
Turing Machines

1

Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 26

2

Overview

• Solving a non context free language: 𝑤#𝑤

• Transducer Turing Machines.

• Infinite Loops

• Encodings of Turing Machines

3

Turing’s 1936 Miracle

• “On Computable Numbers with an Application to the Entscheidungsproblem”

– Entscheidungsproblem was a question posed by Hilbert and Ackermann asking
whether every logical proposition could be deduced from anxioms

• A classic which epitomizes the beauty of pure thought, where Alan Turing

– Invented a notion of what it means for a number to be computable.

– Invented the computer.

– Invented and used subroutines.

– Invented the programmable computer.

– Gave a negative answer to Hilbert’s Entscheidungsproblem.

• All this before the world even saw its first computer. Wow!

• (Oh, and by the way, he helped the Alliance win WWII by decrypting the Enigma
machine used for communication by the nazis.)

4

Turing’s Machine

• States.

• Can move L/R (or stay put) giving random access to an infinite read-write tape.

• Input written on the tape to start.

• Instructions specify what to do based on state and what is on the tape.

• Beacon symbol ∗ (start of the tape).

• Let’s see the capabilities of this machine on the non context free problem
ℒ = 𝑤#𝑤

5

Solving 𝒘#𝒘

1. Check for one “#”, otherwise REJECT (a DFA can do this)

2. Return to “∗”.

3. Move right to first non-marked bit before “#”.

– Mark the location and remember the bit.

– (If you reach “#” before any non-marked bit,
goto step 5.)

4. Move right to first non-marked bit after “#”.

– If you reach “␣” before any non-marked bit, REJECT

– If the bit does not match the bit from step 3, REJECT

– Otherwise (bit matches), mark the location.
goto step 2.

6

∗ 0 0 1 # 0 0 1 ␣

∗ 0 0 1 # 0 0 1 ␣✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓

Solving 𝒘#𝒘

1. Check for one “#”, otherwise REJECT (a DFA can do this)

2. Return to “∗”.

3. Move right to first non-marked bit before “#”.

– Mark the location and remember the bit.

– (If you reach “#” before any non-marked bit,
goto step 5.)

4. Move right to first non-marked bit after “#”.

– If you reach “␣” before any non-marked bit, REJECT

– If the bit does not match the bit from step 3, REJECT

– Otherwise (bit matches), mark the location.
goto step 2.

7

∗ 0 0 1 # 0 0 1 ␣

∗ 0 0 1 # 0 0 1 ␣✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓

Solving 𝒘#𝒘

1. Check for one “#”, otherwise REJECT (a DFA can do this)

2. Return to “∗”.

3. Move right to first non-marked bit before “#”.

– Mark the location and remember the bit.

– (If you reach “#” before any non-marked bit,
goto step 5.)

4. Move right to first non-marked bit after “#”.

– If you reach “␣” before any non-marked bit, REJECT

– If the bit does not match the bit from step 3, REJECT

– Otherwise (bit matches), mark the location.
goto step 2.

8

∗ 0 0 1 # 0 0 1 ␣

∗ 0 0 1 # 0 0 1 ␣✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓✓

Solving 𝒘#𝒘

1. Check for one “#”, otherwise REJECT (a DFA can do this)

2. Return to “∗”.

3. Move right to first non-marked bit before “#”.

– Mark the location and remember the bit.

– (If you reach “#” before any non-marked bit,
goto step 5.)

4. Move right to first non-marked bit after “#”.

– If you reach “␣” before any non-marked bit, REJECT

– If the bit does not match the bit from step 3, REJECT

– Otherwise (bit matches), mark the location.
goto step 2.

5. Move right to first non-marked bit after “#”.

– If you reach “␣” before any non-marked bit, ACCEPT

– If you find a bit (string on the right is too long), REJECT

• YES

9

∗ 0 0 1 # 0 0 1 ␣

∗ 0 0 1 # 0 0 1 ␣✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓✓

…

∗ 0 0 1 # 0 0 1 ␣✓ ✓✓ ✓ ✓ ✓

∗ 0 0 1 # 0 0 1 ␣✓ ✓✓ ✓ ✓ ✓

Turing Machine Instructions

• Similar to a DFA but with read/write capability

• Let’s look at a DFA-like instruction: 𝑞10𝑞3

– If in state 𝑞1 and read 0, transition to 𝑞3

• A Turing Machine can also write (and move its position) in addition to reading and
transitioning

𝑞1 0 → 𝑞3 1 𝑅

current state read next state write move

11

𝑞1 𝑞3

0 1 {𝑅}

Turing Machine Instructions

• Similar to a DFA but with read/write capability

• Let’s look at a DFA-like instruction: 𝑞10𝑞3

– If in state 𝑞1 and read 0, transition to 𝑞3

• A Turing Machine can also write (and move its position) in addition to reading and
transitioning

𝑞1 0 → 𝑞3 1 𝑅

current state read next state write move

12

𝐴

Building the Turing Machine that Solves 𝒘#𝒘

1. Check for one “#”, otherwise reject (a DFA can do this)

2. Return to “∗”.

3. Move right to first non-marked bit before “#”.

Mark and remember the bit. If you reach “#” before any non-marked bit, goto step 5.

4. Move right to first non-marked bit after “#”.

If you reach “␣” or bit doesn’t match, REJECT. Otherwise, mark the location. goto step 2.

5. Move right to first non-marked bit after “#”.

If you reach “␣” ACCEPT. If you come to a non-marked bit, REJECT

13

∗, 0,1 {} {𝑅}

␣ {} {}

𝐸

𝐸

{}{𝑅}

0,1 {} {𝑅}

␣ {}{}

␣,0,1,#,✓ {} {𝐿}

∗ {} {}

0,1 {} {}

∗,✓ {} {𝑅}

{} {𝑅}

✓ {} {𝑅}

0,1 {} {𝑅}

0,1 {} {𝑅}

✓ {} {𝑅}

✓ {} {𝑅}

{} {𝑅}

{} {𝑅}

1,␣ {}{}

0,␣ {}{}

Step 1

Step 2 Step 3

Step 5

Step 2

𝑞1

𝑧4 𝑧5

𝑜4 𝑜5

St
ep

 4

Turing Machine for Multiplication

• Consider a language that encodes multiplication

ℒ𝑚𝑢𝑙𝑡 = 0•𝑖#1•𝑗#0•𝑘 𝑖, 𝑗 > 0 𝑎𝑛𝑑 𝑘 = 𝑖 × 𝑗

• Multiplication is repeated addition.

• Pair each left-0 with a block of right-0s
equal to the number of 1s

1. Verify the input format is 0•𝑖#1•𝑗#0•𝑘

– (A DFA can solve this).

2. Return to ∗

3. Move right to mark first unmarked left-0, then right to “#”.

– If no unmarked left-0’s (you reach “#”), goto step 6.

4. Move right and mark first unmarked 1.

– If all 1’s marked (reach “#”) move left, unmarking 1’s. GOTO step 2.

5. Move right to find an unmarked right-0.

– If no unmarked right-0’s (come to “␣”), REJECT

– Otherwise, mark the 0, move left to first marked 1.
GOTO step 4.

6. Move right to verify there are no unmarked right-zeros.

– If you come to unmarked right-zero, REJECT; if come to “␣” ACCEPT 14

␣ ∗ 0 0 # 1 1 1 # 0 0 0 0 0 0 ␣

␣ ∗ 0 0 # 1 1 1 # 0 0 0 0 0 0 ␣✓

Turing Machine for Multiplication

• Consider a language that encodes multiplication

ℒ𝑚𝑢𝑙𝑡 = 0•𝑖#1•𝑗#0•𝑘 𝑖, 𝑗 > 0 𝑎𝑛𝑑 𝑘 = 𝑖 × 𝑗

• Multiplication is repeated addition.

• Pair each left-0 with a block of right-0s
equal to the number of 1s

1. Verify the input format is 0•𝑖#1•𝑗#0•𝑘

– (A DFA can solve this).

2. Return to ∗

3. Move right to mark first unmarked left-0, then right to “#”.

– If no unmarked left-0’s (you reach “#”), goto step 6.

4. Move right and mark first unmarked 1.

– If all 1’s marked (reach “#”) move left, unmarking 1’s. GOTO step 2.

5. Move right to find an unmarked right-0.

– If no unmarked right-0’s (come to “␣”), REJECT

– Otherwise, mark the 0, move left to first marked 1.
GOTO step 4.

6. Move right to verify there are no unmarked right-zeros.

– If you come to unmarked right-zero, REJECT; if come to “␣” ACCEPT 15

␣ ∗ 0 0 # 1 1 1 # 0 0 0 0 0 0 ␣

␣ ∗ 0 0 # 1 1 1 # 0 0 0 0 0 0 ␣✓ ✓ ✓

␣ ∗ 0 0 # 1 1 1 # 0 0 0 0 0 0 ␣✓ ✓ ✓✓ ✓

␣ ∗ 0 0 # 1 1 1 # 0 0 0 0 0 0 ␣✓ ✓ ✓✓ ✓✓ ✓

␣ ∗ 0 0 # 1 1 1 # 0 0 0 0 0 0 ␣✓ ✓✓✓

Transducer Turing Machine that Multiplies

• Suppose that instead of checking if the multiplication is correct, we want a Turing
Machine that performs the multiplication

• Algorithm is basically the same

• Instead of marking right-0s, write

• Turing Machines that modify the input
are called transducers

16

␣ ∗ 0 0 # 1 1 1 # 0 0 0 0 0 0 ␣␣ ∗ 0 0 # 1 1 1 # ␣␣␣␣␣␣␣

␣ ∗ 0 0 # 1 1 1 # 0 ␣␣␣␣␣␣✓ ✓

␣ ∗ 0 0 # 1 1 1 # 0 0 ␣␣␣␣␣✓ ✓✓

␣ ∗ 0 0 # 1 1 1 # 0 0 0 ␣␣␣␣✓ ✓✓✓

␣ ∗ 0 0 # 1 1 1 # 0 0 0 ␣␣␣␣✓

Infinite Loops

• Consider this Turing Machine

• What happens if the input is 01?

• Turing Machine 𝑀 is a recognizer for language ℒ(𝑀):

𝑤 ∈ ℒ 𝑀 𝑀 𝑤 = halt with a YES

 𝑤 ∉ ℒ 𝑀 𝑀 𝑤 = halt with a NO or loop forever

17

∗, 1 {} {𝑅} 0 {} {𝑅}

1 {} {𝐿}␣,# {} {} 0,␣,# {} {}

𝑞0 𝑞1

𝐸 𝐴

𝑀 𝑤 = ቐ

𝐻𝑎𝑙𝑡𝑠 𝑖𝑛 𝑎𝑐𝑐𝑒𝑝𝑡 𝑠𝑡𝑎𝑡𝑒 → 𝐴𝐶𝐶𝐸𝑃𝑇
𝐻𝑎𝑙𝑡𝑠 𝑖𝑛 𝑟𝑒𝑗𝑒𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 → 𝑅𝐸𝐽𝐸𝐶𝑇

𝐿𝑜𝑜𝑝𝑠 𝑓𝑜𝑟𝑒𝑣𝑒𝑟 → ?

Infinite Loops, cont’d

• Consider this Turing Machine

• What happens if the input is 01?

• Turing Machine 𝑀 (not the one above) is a decider for language ℒ(𝑀):

𝑤 ∈ ℒ 𝑀 𝑀 𝑤 = halt with a YES

𝑤 ∉ ℒ 𝑀 𝑀 𝑤 = halt with a NO

• Practical algorithms must halt! Practical algorithms correspond to deciders.
18

∗, 1 {} {𝑅} 0 {} {𝑅}

1 {} {𝐿}␣,# {} {} 0,␣,# {} {}

𝑞0 𝑞1

𝐸 𝐴

𝑀 𝑤 = ቐ

𝐻𝑎𝑙𝑡𝑠 𝑖𝑛 𝑎𝑐𝑐𝑒𝑝𝑡 𝑠𝑡𝑎𝑡𝑒 → 𝐴𝐶𝐶𝐸𝑃𝑇
𝐻𝑎𝑙𝑡𝑠 𝑖𝑛 𝑟𝑒𝑗𝑒𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 → 𝑅𝐸𝐽𝐸𝐶𝑇

𝐿𝑜𝑜𝑝𝑠 𝑓𝑜𝑟𝑒𝑣𝑒𝑟 → ?

Mathematical Description of a Turing Machine

• States 𝑄. The first state is the start state, the halting states are A,E

• Symbols Σ. By default these are {∗, 0, 1, ␣, #}.

• Machine-level transition instructions. Each instruction has the form

{state}{read-symbol}{next-state}{written-symbol}{move}

– The instructions map each (state,symbol) pair to a
(state,symbol,move) triple and thus form a transition function

𝛿: 𝑄 × Σ → 𝑄 × Σ × {𝐿, 𝑅, 𝑆}

19

Encoding a Turing Machine as a Bit-String

• States. 𝑞0, 𝑞1, 𝐴, 𝐸

• Symbols. {∗, 0, 1, ␣, #}

• Machine-level transition instructions.
𝑞0 ∗ 𝑞0 ∗ {𝑅}
𝑞0 1 𝑞0 1 {𝑅}
𝑞0 0 𝑞1 0 {𝑅}
𝑞0 # 𝐸 # {𝑆}
𝑞0 ␣ 𝐸 ␣ {𝑆}
𝑞1 1 𝑞0 1 {𝐿}
𝑞1 0 𝐴 0 {𝑆}
𝑞1 # 𝐴 # {𝑆}
𝑞1 ␣ 𝐴 ␣ 𝑆
𝑞1 ∗ 𝑞1 ∗ {𝑅}

• The description of a Turing Machine is a finite binary string.

• Turing machines are countable and can be listed: {𝑀1, 𝑀2, … }

• The problems solvable by an algorithm are countable: {ℒ 𝑀1 , ℒ 𝑀2 , … }
20

Not all languages can be decided

• The description of a Turing Machine is a finite binary string.

• Turing machines are countable and can be listed: {𝑀1, 𝑀2, … }

• The problems solvable by an algorithm are countable: {ℒ 𝑀1 , ℒ 𝑀2 , … }

• Can we list all languages?

– Each language ℒ(𝑀) can be mapped to an infinite binary string

– The set of all languages is uncountable!

– Some languages cannot be decided by a Turing Machine!

21

𝜀 0 1 00 01 10 11 000 …

0 0 1 1 1 0 1 1 …

ℬ

ℒ(𝑀)

	Slide 1: Turing Machines
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Turing’s 1936 Miracle
	Slide 5: Turing’s Machine
	Slide 6: Solving bold italic w # bold italic w
	Slide 7: Solving bold italic w # bold italic w
	Slide 8: Solving bold italic w # bold italic w
	Slide 9: Solving bold italic w # bold italic w
	Slide 11: Turing Machine Instructions
	Slide 12: Turing Machine Instructions
	Slide 13: Building the Turing Machine that Solves bold italic w # bold italic w
	Slide 14: Turing Machine for Multiplication
	Slide 15: Turing Machine for Multiplication
	Slide 16: Transducer Turing Machine that Multiplies
	Slide 17: Infinite Loops
	Slide 18: Infinite Loops, cont’d
	Slide 19: Mathematical Description of a Turing Machine
	Slide 20: Encoding a Turing Machine as a Bit-String
	Slide 21: Not all languages can be decided

