Turing Machines

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 26
- Solving a non context free language: $w \# w$
- Transducer Turing Machines.
- Infinite Loops
- Encodings of Turing Machines

Turing's 1936 Miracle

- "On Computable Numbers with an Application to the Entscheidungsproblem"
- Entscheidungsproblem was a question posed by Hilbert and Ackermann asking whether every logical proposition could be deduced from anxioms
- A classic which epitomizes the beauty of pure thought, where Alan Turing
- Invented a notion of what it means for a number to be computable.
- Invented the computer.
- Invented and used subroutines.
- Invented the programmable computer.
- Gave a negative answer to Hilbert's Entscheidungsproblem.

- All this before the world even saw its first computer. Wow!
- (Oh, and by the way, he helped the Alliance win WWII by decrypting the Enigma machine used for communication by the nazis.)

- States.
- Can move L/R (or stay put) giving random access to an infinite read-write tape.
- Input written on the tape to start.
- Instructions specify what to do based on state and what is on the tape.
- Beacon symbol * (start of the tape).
- Let's see the capabilities of this machine on the non context free problem

$$
\mathcal{L}=\{w \# w\}
$$

Solving w\#w

1. Check for one " $\#$ ", otherwise REJECT (a DFA can do this)

2. Return to "*".
3. Move right to first non-marked bit before "\#".

- Mark the location and remember the bit.
- (If you reach "\#" before any non-marked bit,
 goto step 5.)

4. Move right to first non-marked bit after " $\#$ ".

- If you reach " \quad " before any non-marked bit, REJECT
- If the bit does not match the bit from step 3, REJECT
- Otherwise (bit matches), mark the location. goto step 2.

Solving w\#w

1. Check for one " $\#$ ", otherwise REJECT (a DFA can do this)

2. Return to "*".
3. Move right to first non-marked bit before "\#".

- Mark the location and remember the bit.
- (If you reach "\#" before any non-marked bit, goto step 5.)

4. Move right to first non-marked bit after "\#".

- If you reach " \smile " before any non-marked bit, REJECT
- If the bit does not match the bit from step 3, REJECT
- Otherwise (bit matches), mark the location. goto step 2.

Solving w\#w

1. Check for one " $\#$ ", otherwise REJECT (a DFA can do this)

2. Return to "*".
3. Move right to first non-marked bit before " $\#$ ".

- Mark the location and remember the bit.
- (If you reach "\#" before any non-marked bit, goto step 5.)

4. Move right to first non-marked bit after "\#".

- If you reach " "" before any non-marked bit, REJECT
- If the bit does not match the bit from step 3, REJECT

- Otherwise (bit matches), mark the location. goto step 2.

1. Check for one " $\#$ ", otherwise REJECT (a DFA can do this)

2. Return to "*".
3. Move right to first non-marked bit before " $\#$ ".

- Mark the location and remember the bit.
- (If you reach "\#" before any non-marked bit, goto step 5.)

4. Move right to first non-marked bit after "\#".

- If you reach " "" before any non-marked bit, REJECT
- If the bit does not match the bit from step 3, REJECT

- Otherwise (bit matches), mark the location. goto step 2.

5. Move right to first non-marked bit after " $\#$ ".

- If you reach " \backsim " before any non-marked bit, ACCEPT
- If you find a bit (string on the right is too long), REJECT
- YES

Turing Machine Instructions

- Similar to a DFA but with read/write capability
- Let's look at a DFA-like instruction: $q_{1} 0 q_{3}$
- If in state q_{1} and read 0 , transition to q_{3}
- A Turing Machine can also write (and move its position) in addition to reading and transitioning

Turing Machine Instructions

- Similar to a DFA but with read/write capability
- Let's look at a DFA-like instruction: $q_{1} 0 q_{3}$
- If in state q_{1} and read 0 , transition to q_{3}
- A Turing Machine can also write (and move its position) in addition to reading and transitioning

Building the Turing Machine that Solves $w \# w$

Turing Machine for Multiplication

- Consider a language that encodes multiplication

$$
\mathcal{L}_{\text {mult }}=\left\{0^{\bullet i} \# 1^{\bullet j} \# 0^{\bullet k} \mid i, j>0 \text { and } k=i \times j\right\}
$$

- Multiplication is repeated addition.
- Pair each left-0 with a block of right-0s
 equal to the number of 1 s

1. Verify the input format is $0^{\bullet i} \# 1^{\bullet j} \# 0^{\bullet} k$

- (A DFA can solve this).

-	$*$	0	0	$\#$	1	1	1	$\#$	0	0	0	0	0	0

2. \quad Return to *
3. Move right to mark first unmarked left-0, then right to " $\#$ ".

- If no unmarked left-0's (you reach "\#"), goto step 6.

6. Move right to verify there are no unmarked right-zeros.

- If you come to unmarked right-zero, REJECT; if come to " "" ACCEPT

Turing Machine for Multiplication

- Consider a language that encodes multiplication

$$
\mathcal{L}_{\text {mult }}=\left\{0^{\bullet i} \# 1^{\bullet j} \# 0^{\bullet k} \mid i, j>0 \text { and } k=i \times j\right\}
$$

- Multiplication is repeated addition.
- Pair each left-0 with a block of right-Os
 equal to the number of 1 s

1. Verify the input format is $0^{\bullet i} \# 1^{\bullet j} \# 0^{\bullet} k$

- (A DFA can solve this).

2. \quad Return to *
3. Move right to mark first unmarked left-0, then right to " $\#$ ".

- If no unmarked left-0's (you reach " $\#$ "), goto step 6.

4. Move right and mark first unmarked 1.

- If all 1's marked (reach "\#") move left, unmarking 1's. GOTO step 2.

5. Move right to find an unmarked right-0.

- If no unmarked right-0's (come to " \quad "), REJECT

- Otherwise, mark the 0 , move left to first marked 1. GOTO step 4.

6. Move right to verify there are no unmarked right-zeros.

- If you come to unmarked right-zero, REJECT; if come to " "" ACCEPT

Transducer Turing Machine that Multiplies

- Suppose that instead of checking if the multiplication is correct, we want a Turing Machine that performs the multiplication

- Instead of marking right-Os, write
- Turing Machines that modify the input are called transducers

Infinite Loops

- Consider this Turing Machine

$$
M(w)=\left\{\begin{array}{c}
\text { Halts in accept state } \rightarrow \text { ACCEPT } \\
\text { Halts in reject state } \rightarrow \text { REJECT } \\
\text { Loops forever } \rightarrow ?
\end{array}\right.
$$

- What happens if the input is 01?
- Turing Machine M is a recognizer for language $\mathcal{L}(M)$:

$$
\begin{aligned}
& w \in \mathcal{L}(M) \leftrightarrow M(w)=\text { halt } \text { with a YES } \\
& w \notin \mathcal{L}(M) \leftrightarrow M(w)=\text { halt with a NO or loop forever }
\end{aligned}
$$

- Consider this Turing Machine

$$
M(w)=\left\{\begin{aligned}
& \text { Halts in accept state } \rightarrow \text { ACCEPT } \\
& \text { Halts in reject state } \rightarrow \text { REJECT } \\
& \text { Loops forever } \rightarrow ?
\end{aligned}\right.
$$

- What happens if the input is 01 ?
- Turing Machine M (not the one above) is a decider for language $\mathcal{L}(M)$:

$$
\begin{aligned}
& w \in \mathcal{L}(M) \leftrightarrow M(w)=\text { halt } \text { with a YES } \\
& w \notin \mathcal{L}(M) \leftrightarrow M(w)=\text { halt with a NO }
\end{aligned}
$$

- Practical algorithms must halt! Practical algorithms correspond to deciders.

Mathematical Description of a Turing Machine

- States Q. The first state is the start state, the halting states are A, E
- Symbols Σ. By default these are $\{*, 0,1, \longleftarrow, \#\}$.
- Machine-level transition instructions. Each instruction has the form
\{state\} \{read-symbol\} \{next-state\} \{written-symbol\} \{move\}
- The instructions map each (state, symbol) pair to a
(state, symbol, move) triple and thus form a transition function

$$
\delta: Q \times \Sigma \rightarrow Q \times \Sigma \times\{L, R, S\}
$$

Encoding a Turing Machine as a Bit-String

- States. $\left\{q_{0}, q_{1}, A, E\right\}$
- Symbols. \{*, 0, 1,,$- \#\}$
- Machine-level transition instructions.
$\left\{q_{0}\right\}\{*\}\left\{q_{0}\right\}\{*\}\{R\}$
$\left\{q_{0}\right\}\{1\}\left\{q_{0}\right\}\{1\}\{R\}$
$\left\{q_{0}\right\}\{0\}\left\{q_{1}\right\}\{0\}\{R\}$
$\left\{q_{0}\right\}\{\#\}\{E\}\{\#\}\{S\}$
$\left\{q_{0}\right\}\{\sqcup\}\{E\}\{\sqcup\}\{S\}$
$\left\{q_{1}\right\}\{1\}\left\{q_{0}\right\}\{1\}\{L\}$
$\left\{q_{1}\right\}\{0\}\{A\}\{0\}\{S\}$
$\left\{q_{1}\right\}\{\#\}\{A\}\{\#\}\{S\}$
$\left\{q_{1}\right\}\{\sqcup\}\{A\}\{\sqcup\}\{S\}$
$\left\{q_{1}\right\}\{*\}\left\{q_{1}\right\}\{*\}\{R\}$

- The description of a Turing Machine is a finite binary string.
- Turing machines are countable and can be listed: $\left\{M_{1}, M_{2}, \ldots\right\}$
- The problems solvable by an algorithm are countable: $\left\{\mathcal{L}\left(M_{1}\right), \mathcal{L}\left(M_{2}\right), \ldots\right\}$

Not all languages can be decided

- The description of a Turing Machine is a finite binary string.
- Turing machines are countable and can be listed: $\left\{M_{1}, M_{2}, \ldots\right\}$
- The problems solvable by an algorithm are countable: $\left\{\mathcal{L}\left(M_{1}\right), \mathcal{L}\left(M_{2}\right), \ldots\right\}$
- Can we list all languages?
- Each language $\mathcal{L}(M)$ can be mapped to an infinite binary string

\mathcal{B}	ε	0	1	00	01	10	11	000	\ldots
$\mathcal{L}(M)$	0	0	1	1	1	0	1	1	\ldots

- The set of all languages is uncountable!
- Some languages cannot be decided by a Turing Machine!

