M}$
input: $<M>$ where M is a Turing Machine

1. Run $E_{T M}$ with input $\left.<M>\#<M\right\rangle$
2. If $E_{T M}$ accepts then REJECT; otherwise ($E_{T M}$ rejects) ACCEPT

A Decidable Non-Polynomial Problem, cont'd

- Proof. By contradiction. Suppose there exists a decider $E_{T M}$ with polynomial worstcase runtime, i.e.,

$$
E_{T M}=\left\{\begin{array}{l}
\text { ACCEPT if } M \text { accepts } w \text { within at most } 2^{|w|} \text { steps } \\
R E J E C T \text { otherwise }
\end{array}\right.
$$

- $E_{T M}$ implies D exists, hence it will appear on the list of all Turing Machines:

$$
<M_{1}>,<M_{2}>,<M_{3}>,<M_{4}>,<D>, \ldots
$$

| $E_{T M}\left(<M_{i}>\#<M_{j}>\right)$ | $<M_{1}>$ | $<M_{2}>$ | $<M_{3}>$ | $<M_{4}>$ | $<D>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $<M_{1}>$ | $\underline{\text { ACCEPT }}$ | ACCEPT | REJECT | ACCEPT | ACCEPT |
| $<M_{2}>$ | ACCEPT | $\underline{\text { REJECT }}$ | REJECT | ACCEPT | REJECT |
| $<M_{3}>$ | REJECT | ACCEPT | $\underline{\text { REJECT }}$ | REJECT | ACCEPT |
| $<M_{4}>$ | REJECT | ACCEPT | REJECT | $\underline{\text { ACCEPT }}$ | REJECT |
| $<D>$ | | | | | |

A Decidable Non-Polynomial Problem, cont'd

- Proof. By contradiction. Suppose there exists a decider $E_{T M}$ with polynomial worstcase runtime, i.e.,

$$
E_{T M}=\left\{\begin{array}{l}
\text { ACCEPT if } M \text { accepts } w \text { within at most } 2^{|w|} \text { steps } \\
R E J E C T \text { otherwise }
\end{array}\right.
$$

- If D exists, then it will appear on the list of all Turing Machines:

$<M_{1}>,<M_{2}>,<M_{3}>,<M_{4}>,<D>, \ldots$					
$E_{T M}\left(<M_{i}>\#<M_{j}>\right)$	$<M_{1}>$	$<M_{2}>$	$<M_{3}>$	$<M_{4}>$	$<D>$
$<M_{1}>$	$\underline{\text { ACCEPT }}$	ACCEPT	REJECT	ACCEPT	ACCEPT
$<M_{2}>$	ACCEPT	$\underline{\text { REJECT }}$	REJECT	ACCEPT	REJECT
$<M_{3}>$	REJECT	ACCEPT	$\underline{\text { REJECT }}$	REJECT	ACCEPT
$<M_{4}>$	REJECT	ACCEPT	REJECT	$\underline{\text { ACCEPT }}$	REJECT
$<D>$	REJECT	ACCEPT	ACCEPT	REJECT	???

A Decidable Non-Polynomial Problem, cont'd

- $D\left(<M_{i}>\right)$ does the opposite of $E_{T M}\left(<M_{i}>\#<M_{j}>\right)$
- Suppose $E_{T M}(<D>\#<D>)$ accepts
- That means that D accepts (fast) on input $<D>$
- But D should reject because $E_{T M}(<D>\#<D>)$ accepted
- FISHY!
- Suppose $E_{T M}(<D>\#<D>)$ rejects
- That means that D either rejects or is slow to accept input $\langle D\rangle$
- May or may not accept (no contradiction so far)
- We know D should accept because $E_{T M}(<D>\#<D>)$ rejected
- But $E_{T M}$ is fast
- Note that D runs by simulating $E_{T M}$ on $\langle D\rangle \#\langle D\rangle$
- So the runtime of D is bounded by the runtime of $E_{T M}$, plus the overhead of preparing the input to $E_{T M}$ (polynomial time to copy $\langle D\rangle$, etc.)
- The runtime of $E_{T M}$ is at most polynomial
- FISHY!

Boundary Between Efficient and Inefficient

- Turing Machines are the gold standard for defining solvable and efficiently solvable
- We have a robust notion of an efficiently solvable problem, the class P
- There are many interesting problems in P
- There are problems that are not in $\mathrm{P}\left(\mathcal{L}_{E X P}\right)$
- There are problems that we believe are not in P
- Traveling salesman, factorization, CLIQUE, etc.
- Instant fame if you can prove this (P vs NP)!
- In practice, efficiency has many dimensions
- When a problem has no fast solution but still needs to be solved, we use servers, clusters, etc. (salesmen need to travel!)
- Mobile platforms optimize for battery consumption, at the expense of runtime
- Distributed platforms spread data across and must solve problems with limited communication
- Streaming platforms may pre-load data
- Machine learning applications may need to preserve privacy, fairness, etc.

. . . the high technology so celebrated today is essentially a mathematical technology.

> "To err is human, but to really foul things up you need a computer." - Paul Ehrlich

- Mariner rocket explodes (1962). Formula into code bug resulted in no smoothing of deviations.
- WWWIII (1983)? Soviet EWS detects 5 US-missiles (bug detected sunlight reflections).
- Luckily Stanislav "funny feeling in my gut" Petrov thought: "surely they'd use more missiles?"
- Therac 25 (1985). Concurrent programming bug killed patients through massive $100 \times$ radiation overdose.
- AT\&T Lines Go Dead (1990). 75 million calls dropped (one line of buggy code in software upgrade).
- Patriot missile defense fails (1991). $\mathbf{2 8}$ soldiers dead, $\mathbf{1 0 0}$ injured (rounding error in scud-detection).
- Pentium floating point long-division bug (1993). Cost: \$475 million - flawed division table.
- Ariane rocket explosion (1996). Cost: \$500 million - overflow in 64 -bit to 16 -bit conversion.
- Y2K (1999). Cost: $\$ 500$ billion spent because year was stored as 2 digits to save space.
- Mars Climate Orbiter Crash (1998). Cost: $\$ 125$ million lost due to metric to imperial units bug.
- Tesla Self-Driving Car (2016). 1 dead. Auto-pilot didn't "see" tractor-trailer. (many more since then)
- Financial Disasters: London Stock Exchange down due to single server bug (2009; billions of pounds of trading); Knight Capital computer glitch trigers stock sale (2012; 500 million lost and Knight's value drops by 75%).
- Airline Disasters:
- AirFrance 447 2009, 228 dead: pitot-tube failure feeds inconsistent data to programs which then panic pilot.
- Spanair 5022, 2008, 154 dead: malware virus.
- AdamAir 574, 2007, 102 dead: navigation system errors (and pilot errors).
- KoreanAir 801, 1997, 228 dead: ground proximity warning system bug.
- AeroPerú 603, 1996, 70 dead: altimeter failures.
- Scottish RAF Chinook, 1994, 29 dead: faulty test program
- AirFrance 296, 1988, 3 dead: altimeter bug.
- IranAir 655, 1988, 290 dead: shot down by US Aegis combat system (misidentified as attacking military plane).
- KoreanAir 007, 1983, 269 dead: autopilot took plane into Soviet airspace where it got shot down.
- Boeing 737 Max, 2018,2019, 346 dead: attack sensor + algorithm errors.

