Unsolvable Problems

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 27

Overview

- Programmable Turing Machines.
- Examples of unsolvable problems.
 - Post's Correspondence Problem (PCP)?
 - HalfSum?
 - Auto-Grade?
 - Ultimate-Debugger?
- \mathcal{L}_{TM} : The language recognized by a Universal Turing Machine.
 - \mathcal{L}_{TM} is undecidable cannot be solved!
- Auto-Grade and Ultimate-Debugger do not exist.
- What about HalfSum?

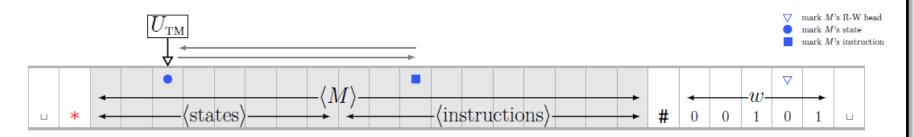
Programmable Turing Machine: Universal Turing Rensselaer Machine

- A Turing Machine M has a binary encoding $\langle M \rangle$. Its input w is a binary string.
- The encoding < M > #w can then be the input to another Turing Machine U_{TM}

$$U_{TM}(\langle M \rangle \# w) = \begin{cases} halt with ACCEPT & if M(w) = halt with ACCEPT; \\ halt with REJECT & if M(w) = halt with REJECT; \\ loop forever & if M(w) = loop forever \end{cases}$$

computer program program input

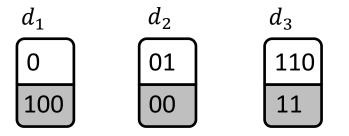
- U_{TM} outputs on < M > #w whatever M outputs on w. U_{TM} simulates M
- U_{TM} is fixed but can simulate any M, even one with a million states



• Entire simulation is done on the tape!

Post's Correspondence Problem (PCP)

• **PCP**: Consider 3 dominos



• Can I arrange dominos (using multiple copies of each) so that top and bottom strings match

$$d_3 d_2 d_3 d_1 = \boxed{\begin{array}{cccc} 110 & 01 & 110 & 0 \\ 11 & 00 & 11 & 100 \end{array}}$$

- INPUT: Dominos $\{d_1, d_2, \dots, d_n\}$.
- TASK: Can one line up finitely many dominos so that the top and bottom strings match?

HalfSum

• Consider the multiset $S = \{1, 1, 1, 3, 4, 4, 5, 6, 9\}$ and subset $A = \{1, 3, 4, 9\}$

$$sum(A) = 17 = \frac{1}{2} \times sum(S)$$

- INPUT: Multiset $S = \{x_1, x_2, ..., x_n\}$. For example, $S = \{1, 1, 1, 3, 4, 4, 5, 6, 9\}$
- TASK: Is there a subset whose sum is $\frac{1}{2} \times sum(S) = \frac{1}{2} \times (x_1 + x_2 + \dots + x_n)$?

Auto-Grade

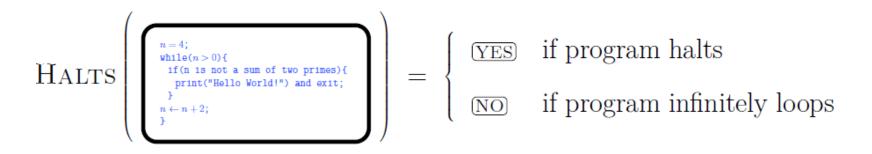
🕲 Rensselaer

- Your first CS assignment: Write a program to print "Hello World!" and halt.
- **CS1**: 700+ submissions!
- Naturally, we do not grade these by hand.
- Auto-Grade: runs each submission and determines if it is correct.
 - program verification
 - (more like testing really verification in general means *proving* your program is correct over all possible inputs)
- What does Auto-Grade say for this program:

```
n = 4;
while(n > 0){
    if(n is not a sum of two primes){
        print("Hello World!") and exit;
    }
    n ← n + 2;
}
```

Ultimate-Debugger

- Wouldn't it be nice to have the Ultimate-Debugger
 - Would solve the Halting Problem



- We can grade the students program correctly.
- We can solve Goldbach's conjecture.
- Just think what you could do with Ultimate-Debugger.
 - No more infinite looping programs.

Does a Program Successfully Terminate?

- Our simulator U_{TM} is a *recognizer* for \mathcal{L}_{TM}
- Is there a Turing Machine A_{TM} which <u>decides</u> \mathcal{L}_{TM} ?
 - A decider must *always* halt with an answer
 - U_{TM} may loop forever if M loops forever on w
 - Question: What do these mean: $M(\langle M \rangle)$ and $A_{TM}(\langle M \rangle \# \langle M \rangle)$?
- A diabolical Turing Machine D built from A_{TM}:
 D: "Diagonal" Turing Machine derived from A_{TM} (the decider for L_{TM})
 input: < M > where M is a Turing Machine
 - 1. Run A_{TM} with input < M > # < M >
 - 2. If A_{TM} accepts then REJECT; otherwise (A_{TM} rejects) ACCEPT
- *D* does the *opposite* of A_{TM} . Is *D* a decider?

Theorem. A_{TM} does not exist (\mathcal{L}_{TM} Cannot be Solved)

- First note that if A_{TM} exists, then D must exist
- If D exists, then it will appear on the list of all Turing Machines: $< M_1 > , < M_2 > , < M_3 > , < M_4 > , < D > , ...$
- Consider what happens when M_i runs on $\langle M_j \rangle$, that is $A_{TM}(\langle M_i \rangle \# \langle M_j \rangle)$

$A_{TM} \bigl(< M_i > \# < M_j > \bigr)$	$< M_1 >$	$< M_{2} >$	$< M_{3} >$	$< M_{4} >$	< D >
$< M_1 >$	<u>ACCEPT</u>	ACCEPT	REJECT	ACCEPT	ACCEPT
$< M_2 >$	ACCEPT	<u>REJECT</u>	REJECT	ACCEPT	REJECT
$< M_{3} >$	REJECT	ACCEPT	<u>REJECT</u>	REJECT	ACCEPT
$< M_4 >$	REJECT	ACCEPT	REJECT	<u>ACCEPT</u>	REJECT
< D >					

Theorem. A_{TM} does not exist (\mathcal{L}_{TM} Cannot be Solved)

- First note that if A_{TM} exists, then D must exist
- If D exists, then it will appear on the list of all Turing Machines: $< M_1 > , < M_2 > , < M_3 > , < M_4 > , < D > , ...$
- Consider what happens when M_i runs on $\langle M_j \rangle$, that is $A_{TM}(\langle M_i \rangle \# \langle M_j \rangle)$

$A_{TM} \bigl(< M_i > \# < M_j > \bigr)$	$< M_1 >$	$< M_{2} >$	$< M_{3} >$	$< M_4 >$	< D >			
$< M_1 >$	<u>ACCEPT</u>	ACCEPT	REJECT	ACCEPT	ACCEPT			
$< M_2 >$	ACCEPT	<u>REJECT</u>	REJECT	ACCEPT	REJECT			
$< M_{3} >$	REJECT	ACCEPT	<u>REJECT</u>	REJECT	ACCEPT			
$< M_4 >$	REJECT	ACCEPT	REJECT	<u>ACCEPT</u>	REJECT			
< D >	REJECT	ACCEPT	ACCEPT	REJECT	???			
• $D(\langle M_i \rangle)$ does the opposite of $A_{TM}(\langle M_i \rangle \# \langle M_i \rangle)$								

Theorem. A_{TM} does not exist (\mathcal{L}_{TM} Cannot be Solved)

- $D(\langle M_i \rangle)$ does the opposite of $A_{TM}(\langle M_i \rangle \# \langle M_j \rangle)$
- Suppose $A_{TM} (< D > \# < D >)$ accepts
 - That means that D accepted the input < D >
 - But then D should reject < D > because $A_{TM}(< D > \# < D >)$ accepted

- FISHY!

- Suppose $A_{TM}(< D > \# < D >)$ rejects
 - That means that D rejected the input < D >
 - But then D should accept < D > because $A_{TM}(< D > \# < D >)$ rejected

- FISHY!

- This proof should remind you of Cantor's diagonalization argument
- It's essentially the same idea: we have countably many Turing Machines but uncountably many functions
 - Some functions cannot be implemented by a Turing machine
 - One of the most important results in the theory of computation!

13

Ultimate-Debugger and Auto-Grade Don't Exist

- No *general* program/algorithm to analyze *any* other program *M* and tell if *M* will accept or not a particular input.
 - 333
 - No Ultimate-Debugger
 - No Auto-Grade for CS-1 Programs
 - No solver for PCP
- Suppose Ultimate-Debugger H_{TM} exists and *decides* if any other program halts
- We can use H_{TM} to construct a solver A_{TM} for L_{TM}
 A_{TM}: Turing Machine derived from H_{TM} (the decider for L_{HALT})
 input: < M > #w where M is a Turing Machine and w an input to M
 - 1. Run H_{TM} with input $\langle M \rangle #w$. If H_{TM} rejects, then REJECT
 - 2. Run U_{TM} with input $\langle M \rangle #w$ and output the decision U_{TM} gives
- This problem is known as the *halting problem*!
- Exercise. Show that Auto-Grade does not exist.
- **Exercise.** Show that HalfSum is solvable by giving a decider.

Non-Recognizable Languages

- How many recognizable languages are there?
 - At most countable, since every recognizable language must be recognized by a corresponding TM
- Is A_{TM} a recognizer?
 - Yes, it halts when M halts on < w > and accepts
- So some undecidable languages are recognizable!
 - But countably many
- What does that mean about the remaining computing problems?
 - They must be non-recognizable
 - There are uncountable many non-recognizable languages!
 - Most languages are not recognizable!
- Is CS useless?
 - Many decidable problems are in fact useful (sorting, shortest path, etc.)
 - Plus, we can force halting by setting a limit on computation time
 - The next challenge is how fast can we solve the problems that we know are solvable (algorithms course)!

The Landscape

