Context Free Grammars

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 25

Adding Memory

- DFAs have no scratch paper. It's hard to compute entirely in your head.
- Stack Memory. Think of a file-clerk with a stack of papers.
- The clerk's capabilities:
- see the top sheet;
- remove the top sheet (pop)
- push something new onto the top of the stack.
- no access to inner sheets without removing top.

- DFA with a stack is a pushdown automaton (PDA)
- How does the stack help to solve $\mathcal{L}_{0^{n} 1^{n}}=\left\{0^{\bullet} n^{\bullet}{ }^{\bullet} \mid n \geq 0\right\}$?

1. When you read in each 0 , write it to the stack.
2. For each 1, pop the stack. At the end if the stack is empty, accept.

- The memory allows the automaton to "remember" n.
- Solving a problem by listing out the language.
- Rules for Context Free Grammars (CFG).
- Examples of Context Free Grammars.
- English.
- Programming.
- Proving a CFG solves a problem.
- Parse Trees.
- Pushdown Automata and non context free languages.

Recursively Defined Language: Listing a Language

$$
\mathcal{L}_{0^{n} 1^{n}}=\left\{0^{\bullet} n 1^{\bullet} n \mid n \geq 0\right\}
$$

- How do we define this language recursively?

$$
\begin{array}{lr}
\varepsilon \in \mathcal{L}_{0^{n} 1^{n}} & \text { [basis] } \\
x \in \mathcal{L}_{0^{n} 1^{n}} \rightarrow 0 x 1 \in \mathcal{L}_{0^{n} 1^{n}} & \text { [constructor rule] } \\
\text { Nothing else is in } \mathcal{L}_{0^{n} 1^{n}} & \text { [minimality] }
\end{array}
$$

- To test if $0010 \in \mathcal{L}_{0^{n} 1^{n}}$: generate strings in order of length and test each for a match:

$$
\varepsilon \rightarrow 01 \rightarrow 0011 \rightarrow 000111
$$

- A Context Free Grammar is like a recursive definition

1. $S \rightarrow \varepsilon$
2. $S \rightarrow 0 S 1$

Rules for Context Free Grammars (CFGs)

- Production rules of CFGs

1. $S \rightarrow \varepsilon$
2. $S \rightarrow 0 S 1$

- Each production rule has the form

variable \uparrow	\rightarrow	expression
P, Q, R, S, T, \ldots	\uparrow	

Rules for Context Free Grammars (CFGs), cont'd

- Production rules of CFGs

1. $S \rightarrow \varepsilon$
2. $S \rightarrow 0 S 1$

- Each production rule has the form

1. Write down the start variable (form the first production rule, typically S).
2. Replace one variable in the current string with the expression from a production rule that starts with that variable on the left.
3. Repeat step 2 until no variables remain in the string.

- "Replace variable with expression, no matter where (independent of context)"
- Shorthand: 1: $S \rightarrow \varepsilon \mid 0 S 1$

Language of Equality, CFG $_{\text {bal }}$

- How do we write the CFG for equality?

$$
\mathrm{CFG}_{\text {bal }} \quad 1: S \rightarrow \varepsilon|0 S 1 S| 1 S 0 S
$$

- A derivation of 0110 in CFG $_{\text {bal }}$ (each step is called an inference).

$$
S \stackrel{1}{\Rightarrow} 0 S 1 S \stackrel{1}{\Rightarrow} 0 S 11 S 0 S \stackrel{1}{\Rightarrow} 0 \varepsilon 11 S 0 S \stackrel{*}{\Rightarrow} 0110
$$

- Notation

$$
S \stackrel{*}{\Rightarrow} 0110
$$

$\stackrel{*}{\Rightarrow}$ means "A derivation starting from S yields 0110 ")

- Distinguish S from a mathematical variable (e.g. x)

$$
0 S 1 S \text { versus } 0 x 1 x
$$

- Two S 's are replaced independently. Two x 's must be the same, e.g. $x=11$

A CFG for English

1.
2.
3.
4.
5.

$$
\begin{aligned}
& S \rightarrow \text { <phrase><verb> } \\
& \text { <phrase> } \rightarrow \text { <article><noun> } \\
& \text { <article> } \rightarrow \mathrm{A}_{\sqcup} \mid \text { The } \smile \\
& <\text { noun }>\rightarrow \text { cat } \smile \mid \text { dog }_{\bullet} \\
& \text { <verb> } \rightarrow \text { walks. | runs. | walks. } S \text { |runs. } \smile S \\
& S \stackrel{1}{\Rightarrow} \text { <phrase><verb> } \\
& \stackrel{5}{\Rightarrow} \text { <phrase>walks } \\
& \stackrel{2}{\Rightarrow} \text { <article><noun>walks } \\
& \stackrel{3}{\Rightarrow} \mathrm{~A}_{\hookleftarrow}<\text { noun }>\text { walks } \\
& \stackrel{4}{\Rightarrow} A_{\sqcup} \text { cat }{ }_{\bullet} \text { walks }
\end{aligned}
$$

1.
2.
3.
4.
5.
6.
7.

$$
\begin{aligned}
& S \rightarrow \text { <stmt>;S|<stmt>; } \\
& \text { <stmt> } \rightarrow \text { <assign>|<declare> } \\
& \text { <declare> } \rightarrow \text { int } \hookleftarrow \text { <variable> } \\
& \text { <assign> } \rightarrow \text { <variable>=<integer> } \\
& \text { <integer }> \rightarrow \text { <integer><digit>|<digit> } \\
& \text { <digit> } \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9 \\
& \text { <variable> } \rightarrow x \mid x<v a r i a b l e>~
\end{aligned}
$$

Constructing a CFG to Solve a Problem

- Going back to our language of balanced 0 s and 1 s

$$
\begin{aligned}
& \mathcal{L}_{\text {bal }}=\{\text { strings with an equal number of } 1 s \text { and } 0 s\} \\
& \qquad \begin{aligned}
001011010110 & =0 \bullet \mathbf{0 1 0 1} \cdot 1 \bullet \mathbf{0 1 0 1 1 0}
\end{aligned} \\
& =0 S 1 S
\end{aligned}
$$

- Every large string in $\mathcal{L}_{\text {bal }}$ can be obtained (recursively) from smaller ones.

$$
S \rightarrow \varepsilon|0 S 1 S| 1 S 0 S
$$

- We must prove that:
- Every string generated by this CFG is in $\mathcal{L}_{\text {bal }}$
- Every string in $\mathcal{L}_{\text {bal }}$ can be derived by this grammar

Proving a CFG Solves a Problem

- Going back to our language of balanced 0s and 1s

$$
\mathcal{L}_{\text {bal }}=\{\text { strings with an equal number of } 1 s \text { and } 0 s\}
$$

- Every large string in $\mathcal{L}_{\text {bal }}$ can be obtained (recursively) from smaller ones.

$$
S \rightarrow \varepsilon|0 S 1 S| 1 S 0 S
$$

- Proof. [Every derivation in $C F G_{b a l}$ generates a string in $\mathcal{L}_{\text {bal }}$]
- Use strong induction on the length of the derivation
- i.e., number of production rules invoked
- Base Case. length-1 derivation gives ε.
- Induction step. The derivation starts in one of two ways:

- The derivations of x and y are shorter.
- By the induction hypothesis, $x, y \in \mathcal{L}_{b a l}$, so the final strings are in $\mathcal{L}_{b a l}$

Proving a CFG Solves a Problem

- Going back to our language of balanced 0s and 1 s

$$
\mathcal{L}_{\text {bal }}=\{\text { strings with an equal number of } 1 s \text { and } 0 s\}
$$

- Every large string in $\mathcal{L}_{\text {bal }}$ can be obtained (recursively) from smaller ones.

$$
S \rightarrow \varepsilon|0 S 1 S| 1 S 0 S
$$

- Proof. [Every derivation in $C G_{b a l}$ generates a string in $\mathcal{L}_{\text {bal }}$]
- Proof. [Every string in $\mathcal{L}_{\text {bal }}$ can be derived within $C F G_{b a l}$]
- Use strong induction on the length of the derivation
- i.e., number of production rules invoked
- Base Case. length-1 derivation gives ε.
- Induction step. Any string $w \in \mathcal{L}_{\text {bal }}$ has one of two forms:

$$
\begin{aligned}
& \text { 1. } w=0 w_{1} 1 w_{2} \\
& \text { 2. } w=1 w_{1} 0 w_{2}
\end{aligned}
$$

- where w_{1}, w_{2} have same number of 1 s and 0 s and have smaller length
- Why must w_{1} and w_{2} exist?
- String w must have a balanced substring (0 and 1 may be endpoints of w)
- By the induction hypothesis, $S \stackrel{*}{\Rightarrow} w_{1}$ and $S \stackrel{*}{\Rightarrow} w_{2}$, so $S \stackrel{*}{\Rightarrow} w$

Practice

- Exercise 25.5

Union

- Consider these two languages and their CFGs:

$$
\begin{aligned}
& \mathcal{L}_{1}=\left\{0^{\bullet n} 1^{\bullet n} \mid n \geq 0\right\} \\
& A \rightarrow \varepsilon \mid 0 A 1 \\
& \mathcal{L}_{2}=\left\{1^{\bullet n} 0^{\bullet n} \mid n \geq 0\right\} \\
& B \rightarrow \varepsilon \mid 1 B 0
\end{aligned}
$$

- What is $\mathcal{L}_{1} \cup \mathcal{L}_{2}$?
- All strings of equal 0 s and 1 s , where either all 0 s come first or all 1 s come first
- What is the CFG?

$$
\begin{aligned}
& S \rightarrow A \mid B \\
& A \rightarrow \varepsilon \mid 0 A 1 \\
& B \rightarrow \varepsilon \mid 1 B 0
\end{aligned}
$$

Concatenation

- Consider these two languages and their CFGs:

$$
\begin{aligned}
& \mathcal{L}_{1}=\left\{0^{\bullet n} 1^{\bullet n} \mid n \geq 0\right\} \\
& A \rightarrow \varepsilon \mid 0 A 1 \\
& \mathcal{L}_{2}=\left\{1^{\bullet n} 0^{\bullet n} \mid n \geq 0\right\} \\
& B \rightarrow \varepsilon \mid 1 B 0
\end{aligned}
$$

- What is $\mathcal{L}_{1} \bullet \mathcal{L}_{2}$?
- All strings of equal 0 s and 1 s , where the first part comes from \mathcal{L}_{1} and the second part comes from $\mathcal{L}_{2} \odot$
- What is the CFG?

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow \varepsilon \mid 0 A 1 \\
& B \rightarrow \varepsilon \mid 1 B 0
\end{aligned}
$$

- Consider these two languages and their CFGs:

$$
\begin{aligned}
& \mathcal{L}_{1}=\left\{0^{\bullet} n 1^{\bullet} \mid n \geq 0\right\} \\
& A \rightarrow \varepsilon \mid 0 A 1 \\
& \mathcal{L}_{2}=\left\{1^{\bullet n} 0^{\bullet n} \mid n \geq 0\right\} \\
& B \rightarrow \varepsilon \mid 1 B 0
\end{aligned}
$$

- What is \mathcal{L}_{1}^{*} ?
- All concatenations of strings in \mathcal{L}_{1}
- What is the CFG?

$$
\begin{aligned}
& S \rightarrow \varepsilon \mid S A \\
& A \rightarrow \varepsilon \mid 0 A 1
\end{aligned}
$$

- Example 25.2. CFGs can implement DFAs, and so are strictly more powerful.

Parse Trees

- Consider the CFG

$$
S \rightarrow \# \mid 0 S 1
$$

- What is the derivation of 000\#111?

$$
S \Rightarrow 0 S 1 \Rightarrow 00 S 11 \Rightarrow 000 S 111 \Rightarrow 000 \# 111
$$

- The parse tree gives us more information than a derivation
$S \quad \Rightarrow$

\Rightarrow

- Clearly shows how a substring was derived from its parent variable.
- Here is the CFG for arithmetic

$$
S \rightarrow S+S|S \times S|(S) \mid 2
$$

- (the terminals are,$+ \times,($,$) and 2)$
- What are two derivations of $2+2 \times 2$

$$
\begin{aligned}
& S \Rightarrow S+S \Rightarrow S+S \times S \stackrel{*}{\Rightarrow} 2+2 \times 2 \\
& S \Rightarrow S \times S \Rightarrow S+S \times S \stackrel{*}{\Rightarrow} 2+2 \times 2
\end{aligned}
$$

- Parse tree \leftrightarrow How you interpret the string.
- Different parse trees \leftrightarrow different meanings.
- BAD! We want unambiguous meaning
- programs, html-code, math, English, . . .

CFG for Arithmetic

- Here is the CFG for arithmetic

$$
S \rightarrow S+S|S \times S|(S) \mid 2
$$

- (the terminals are,$+ \times,($,$) and 2)$
- What are two derivations of $2+2 \times 2$

$$
\begin{aligned}
& S \Rightarrow S+S \Rightarrow S+S \times S \stackrel{*}{\Rightarrow} 2+2 \times 2 \\
& S \Rightarrow S \times S \Rightarrow S+S \times S \stackrel{*}{\Rightarrow} 2+2 \times 2
\end{aligned}
$$

- How do we write an unambiguous version of the arithmetic CFG?
- Use parenthesis and order of operations!

$$
\begin{aligned}
& S \rightarrow P \mid S+P \\
& P \rightarrow T \mid P \times T \\
& T \rightarrow 2 \mid(S)
\end{aligned}
$$

Pushdown Automata: DFAs with Stack Memory

- Consider the palindrome-like language:

$$
\mathcal{L}=\left\{w \# w^{R} \mid w \in\{0,1\}^{*}\right\}
$$

- What is the CFG?

$$
S \rightarrow \#|0 S 0| 1 S 1
$$

- Why can't a DFA decide whether words are in this language?
- It needs to remember the first string w
- We can come with a DFA for deciding this language if we give it memory!
- DFA with stack memory (push, pop, read)
- Push the first half of the string (before \#).
- For each bit in the second half, pop the stack and compare.
- DFAs with stack memory closely related to CFGs.

Non Context Free Expressions

- What languages do you think are hard to solve with a simple stack?
- Repetition (a stack only counts in reverse)

$$
\{w \# w\}
$$

- Multiple-equality (similar to repetition)

$$
\left\{0^{\bullet n} 1^{\bullet n} 0^{\bullet}\right\}
$$

- Squaring

$$
\left\{0^{\bullet n^{2}}\right\},\left\{0^{\bullet n} 1^{\bullet} n^{2}\right\}
$$

- Exponentiation

$$
\left\{0^{\bullet 2^{n}}\right\},\left\{0^{\bullet n} 1^{\bullet} 2^{n}\right\}
$$

- Let's see why $w \# w^{R}$ is context-free:

0011 is pushed. DFA matches 1100 by popping

Non Context Free Expressions, cont'd

- What languages do you think are hard to solve with a simple stack?
- Repetition (a stack only counts in reverse)

$$
\{w \# w\}
$$

- Multiple-equality (similar to repetition)

$$
\left\{0^{\bullet n} 1^{\bullet n} 0^{\bullet}\right\}
$$

- Squaring

$$
\left\{0^{\bullet n^{2}}\right\},\left\{0^{\bullet n} 1^{\bullet} n^{2}\right\}
$$

- Exponentiation

$$
\left\{0^{\bullet 2^{n}}\right\},\left\{0^{\bullet} n_{1} \bullet^{\bullet 2^{n}}\right\}
$$

- Let's see why $w \# w$ is not context-free:

0011 is pushed. DFA needs bottom-access to match

Non Context Free Expressions, cont'd

- What languages do you think are hard to solve with a simple stack?
- Repetition (a stack only counts in reverse)

$$
\{w \# w\}
$$

- Multiple-equality (similar to repetition)

$$
\left\{0^{\bullet n} 1^{\bullet n} 0^{\bullet n}\right\}
$$

- Squaring

$$
\left\{0^{\bullet n^{2}}\right\},\left\{0^{\bullet n} 1^{\bullet} n^{2}\right\}
$$

- Exponentiation

$$
\left\{0^{\bullet 2^{n}}\right\},\left\{0^{\bullet} n_{1} \bullet^{\bullet 2^{n}}\right\}
$$

- Let's see why $0^{\bullet n} 1^{\bullet n} 0^{\bullet n}$ is not context-free:

000111 is pushed. DFA needs random access to match

Non Context Free Expressions, cont'd

- The file clerk who only has access to the top of the stack of papers has fundamentally less power than the file clerk who has a filing cabinet with access to all papers.
- We need a new model, one with Random Access Memory (RAM).
- Random doesn't mean probabilistic. Means the machine can access any part of the memory

