Turing Machines

Reading

@ Rensselaer

e Malik Magdon-Ismail. Discrete Mathematics and Computing.
— Chapter 26

Overview ® Rensselaer

Solving a non context free language: w#w

Transducer Turing Machines.

Infinite Loops

Encodings of Turing Machines

Turing’s 1936 Miracle ®) Rensselaer

e “On Computable Numbers with an Application to the Entscheidungsproblem”
— Entscheidungsproblem was a question posed by Hilbert and Ackermann asking
whether every logical proposition could be deduced from anxioms
* A classic which epitomizes the beauty of pure thought, where Alan Turing
— Invented a notion of what it means for a number to be computable.
— Invented the computer.
— Invented and used subroutines.
— Invented the programmable computer.
— Gave a negative answer to Hilbert’s Entscheidungsproblem.

* All this before the world even saw its first computer. Wow!

e (Oh, and by the way, he helped the Alliance win WWII by decrypting the Enigma
machine used for communication by the nazis.)

Turing’s Machine ®) Rensselaer

e States.

* Can move L/R (or stay put) giving random access to an infinite read-write tape.
* Input written on the tape to start.

* Instructions specify what to do based on state and what is on the tape.

* Beacon symbol * (start of the tape).

* Let’s see the capabilities of this machine on the non context free problem
L = {wH#w}

Solving w#w ®) Rensselaer

1. Check for one “#”, otherwise REJECT (a DFAcando this)| * [0[O0 |1 | #0011 .

2. Return to “*”. 1

3. Move right to first non-marked bit before “#”.
— Mark the location and remember the bit. |

— (If you reach “#” before any non-marked bit,
goto step 5.)
4. Move right to first non-marked bit after “#”.
— If you reach “_.” before any non-marked bit, REJECT
— If the bit does not match the bit from step 3, REJECT

— Otherwise (bit matches), mark the location.
goto step 2.

Solving w#w

@ Rensselaer

1. Check for one “#”, otherwise REJECT (a DFA can do this)

“,n
*,

2. Returnto

3. Move right to first non-marked bit before “#”.
— Mark the location and remember the bit.
— (If you reach “#” before any non-marked bit,
goto step 5.)
4. Move right to first non-marked bit after “#”.
— If you reach “_.” before any non-marked bit, REJECT
— If the bit does not match the bit from step 3, REJECT

— Otherwise (bit matches), mark the location.
goto step 2.

0 1|#]lolo|1]._
/(l) 1|#]lolo|1]._
0 1#2)01Q
0 1l#[olo|1]._

Solving w#w

@ Rensselaer

1. Check for one “#”, otherwise REJECT (a DFA can do this)

a_

2. Return to “«”.

3. Move right to first non-marked bit before “#”.
— Mark the location and remember the bit.
— (If you reach “#” before any non-marked bit,
goto step 5.)
4. Move right to first non-marked bit after “#”.
— If you reach “_.” before any non-marked bit, REJECT
— If the bit does not match the bit from step 3, REJECT

— Otherwise (bit matches), mark the location.
goto step 2.

olo|l1|#|o]o|1]_
/(1301#oo1g
/001#/&01Q
Yolol|1|#|Y0|o0]|1].
/o'/(l)1#/001g

Solving w#w ®) Rensselaer

1. Check for one “#”, otherwise REJECT (a DFAcando this)| * [0[O0 |1 | #0011 .

2. Return to “*”. 1

3. Move right to first non-marked bit before “#”.
— Mark the location and remember the bit. |

— (If you reach “#” before any non-marked bit,
goto step 5.) !

4. Move right to first non-marked bit after “#”.
— If you reach “_.” before any non-marked bit, REJECT |
— If the bit does not match the bit from step 3, REJECT

— Otherwise (bit matches), mark the location.
goto step 2. |

5. Move right to first non-marked bit after “#”.
— If you reach “_.” before any non-marked bit, ACCEPT
— If you find a bit (string on the right is too long), REJECT

* YES « Y0 |0 |1 | # |0 |0 |1

Turing Machine Instructions @) Rensselaer

* Similar to a DFA but with read/write capability
* Let’s look at a DFA-like instruction: g;0qs3

— If in state g; and read O, transition to g5

* A Turing Machine can also write (and move its position) in addition to reading and
transitioning

{110} - {qs H{1}H{R}

|

current state read next state write move

@ (03 1H{R} :@

11

Turing Machine Instructions @) Rensselaer

* Similar to a DFA but with read/write capability
* Let’s look at a DFA-like instruction: g;0qs3

— If in state g; and read O, transition to g5

* A Turing Machine can also write (and move its position) in addition to reading and
transitioning

{110} - {qs H{1}H{R}

|

current state read next state write move

12

Building the Turing Machine that Solves w#w (@) Rensselaer

/1. Check for one “#”, otherwise reject (a DFA can do this) \
2. Returnto “+”.
3. Move right to first non-marked bit before “#”.

Mark and remember the bit. If you reach “#” before any non-marked bit, goto step 5.
4. Move right to first non-marked bit after “#”.

If you reach “_.” or bit doesn’t match, REJECT. Otherwise, mark the location. goto step 2.
5. Move right to first non-marked bit after “#”.
k If you reach “_.” ACCEPT. If you come to a non-marked bit, REJECT /

(\

Step 1

{0,133 {R}

0,13{} {R} {V3HR}

{_H 0
{#H{H{R
{2,014, /}{} {L} v }"
Step 5
0100 <O

S (TR OUGRY (VI0R 13

Turing Machine for Multiplication @) Rensselaer

Consider a language that encodes multiplication
Loar = {0 #1°T#0°%|i,j > 0and k = i X j}

Multiplication is repeated addition.

Pair each left-0 with a block of right-0s
equal to the number of 1s

1. Verify the input formatis 0°#1°%/#0°k
— (A DFA can solve this).

[
*
o
o
3+
[N
=
[N
I+
o
o
o
o
o
o
[

2. Returnto *

3. Move right to mark first unmarked left-0, then right to “#”.
— If no unmarked left-0’s (you reach “#”), goto step 6.

6. Move right to verify there are no unmarked right-zeros.
— If you come to unmarked right-zero, REJECT; if come to “_,” ACCEPT 14

Turing Machine for Multiplication @) Rensselaer

Consider a language that encodes multiplication
Loar = {0 #1°T#0°%|i,j > 0and k = i X j}

Multiplication is repeated addition.

Pair each left-0 with a block of right-0s
equal to the number of 1s

1. Verify the input format is 0°‘#1°/#0° T Wlo #\% 1{1]#16Tololololo]
— (A DFA can solve this).

2. Returnto * l

3. Move right to mark first unmarked left-0, then right to “#”. | |, ololeMMl1l#l6%lolololo }

— If no unmarked left-0’s (you reach “#”), goto step 6.

4. Move right and mark first unmarked 1.
— Ifall 1’s marked (reach “#”) move left, unmarking 1’s. GOTO step 2.

5. Move right to find an unmarked right-0. - .6 ol .{ ./1 }1 # .6 {) .6 ololo|
— If no unmarked right-0’s (come to “_.”), REJECT
— Otherwise, mark the 0, move left to first marked 1. l
GOTO step 4. |« tolol#|1|1]2|#|60l0]0|0]0|_

6. Move right to verify there are no unmarked right-zeros.
— If you come to unmarked right-zero, REJECT; if come to “_.” ACCEPT 15

Transducer Turing Machine that Multiplies

@ Rensselaer

* Suppose that instead of checking if the multiplication is correct, we want a Turing

Machine that performs the multiplication

e Algorithm is basically the same
* Instead of marking right-Os, write

e Turing Machines that modify the input
are called transducers

0 101]1 }
0 411]1 g}
0 111 g}
"0 1M1 ~
« 10 101]1 g}

16

Infinite Loops @) Rensselaer

e Consider this Turing Machine

{x 1} {R} {0}(3 {R}

Halts inreject state - REJECT

Halts in accept state - ACCEPT
M(w) =
Loops forever — ?

(400 (130 {1} 0, ..#30

 What happens if the input is 017?
* Turing Machine M is a recognizer for language L(M):
w € L(M) < M(w) = halt with a YES
w & L(M) © M(w) = halt with a NO or loop forever

17

Infinite Loops, cont’d @ Rensselaer

e Consider this Turing Machine

{x 1} {R} {0}(3 {R}

Halts inreject state - REJECT

Halts in accept state - ACCEPT
M(w) =
Loops forever — ?

(400 (130 {1} 0, ..#30

 What happens if the input is 017?

e Turing Machine M (not the one above) is a decider for language L(M):
w € L(M) © M(w) = halt with a YES
w & L(M) © M(w) = halt with a NO

* Practical algorithms must halt! Practical algorithms correspond to deciders. .

Mathematical Description of a Turing Machine (@) Rensselaer

» States (). The first state is the start state, the halting states are A,E
* Symbols X. By default these are {+, 0, 1, _., #}.
* Machine-level transition instructions. Each instruction has the form

{state} {read-symbol} {next-state} {written-symbol} {move}

— The instructions map each (state, symbol) pairtoa
(state, symbol, move) triple and thus form a transition function
6:QxXX->QxXEX{L,R,S}

19

Encoding a Turing Machine as a Bit-String @) Rensselaer

* States. {qy,q1, A, E} U0 (0} (R}
 Symbols. {+,0,1, _., #}

* Machine-level transition instructions.

{qoHxHqoH*HR} MU0 UL 0, -#0Y
{qoH1Hqo H1HR}
{qoH0}H g1 HOHR}
{qo H#HEH#}{S}
{aoH _HEH _}S}
{q1 H1HqoH{1HL}
{q: HOX{AHO}{S}
{g HEHAHH#HS]
{a O HAH U HSS
{qa H+Ha H+HR}

* The description of a Turing Machine is a finite binary string.
* Turing machines are countable and can be listed: {M, M, ...}

* The problems solvable by an algorithm are countable: {L(M;), L(M,), ...}

20

Not all languages can be decided @) Rensselaer

The description of a Turing Machine is a finite binary string.

Turing machines are countable and can be listed: {M;, M,, ...}

The problems solvable by an algorithm are countable: {L(M,), L(M,), ...}

Can we list all languages?
— Each language L(M) can be mapped to an infinite binary string

B £
L(M) 0

o
-
o
o
o
-
[
o
[
[
o
o
o

— The set of all languages is uncountable!
— Some languages cannot be decided by a Turing Machine!

21

	Slide 1: Turing Machines
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Turing’s 1936 Miracle
	Slide 5: Turing’s Machine
	Slide 6: Solving bold italic w # bold italic w
	Slide 7: Solving bold italic w # bold italic w
	Slide 8: Solving bold italic w # bold italic w
	Slide 9: Solving bold italic w # bold italic w
	Slide 11: Turing Machine Instructions
	Slide 12: Turing Machine Instructions
	Slide 13: Building the Turing Machine that Solves bold italic w # bold italic w
	Slide 14: Turing Machine for Multiplication
	Slide 15: Turing Machine for Multiplication
	Slide 16: Transducer Turing Machine that Multiplies
	Slide 17: Infinite Loops
	Slide 18: Infinite Loops, cont’d
	Slide 19: Mathematical Description of a Turing Machine
	Slide 20: Encoding a Turing Machine as a Bit-String
	Slide 21: Not all languages can be decided

