
Context Free Grammars

1

Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 25

2

Adding Memory

• DFAs have no scratch paper. It’s hard to compute entirely in your head.

• Stack Memory. Think of a file-clerk with a stack of papers.

• The clerk’s capabilities:

– see the top sheet;

– remove the top sheet (pop)

– push something new onto the top of the stack.

– no access to inner sheets without removing top.

• DFA with a stack is a pushdown automaton (PDA)

• How does the stack help to solve ℒ0𝑛1𝑛 = {0•𝑛1•𝑛|𝑛 ≥ 0}?

1. When you read in each 0, write it to the stack.

2. For each 1, pop the stack. At the end if the stack is empty, accept.

• The memory allows the automaton to “remember” 𝑛.

3

Overview

• Solving a problem by listing out the language.

• Rules for Context Free Grammars (CFG).

• Examples of Context Free Grammars.

– English.

– Programming.

• Proving a CFG solves a problem.

• Parse Trees.

• Pushdown Automata and non context free languages.

4

Recursively Defined Language: Listing a

Language

ℒ0𝑛1𝑛 = {0•𝑛1•𝑛|𝑛 ≥ 0}

• How do we define this language recursively?

𝜀 ∈ ℒ0𝑛1𝑛 [basis]

𝑥 ∈ ℒ0𝑛1𝑛 → 0𝑥1 ∈ ℒ0𝑛1𝑛 [constructor rule]

Nothing else is in ℒ0𝑛1𝑛 [minimality]

• To test if 0010 ∈ ℒ0𝑛1𝑛: generate strings in order of length and test each for a
match:

𝜀 → 01 → 0011 → 000111

NO

• A Context Free Grammar is like a recursive definition

1. 𝑆 → 𝜀

2. 𝑆 → 0𝑆1

5

Rules for Context Free Grammars (CFGs)

• Production rules of CFGs

1. 𝑆 → 𝜀

2. 𝑆 → 0𝑆1

• Each production rule has the form

variable → expression

 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, … string of variables and terminals

𝑆 ֜
2

0𝑆1 ֜
2

00𝑆11 ֜
2

000𝑆111 ֜
2

0000𝑆1111

𝜀 01 0011 000111 00001111

6

1 1 1 1 1

Rules for Context Free Grammars (CFGs), cont’d

• Production rules of CFGs

1. 𝑆 → 𝜀

2. 𝑆 → 0𝑆1

• Each production rule has the form

variable → expression

 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, … string of variables and terminals

1. Write down the start variable (form the first production rule, typically S).

2. Replace one variable in the current string with the expression from a production
rule that starts with that variable on the left.

3. Repeat step 2 until no variables remain in the string.

• “Replace variable with expression, no matter where (independent of context)”

• Shorthand: 1: 𝑆 → 𝜀|0𝑆1

7

Language of Equality, CFGbal

• How do we write the CFG for equality?

CFGbal 1: 𝑆 → 𝜀|0𝑆1𝑆|1𝑆0𝑆

• A derivation of 0110 in CFGbal (each step is called an inference).

𝑆 ֜
1

0𝑆1𝑆 ֜
1

0𝑆11𝑆0𝑆 ֜
1

0𝜀11𝑆0𝑆 ֜
∗

0110

• Notation

𝑆 ֜
∗

0110

(֜
∗

 means “A derivation starting from 𝑆 yields 0110”)

• Distinguish 𝑆 from a mathematical variable (e.g. 𝑥)

0𝑆1𝑆 versus 0𝑥1𝑥

• Two 𝑆’s are replaced independently. Two 𝑥’s must be the same, e.g. 𝑥 = 11

8

A CFG for English

1. 𝑆 → <phrase><verb>

2. <phrase> → <article><noun>

3. <article>→A␣|The␣

4. <noun>→cat␣|dog␣

5. <verb>→walks. | runs. | walks. ␣𝑆|runs.␣𝑆

 𝑆 ֜
1
 <phrase><verb>

֜
5
 <phrase>walks

 ֜
2
 <article><noun>walks

 ֜
3

 A␣ <noun>walks

֜
4

 A␣ cat␣ walks

9

A CFG for Programming

1. 𝑆 → <stmt>;𝑆|<stmt>;

2. <stmt> → <assign>|<declare>

3. <declare>→int␣<variable>

4. <assign>→<variable>=<integer>

5. <integer>→ <integer><digit>|<digit>

6. <digit>→0|1|2|3|4|5|6|7|8|9

7. <variable>→x|x<variable>

11

Constructing a CFG to Solve a Problem

• Going back to our language of balanced 0s and 1s
ℒ𝑏𝑎𝑙 = 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1𝑠 𝑎𝑛𝑑 0𝑠

001011010110 = 0•𝟎𝟏𝟎𝟏•1•𝟎𝟏𝟎𝟏𝟏𝟎

 in ℒ𝑏𝑎𝑙 in ℒ𝑏𝑎𝑙

= 0𝑆1𝑆

• Every large string in ℒ𝑏𝑎𝑙 can be obtained (recursively) from smaller ones.
𝑆 → 𝜀|0𝑆1𝑆|1𝑆0𝑆

• We must prove that:

– Every string generated by this CFG is in ℒ𝑏𝑎𝑙

– Every string in ℒ𝑏𝑎𝑙 can be derived by this grammar

12

Proving a CFG Solves a Problem

• Going back to our language of balanced 0s and 1s
ℒ𝑏𝑎𝑙 = 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1𝑠 𝑎𝑛𝑑 0𝑠

• Every large string in ℒ𝑏𝑎𝑙 can be obtained (recursively) from smaller ones.
𝑆 → 𝜀|0𝑆1𝑆|1𝑆0𝑆

• Proof. [Every derivation in CFGbal generates a string in ℒ𝑏𝑎𝑙]

– Use strong induction on the length of the derivation

• i.e., number of production rules invoked

– Base Case. length-1 derivation gives 𝜀.

– Induction step. The derivation starts in one of two ways:

1. 𝑆 → 0𝑆1𝑆

𝑥 𝑦

2. 𝑆 → 1𝑆0𝑆

𝑥 𝑦

– The derivations of 𝑥 and 𝑦 are shorter.

– By the induction hypothesis, 𝑥, 𝑦 ∈ ℒ𝑏𝑎𝑙, so the final strings are in ℒ𝑏𝑎𝑙 13

∗ ∗

∗ ∗

Proving a CFG Solves a Problem

• Going back to our language of balanced 0s and 1s
ℒ𝑏𝑎𝑙 = 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1𝑠 𝑎𝑛𝑑 0𝑠

• Every large string in ℒ𝑏𝑎𝑙 can be obtained (recursively) from smaller ones.
𝑆 → 𝜀|0𝑆1𝑆|1𝑆0𝑆

• Proof. [Every derivation in CFGbal generates a string in ℒ𝑏𝑎𝑙]

• Proof. [Every string in ℒ𝑏𝑎𝑙 can be derived within CFGbal]

– Use strong induction on the length of the derivation

• i.e., number of production rules invoked

– Base Case. length-1 derivation gives 𝜀.

– Induction step. Any string 𝑤 ∈ ℒ𝑏𝑎𝑙 has one of two forms:

1. 𝑤 = 0𝑤11𝑤2

2. 𝑤 = 1𝑤10𝑤2

– where 𝑤1, 𝑤2 have same number of 1s and 0s and have smaller length

– Why must 𝑤1 and 𝑤2 exist?

• String 𝑤 must have a balanced substring (0 and 1 may be endpoints of 𝑤)

– By the induction hypothesis, 𝑆 ֜
∗

𝑤1 and 𝑆 ֜
∗

𝑤2, so 𝑆 ֜
∗

𝑤 14

Practice

• Exercise 25.5

15

Union

• Consider these two languages and their CFGs:

ℒ1 = 0•𝑛1•𝑛 𝑛 ≥ 0

𝐴 → 𝜀|0𝐴1

ℒ2 = 1•𝑛0•𝑛 𝑛 ≥ 0

𝐵 → 𝜀|1𝐵0

• What is ℒ1 ∪ ℒ2?

– All strings of equal 0s and 1s, where either all 0s come first or all 1s come first

• What is the CFG?
𝑆 → 𝐴|𝐵
𝐴 → 𝜀|0𝐴1
𝐵 → 𝜀|1𝐵0

16

Concatenation

• Consider these two languages and their CFGs:

ℒ1 = 0•𝑛1•𝑛 𝑛 ≥ 0

𝐴 → 𝜀|0𝐴1

ℒ2 = 1•𝑛0•𝑛 𝑛 ≥ 0

𝐵 → 𝜀|1𝐵0

• What is ℒ1•ℒ2?

– All strings of equal 0s and 1s, where the first part comes from ℒ1 and the second
part comes from ℒ2 ☺

• What is the CFG?
𝑆 → 𝐴𝐵
𝐴 → 𝜀|0𝐴1
𝐵 → 𝜀|1𝐵0

17

Kleene-star

• Consider these two languages and their CFGs:

ℒ1 = 0•𝑛1•𝑛 𝑛 ≥ 0

𝐴 → 𝜀|0𝐴1

ℒ2 = 1•𝑛0•𝑛 𝑛 ≥ 0

𝐵 → 𝜀|1𝐵0

• What is ℒ1
∗?

– All concatenations of strings in ℒ1

• What is the CFG?
𝑆 → 𝜀|𝑆𝐴
𝐴 → 𝜀|0𝐴1

• Example 25.2. CFGs can implement DFAs, and so are strictly more powerful.

18

Parse Trees

• Consider the CFG
𝑆 → #|0𝑆1

• What is the derivation of 000#111?
𝑆 ֜ 0𝑆1 ֜ 00S11 ֜ 000𝑆111 ֜ 000#111

• The parse tree gives us more information than a derivation

• Clearly shows how a substring was derived from its parent variable.

19

CFG for Arithmetic

• Here is the CFG for arithmetic
𝑆 → 𝑆 + 𝑆 𝑆 × 𝑆 𝑆 |2

– (the terminals are +, ×, (,) and 2)

• What are two derivations of 2 + 2 × 2

𝑆 ֜ 𝑆 + 𝑆 ֜ 𝑆 + 𝑆 × 𝑆 ֜
∗

2 + 2 × 2

𝑆 ֜ 𝑆 × 𝑆 ֜ 𝑆 + 𝑆 × 𝑆 ֜
∗

2 + 2 × 2

• Parse tree How you interpret the string.

• Different parse trees different meanings.

• BAD! We want unambiguous meaning

– programs, html-code, math, English, . . .

20

CFG for Arithmetic

• Here is the CFG for arithmetic
𝑆 → 𝑆 + 𝑆 𝑆 × 𝑆 𝑆 |2

– (the terminals are +, ×, (,) and 2)

• What are two derivations of 2 + 2 × 2

𝑆 ֜ 𝑆 + 𝑆 ֜ 𝑆 + 𝑆 × 𝑆 ֜
∗

2 + 2 × 2

𝑆 ֜ 𝑆 × 𝑆 ֜ 𝑆 + 𝑆 × 𝑆 ֜
∗

2 + 2 × 2

• How do we write an unambiguous version of the arithmetic CFG?

– Use parenthesis and order of operations!
𝑆 → 𝑃|𝑆 + 𝑃
𝑃 → 𝑇|𝑃 × 𝑇
𝑇 → 2| 𝑆

21

Pushdown Automata: DFAs with Stack Memory

• Consider the palindrome-like language:

ℒ = 𝑤#𝑤𝑅 𝑤 ∈ 0,1 ∗

• What is the CFG?
𝑆 → #|0𝑆0|1𝑆1

• Why can’t a DFA decide whether words are in this language?

– It needs to remember the first string 𝑤

• We can come with a DFA for deciding this language if we give it memory!

• DFA with stack memory (push, pop, read)

• Push the first half of the string (before #).

• For each bit in the second half, pop the stack
and compare.

• DFAs with stack memory closely related to CFGs.

22

Non Context Free Expressions

• What languages do you think are hard to solve with a simple stack?

– Repetition (a stack only counts in reverse)
𝑤#𝑤

– Multiple-equality (similar to repetition)

0•𝑛1•𝑛0•𝑛

– Squaring

0•𝑛2
, 0•𝑛1•𝑛2

– Exponentiation

0•2𝑛
, 0•𝑛1•2𝑛

• Let’s see why 𝑤#𝑤𝑅 is context-free:

0011 is pushed. DFA matches 1100 by popping
23

Non Context Free Expressions, cont’d

• What languages do you think are hard to solve with a simple stack?

– Repetition (a stack only counts in reverse)
𝑤#𝑤

– Multiple-equality (similar to repetition)

0•𝑛1•𝑛0•𝑛

– Squaring

0•𝑛2
, 0•𝑛1•𝑛2

– Exponentiation

0•2𝑛
, 0•𝑛1•2𝑛

• Let’s see why 𝑤#𝑤 is not context-free:

0011 is pushed. DFA needs bottom-access to match
24

Non Context Free Expressions, cont’d

• What languages do you think are hard to solve with a simple stack?

– Repetition (a stack only counts in reverse)
𝑤#𝑤

– Multiple-equality (similar to repetition)

0•𝑛1•𝑛0•𝑛

– Squaring

0•𝑛2
, 0•𝑛1•𝑛2

– Exponentiation

0•2𝑛
, 0•𝑛1•2𝑛

• Let’s see why 0•𝑛1•𝑛0•𝑛 is not context-free:

000111 is pushed. DFA needs random access to match
25

Non Context Free Expressions, cont’d

• The file clerk who only has access to the top of the stack of papers has
fundamentally less power than the file clerk who has a filing cabinet with access to
all papers.

• We need a new model, one with Random Access Memory (RAM).

– Random doesn’t mean probabilistic. Means the machine can access any part of
the memory

26

	Slide 1: Context Free Grammars
	Slide 2: Reading
	Slide 3: Adding Memory
	Slide 4: Overview
	Slide 5: Recursively Defined Language: Listing a Language
	Slide 6: Rules for Context Free Grammars (CFGs)
	Slide 7: Rules for Context Free Grammars (CFGs), cont’d
	Slide 8: Language of Equality, CFGbal
	Slide 9: A CFG for English
	Slide 11: A CFG for Programming
	Slide 12: Constructing a CFG to Solve a Problem
	Slide 13: Proving a CFG Solves a Problem
	Slide 14: Proving a CFG Solves a Problem
	Slide 15: Practice
	Slide 16: Union
	Slide 17: Concatenation
	Slide 18: Kleene-star
	Slide 19: Parse Trees
	Slide 20: CFG for Arithmetic
	Slide 21: CFG for Arithmetic
	Slide 22: Pushdown Automata: DFAs with Stack Memory
	Slide 23: Non Context Free Expressions
	Slide 24: Non Context Free Expressions, cont’d
	Slide 25: Non Context Free Expressions, cont’d
	Slide 26: Non Context Free Expressions, cont’d

