
Deterministic Finite Automata (DFA)

1

Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 24

2

Overview

• A simple computing machine.

– States.

– Transitions.

– No scratch paper.

• What computing problems can this simple machine solve?

– Vending machine.

• Regular languages.

– Closed under all the set operations: union, intersection, complement,
concatenation, Kleene-star.

• Are there problems that cannot be solved?

3

A Simple Computing Machine

• Transitions

1. 𝑞0 0 𝑞1

2. 𝑞0 1 𝑞2

3. 𝑞1 0 𝑞1

4. 𝑞1 1 𝑞2

5. 𝑞2 0 𝑞2

6. 𝑞2 1 𝑞2

4

𝑞0 𝑞1

𝑞2

In state 𝑞0, if you read 0,
Transition to 𝑞1

0

1

0

0,1

1

A Simple Computing Machine, cont’d

1. Process the input string (left-to-right) starting from the initial state 𝑞0

2. Process one bit at a time, each time transitioning from the current state to the
next state according to the transition instructions.

3. When done processing every bit, output YES if the final resting state of the DFA is a
YES-state; otherwise output NO

5

Running the Machine on an Input

6

Computing Problem Solved by a DFA

• The computing problem solved by 𝑀 is the language
ℒ 𝑀 = 𝑤 𝑀 𝑤 = 𝑌𝐸𝑆

• ℒ(𝑀) is the automaton’s YES-set. For our automaton 𝑀:

ℒ 𝑀 = 0,00,000,0000, … = 0•𝑛 𝑛 > 0

1. For an automaton 𝑀, what is the computing problem ℒ(𝑀) solved by 𝑀?

2. For a computing problem ℒ, what automaton 𝑀 solves ℒ, i.e., ℒ(𝑀) = ℒ?

• Practice. Exercise 24.2 gives you lots of training in question 1.

8

The Vending Machine

• Vending machine takes nickels and dimes and dispenses a soda when it has 25¢.

• Input sequence: 10¢, 10¢, 5¢, 10¢, 10¢, 10¢.

9

20¢

0¢

5¢

10¢

15¢ 5¢ transition

5¢ transition plus dispense soda

10¢ transition

10¢ transition plus dispense soda

0¢ 10¢ 20¢ 10¢ 20¢ 5¢0¢

(+ soda)

(+ soda)

DFA for a Finite Language

• 0 means move to a rejecting ERROR state and stay there

• 1 is partial success.

• Another 1 puts you into ERROR since you want 0;

• 0 from 𝑞1 and you are ready to accept . . . unless . . .

• More bits arrive, in which case move to ERROR

• Practice. Try random strings other than 01 and make
sure our DFA rejects them.

10

𝑞0 𝑞1 𝑞2

𝐸

1

1

0

0
0,1

0,1

What’s the DFA for ℒ = {10}

DFAs for Infinite Languages

• What is this language:
ℒ1 =∗ 0 ∗

= 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑤𝑖𝑡ℎ 𝑎 0
= 0,00,01,10,000,001,010,011,110, …

• (wilrdcard ∗ = Σ∗)

11

𝑞0 𝑞1
0

0,11

𝑀1

DFAs for Infinite Languages, cont’

• What is this language:
ℒ1 =∗ 1

= 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑒𝑛𝑑𝑖𝑛𝑔 𝑖𝑛 1
= 1,01,11,001,011,101,111, …

• (wilrdcard ∗ = Σ∗)

12

𝑠0 𝑠1

1
10

𝑀2

0

DFAs for Infinite Languages

• What is this language:
ℒ1 =∗ 0 ∗

= 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑤𝑖𝑡ℎ 𝑎 0
= 0,00,01,10,000,001,010,011,110, …

• Complement. Consider ҧℒ1

– Must accept strings 𝑀1 rejects

– Flip YES and NO states

13

𝑞1
0

0,11

𝑀1

𝑞0

Two DFAs in One: Union and Intersection

• Let’s look at our two small languages:
ℒ1 ℒ2

• What’s the DFA for ℒ1 ∪ ℒ2?

– The Joint-DFA has product states 𝑞0𝑠0, 𝑞0𝑠1, 𝑞1𝑠0, 𝑞1𝑠1

14

0

0

0

0

1

1

1

1

𝑞0𝑠0: 𝑀1 is in state 𝑞0 and 𝑀2 is in state 𝑠0

𝑞0𝑠1: 𝑀1 is in state 𝑞0 and 𝑀2 is in state 𝑠1

𝑞1𝑠0: 𝑀1 is in state 𝑞1 and 𝑀2 is in state 𝑠0

𝑞1𝑠1: 𝑀1 is in state 𝑞1 and 𝑀2 is in state 𝑠1

𝑞0𝑠0 𝑞0𝑠1

𝑞1𝑠0 𝑞1𝑠1

Two DFAs in One: Union and Intersection

• Let’s look at our two small languages:
ℒ1 ℒ2

• What’s the DFA for ℒ1 ∪ ℒ2?

– The Joint-DFA has product states 𝑞0𝑠0, 𝑞0𝑠1, 𝑞1𝑠0, 𝑞1𝑠1

15

0

0

0

0

1

1

1

1

𝑞0𝑠0: 𝑀1 is in state 𝑞0 and 𝑀2 is in state 𝑠0

𝑞0𝑠1: 𝑀1 is in state 𝑞0 and 𝑀2 is in state 𝑠1

𝑞1𝑠0: 𝑀1 is in state 𝑞1 and 𝑀2 is in state 𝑠0

𝑞1𝑠1: 𝑀1 is in state 𝑞1 and 𝑀2 is in state 𝑠1

𝑞0𝑠0 𝑞0𝑠1

𝑞1𝑠0 𝑞1𝑠1
𝑀1 ∪ 𝑀2

Concatenation and Kleene Star

• What is the DFA for ℒ1 = 1

16

𝑞0 𝑞1
1

𝑀1

𝐸

0,1

0,1

0

Concatenation and Kleene Star, cont’d

• What is the DFA for ℒ2 = 0

17

𝑠0 𝑠1
0

𝑀2

𝐸

0,1

0,1

1

Concatenation and Kleene Star, cont’d

• Let’s look at our two small languages:
ℒ1 ℒ2

• What is the DFA for ℒ1•ℒ2?

18

𝑞0 𝑠1

𝐸1

0,1

0

𝐸2

0,1

𝑞1𝑠0
01

1
0,1

Concatenation and Kleene Star, cont’d

• Let’s look at our two small languages:
ℒ1 ℒ2

• What is the DFA for ℒ1
∗?

19

𝑞1
1

𝐸

0

0,1

0

𝑞0 1

The Power of DFAs: What can they Solve?

• Finite languages.

– (building blocks of regular expressions)

• Complement, intersection, union.

– (operations to form complex regular expressions)

• Concatenation and Kleene-star (a little more complicated, see text).

– (operations to form complex regular expressions)

• That’s what we need for regular expressions.

• DFAs solve languages (computing problems) expressed as regular expressions.

– (That is why the languages solved by DFAs are called regular languages.)

20

Is There Anything DFAs Can’t Solve?

• Exercise. Give a DFA to solve 0 ∗• 1 ∗ = {0•𝑛1•𝑘|𝑛 ≥ 0, 𝑘 ≥ 0}

• What about “equality”:
ℒ0𝑛1𝑛 = {0•𝑛1•𝑛|𝑛 ≥ 0}

• Theorem. There is no DFA that solves ℒ0𝑛1𝑛.

• Proof.

– By Contradiction. Suppose a DFA with 𝑘 states solves 0𝑛1𝑛

– What happens to this DFA when you keep feeding it 0’s?

𝑞0 = 𝑠𝑡𝑎𝑡𝑒 0•0 ՜
𝑀

𝑠𝑡𝑎𝑡𝑒 0•1 ՜
𝑀

⋯ ՜
𝑀

𝑠𝑡𝑎𝑡𝑒(0•𝑘−1) ՜
𝑀

𝑠𝑡𝑎𝑡𝑒(0•𝑘)

– After 𝑘 0’s, 𝑘 + 1 states visited. There must be a repetition (pigeonhole)

𝑠𝑡𝑎𝑡𝑒 0•𝑖 = 𝑠𝑡𝑎𝑡𝑒 0•𝑗 = 𝑞, 𝑖 < 𝑗 ≤ 𝑘

– Consider the two input strings 0•𝑖1•𝑖 ∈ ℒ0𝑛1𝑛 and 0•𝑗1•𝑖 ∉ ℒ0𝑛1𝑛

• After 𝑀 has processed the 0’s in both strings, it is in state 𝑞

• What then?

• Same number of 1’s remain, from state 𝑞. Either both rejected or both
accepted. FISHY!

• Intuition: The DFA has no “memory” to remember 𝑛. 21

Our First Computing Machine

• DFAs can be implemented using basic technology, so practical.

• Powerful (regular languages), but also limited.

• DFAs fail at so simple a problem as equality.

– That’s not acceptable.

– We need a more powerful machine.

22

Computing Model
Rules to
1. Construct machine
2. Solve problems

Analyze Model
1. Capabilities: what can be solved
2. Limitations: what can’t be solved?

Do we need a
new model?

Adding Memory

• DFAs have no scratch paper. It’s hard to compute entirely in your head.

• Stack Memory. Think of a file-clerk with a stack of papers.

• The clerk’s capabilities:

– see the top sheet;

– remove the top sheet (pop)

– push something new onto the top of the stack.

– no access to inner sheets without removing top.

• DFA with a stack is a pushdown automaton (PDA)

• How does the stack help to solve ℒ0𝑛1𝑛 = {0•𝑛1•𝑛|𝑛 ≥ 0}?

1. When you read in each 0, write it to the stack.

2. For each 1, pop the stack. At the end if the stack is empty, accept.

• The memory allows the automaton to “remember” 𝑛.

23

	Slide 1: Deterministic Finite Automata (DFA)
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: A Simple Computing Machine
	Slide 5: A Simple Computing Machine, cont’d
	Slide 6: Running the Machine on an Input
	Slide 8: Computing Problem Solved by a DFA
	Slide 9: The Vending Machine
	Slide 10: DFA for a Finite Language
	Slide 11: DFAs for Infinite Languages
	Slide 12: DFAs for Infinite Languages, cont’
	Slide 13: DFAs for Infinite Languages
	Slide 14: Two DFAs in One: Union and Intersection
	Slide 15: Two DFAs in One: Union and Intersection
	Slide 16: Concatenation and Kleene Star
	Slide 17: Concatenation and Kleene Star, cont’d
	Slide 18: Concatenation and Kleene Star, cont’d
	Slide 19: Concatenation and Kleene Star, cont’d
	Slide 20: The Power of DFAs: What can they Solve?
	Slide 21: Is There Anything DFAs Can’t Solve?
	Slide 22: Our First Computing Machine
	Slide 23: Adding Memory

