
Unsolvable Problems

1



Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 27

2



Overview

• Programmable Turing Machines.

• Examples of unsolvable problems.

– Post’s Correspondence Problem (PCP)?

– HalfSum?

– Auto-Grade?

– Ultimate-Debugger?

• ℒ𝑇𝑀: The language recognized by a Universal Turing Machine.

– ℒ𝑇𝑀 is undecidable – cannot be solved!

• Auto-Grade and Ultimate-Debugger do not exist.

• What about HalfSum?

3



Programmable Turing Machine: Universal Turing 

Machine

• A Turing Machine 𝑀 has a binary encoding < 𝑀 >. Its input 𝑤 is a binary string.

• The encoding < 𝑀 > #𝑤 can then be the input to another Turing Machine 𝑈𝑇𝑀

𝑈𝑇𝑀 < 𝑀 > #𝑤 = ቐ

ℎ𝑎𝑙𝑡 𝑤𝑖𝑡ℎ 𝐴𝐶𝐶𝐸𝑃𝑇 𝑖𝑓 𝑀 𝑤 = ℎ𝑎𝑙𝑡 𝑤𝑖𝑡ℎ 𝐴𝐶𝐶𝐸𝑃𝑇;

ℎ𝑎𝑙𝑡 𝑤𝑖𝑡ℎ 𝑅𝐸𝐽𝐸𝐶𝑇 𝑖𝑓 𝑀 𝑤 = ℎ𝑎𝑙𝑡 𝑤𝑖𝑡ℎ 𝑅𝐸𝐽𝐸𝐶𝑇;

𝑙𝑜𝑜𝑝 𝑓𝑜𝑟𝑒𝑣𝑒𝑟 𝑖𝑓 𝑀 𝑤 = 𝑙𝑜𝑜𝑝 𝑓𝑜𝑟𝑒𝑣𝑒𝑟 
computer   program   program input

• 𝑼𝑻𝑴 outputs on < 𝑴 > #𝒘 whatever 𝑴 outputs on 𝒘. 𝑼𝑻𝑴 simulates 𝑴

• 𝑈𝑇𝑀 is fixed but can simulate any 𝑀, even one with a million states

• Entire simulation is done on the tape!
4



Post’s Correspondence Problem (PCP)

• PCP: Consider 3 dominos

• Can I arrange dominos (using multiple copies of each) so that top and bottom 
strings match

𝑑3𝑑2𝑑3𝑑1 =

• INPUT: Dominos {𝑑1, 𝑑2, … , 𝑑𝑛}.

• TASK: Can one line up finitely many dominos so that the top and bottom strings 
match?

5

0

100

01

00

110

11

𝑑1 𝑑2 𝑑3



HalfSum

• Consider the multiset 𝑆 = 1,1,1,3,4,4,5,6,9  and subset 𝐴 = 1,3,4,9

𝑠𝑢𝑚 𝐴 = 17 =
1

2
× 𝑠𝑢𝑚(𝑆)

• INPUT: Multiset 𝑆 = 𝑥1, 𝑥2, … , 𝑥𝑛 . For example, 𝑆 = 1,1,1,3,4,4,5,6,9

• TASK: Is there a subset whose sum is 
1

2
× 𝑠𝑢𝑚 𝑆 =

1

2
× 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 ?

6



Auto-Grade

• Your first CS assignment: Write a program to print “Hello World!” and halt.

• CS1: 700+ submissions!

• Naturally, we do not grade these by hand.

• Auto-Grade: runs each submission and determines if it is correct.

– program verification

– (more like testing really – verification in general means *proving* your program 
is correct over all possible inputs)

• What does Auto-Grade say for this program:

 n = 4;

 while(n > 0){

   if(n is not a sum of two primes){

     print("Hello World!") and exit;

   }

   n ← n + 2;

 }
7



Ultimate-Debugger

• Wouldn’t it be nice to have the Ultimate-Debugger

– Would solve the Halting Problem

• We can grade the students program correctly.

• We can solve Goldbach’s conjecture.

• Just think what you could do with Ultimate-Debugger.

– No more infinite looping programs.

8



Does a Program Successfully Terminate?

• Let’s define the language of all Turing Machines that accept a string
ℒ𝑇𝑀 = < 𝑀 > #𝑤 𝑀 𝑖𝑠 𝑎 𝑇𝑢𝑟𝑖𝑛𝑔 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

• Our simulator 𝑈𝑇𝑀 is a recognizer for ℒ𝑇𝑀

• Is there a Turing Machine 𝐴𝑇𝑀 which decides ℒ𝑇𝑀?

– A decider must always halt with an answer

– 𝑈𝑇𝑀 may loop forever if 𝑀 loops forever on 𝑤

– Question: What do these mean: 𝑀(< 𝑀 >) and 𝐴𝑇𝑀(< 𝑀 > # < 𝑀 >)?

• A diabolical Turing Machine 𝐷 built from 𝐴𝑇𝑀:

𝐷: “Diagonal” Turing Machine derived from 𝐴𝑇𝑀 (the decider for ℒ𝑇𝑀)

input: < 𝑀 > where 𝑀 is a Turing Machine

1. Run 𝐴𝑇𝑀 with input < 𝑀 > # < 𝑀 >

2. If 𝐴𝑇𝑀 accepts then REJECT; otherwise (𝐴𝑇𝑀 rejects) ACCEPT

• 𝐷 does the opposite of 𝐴𝑇𝑀. Is 𝐷 a decider?
9



Theorem. 𝑨𝑻𝑴 does not exist (ℒ𝑻𝑴 Cannot be 

Solved)

• First note that if 𝐴𝑇𝑀 exists, then 𝐷 must exist

• If 𝐷 exists, then it will appear on the list of all Turing Machines:
< 𝑀1 >, < 𝑀2 >, < 𝑀3 >, < 𝑀4 >, < 𝐷 >, …

• Consider what happens when 𝑀𝑖  runs on < 𝑀𝑗 >, that is 𝐴𝑇𝑀 < 𝑀𝑖 > # < 𝑀𝑗 >

10

𝐴𝑇𝑀 < 𝑀𝑖 > # < 𝑀𝑗 > < 𝑀1 > < 𝑀2 > < 𝑀3 > < 𝑀4 > < 𝐷 >

< 𝑀1 > ACCEPT ACCEPT REJECT ACCEPT ACCEPT

< 𝑀2 > ACCEPT REJECT REJECT ACCEPT REJECT

< 𝑀3 > REJECT ACCEPT REJECT REJECT ACCEPT

< 𝑀4 > REJECT ACCEPT REJECT ACCEPT REJECT

< 𝐷 >



Theorem. 𝑨𝑻𝑴 does not exist (ℒ𝑻𝑴 Cannot be 

Solved)

• First note that if 𝐴𝑇𝑀 exists, then 𝐷 must exist

• If 𝐷 exists, then it will appear on the list of all Turing Machines:
< 𝑀1 >, < 𝑀2 >, < 𝑀3 >, < 𝑀4 >, < 𝐷 >, …

• Consider what happens when 𝑀𝑖  runs on < 𝑀𝑗 >, that is 𝐴𝑇𝑀 < 𝑀𝑖 > # < 𝑀𝑗 >

• 𝐷 < 𝑀𝑖 >  does the opposite of 𝐴𝑇𝑀 < 𝑀𝑖 > # < 𝑀𝑗 >
11

𝐴𝑇𝑀 < 𝑀𝑖 > # < 𝑀𝑗 > < 𝑀1 > < 𝑀2 > < 𝑀3 > < 𝑀4 > < 𝐷 >

< 𝑀1 > ACCEPT ACCEPT REJECT ACCEPT ACCEPT

< 𝑀2 > ACCEPT REJECT REJECT ACCEPT REJECT

< 𝑀3 > REJECT ACCEPT REJECT REJECT ACCEPT

< 𝑀4 > REJECT ACCEPT REJECT ACCEPT REJECT

< 𝐷 > REJECT ACCEPT ACCEPT REJECT ???



Theorem. 𝑨𝑻𝑴 does not exist (ℒ𝑻𝑴 Cannot be 

Solved)

• 𝐷 < 𝑀𝑖 >  does the opposite of 𝐴𝑇𝑀 < 𝑀𝑖 > # < 𝑀𝑗 >

• Suppose 𝐴𝑇𝑀 < 𝐷 > # < 𝐷 >  accepts

– That means that 𝐷 accepted the input < 𝐷 >

– But then 𝐷 should reject < 𝐷 > because 𝐴𝑇𝑀 < 𝐷 > # < 𝐷 >  accepted

– FISHY!

• Suppose 𝐴𝑇𝑀 < 𝐷 > # < 𝐷 >  rejects

– That means that 𝐷 rejected the input < 𝐷 >

– But then 𝐷 should accept < 𝐷 > because 𝐴𝑇𝑀 < 𝐷 > # < 𝐷 >  rejected

– FISHY!

• This proof should remind you of Cantor’s diagonalization argument

• It’s essentially the same idea: we have countably many Turing Machines but 
uncountably many functions

– Some functions cannot be implemented by a Turing machine

– One of the most important results in the theory of computation!

12



Ultimate-Debugger and Auto-Grade Don’t Exist

• No general program/algorithm to analyze any other program 𝑀 and tell if 𝑀 will 
accept or not a particular input.

  

– No Ultimate-Debugger

– No Auto-Grade for CS-1 Programs

– No solver for PCP

• Suppose Ultimate-Debugger 𝐻𝑇𝑀 exists and decides if any other program halts

• We can use 𝐻𝑇𝑀 to construct a solver 𝐴𝑇𝑀 for ℒ𝑇𝑀

𝐴𝑇𝑀: Turing Machine derived from 𝐻𝑇𝑀 (the decider for ℒ𝐻𝐴𝐿𝑇)

input: < 𝑀 > #𝑤 where 𝑀 is a Turing Machine and 𝑤 an input to 𝑀

1. Run 𝐻𝑇𝑀 with input < 𝑀 > #𝑤. If 𝐻𝑇𝑀 rejects, then REJECT

2. Run 𝑈𝑇𝑀 with input < 𝑀 > #𝑤 and output the decision 𝑈𝑇𝑀 gives

• This problem is known as the halting problem!

• Exercise. Show that Auto-Grade does not exist.

• Exercise. Show that HalfSum is solvable by giving a decider.
13



Non-Recognizable Languages

• How many recognizable languages are there?

– At most countable, since every recognizable language must be recognized by a 
corresponding TM

• Is 𝐴𝑇𝑀 a recognizer?

– Yes, it halts when 𝑀 halts on < 𝑤 > and accepts

• So some undecidable languages are recognizable!

– But countably many

• What does that mean about the remaining computing problems?

– They must be non-recognizable

– There are uncountable many non-recognizable languages!

– Most languages are not recognizable!

• Is CS useless?

– Many decidable problems are in fact useful (sorting, shortest path, etc.)

• Plus, we can force halting by setting a limit on computation time

– The next challenge is how fast can we solve the problems that we know are 
solvable (algorithms course)!

14



The Landscape

15

DFA
(no external memory)
(regular expressions)

∗ 01 ∗ , 0•3𝑛+1

CFG
(stack)

0•𝑛, 1•𝑛 ,

𝑤𝑤𝑅

TM-Decider
(RAM)
𝑤𝑤 ,

02𝑛 , {0•𝑛1•𝑛0•𝑛}

HalfSum

TM-Recognizer
ℒ𝑇𝑀

Ultimate-Debugger
Auto-Grade

PCP

Non-Recognizable
ℒ𝑇𝑀, ℒ𝐻𝐴𝐿𝑇

most languages



	Slide 1: Unsolvable Problems
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Programmable Turing Machine: Universal Turing Machine
	Slide 5: Post’s Correspondence Problem (PCP)
	Slide 6: HalfSum
	Slide 7: Auto-Grade
	Slide 8: Ultimate-Debugger
	Slide 9: Does a Program Successfully Terminate?
	Slide 10: Theorem. bold italic cap A. sub bold italic cap T bold italic cap M  does not exist (script cap L sub bold italic cap T bold italic cap M  Cannot be Solved)
	Slide 11: Theorem. bold italic cap A. sub bold italic cap T bold italic cap M  does not exist (script cap L sub bold italic cap T bold italic cap M  Cannot be Solved)
	Slide 12: Theorem. bold italic cap A. sub bold italic cap T bold italic cap M  does not exist (script cap L sub bold italic cap T bold italic cap M  Cannot be Solved)
	Slide 13: Ultimate-Debugger and Auto-Grade Don’t Exist
	Slide 14: Non-Recognizable Languages
	Slide 15: The Landscape

