Deterministic Finite Automata (DFA)

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 24

Overview

- A simple computing machine.
- States.
- Transitions.
- No scratch paper.
- What computing problems can this simple machine solve?
- Vending machine.
- Regular languages.
- Closed under all the set operations: union, intersection, complement, concatenation, Kleene-star.
- Are there problems that cannot be solved?

A Simple Computing Machine

A Simple Computing Machine, cont'd

- Transitions

| 1. | q_{0} | 0 | q_{1} | In state q_{0}, if you read 0,
 Transition to q_{1} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | q_{0} | 1 | q_{2} | |
| 3. | q_{1} | 0 | q_{1} | |
| 4. | q_{1} | 1 | q_{2} | |
| 5. | q_{2} | 0 | q_{2} | |
| 6. | q_{2} | 1 | q_{2} | |

1. Process the input string (left-to-right) starting from the initial state q_{0}
2. Process one bit at a time, each time transitioning from the current state to the next state according to the transition instructions.
3. When done processing every bit, output YES if the final resting state of the DFA is a YES-state; otherwise output NO

$$
q_{0} \mid \triangleright 010
$$

$$
q_{0}\left|\triangleright 010 \quad M \quad q_{1}\right| 0 \triangleright 10
$$

$$
\binom{M \text { is the name }}{\text { of our "Machine" }}
$$

\[

\]

$$
q_{0}\left|\triangleright 010 \stackrel{M}{\rightrightarrows} q_{1}\right| 0 \triangleright 10
$$

$$
\stackrel{M}{G} q_{2} \mid 01 \triangleright 0
$$

$$
\stackrel{M}{\rightarrow} q_{2} \mid 010 \triangleright
$$

(NO, REJECT

Computing Problem Solved by a DFA

- The computing problem solved by M is the language

$$
\mathcal{L}(M)=\{w \mid M(w)=Y E S\}
$$

- $\mathcal{L}(M)$ is the automaton's YES-set. For our automaton M :

$$
\mathcal{L}(M)=\{0,00,000,0000, \ldots\}=\left\{0^{\bullet} n \mid n>0\right\}
$$

1. For an automaton M, what is the computing problem $\mathcal{L}(M)$ solved by M ?
2. For a computing problem \mathcal{L}, what automaton M solves \mathcal{L}, i.e., $\mathcal{L}(M)=\mathcal{L}$?

- Practice. Exercise 24.2 gives you lots of training in question 1.
- Vending machine takes nickels and dimes and dispenses a soda when it has 25 c.

\longrightarrow 5¢ transition
$\Longrightarrow 5 ¢$ transition plus dispense soda
\longrightarrow 10 \longrightarrow transition
$\longrightarrow 10 ¢$ transition plus dispense soda
- Input sequence: $10 ¢, 10 ¢, 5$ ¢ $, 10 ¢, 10 ¢, 10 ¢$.

DFA for a Finite Language

What's the DFA for $\mathcal{L}=\{10\}$

- 0 means move to a rejecting ERROR state and stay there
- 1 is partial success.
- Another 1 puts you into ERROR since you want 0;
- 0 from q_{1} and you are ready to accept . . . unless . . .
- More bits arrive, in which case move to ERROR
- Practice. Try random strings other than 01 and make sure our DFA rejects them.

DFAs for Infinite Languages

- What is this language:

$$
\begin{aligned}
\mathcal{L}_{1} & =* 0 * \\
& =\{\text { strings with a } 0\} \\
& =\{0,00,01,10,000,001,010,011,110, \ldots\}
\end{aligned}
$$

- (wilrdcard $\left.*=\Sigma^{*}\right)$

M_{1}

DFAs for Infinite Languages, cont'

- What is this language:

$$
\begin{aligned}
\mathcal{L}_{1} & =* 1 \\
& =\{\text { strings ending in } 1\} \\
& =\{1,01,11,001,011,101,111, \ldots\}
\end{aligned}
$$

- (wilrdcard $\left.*=\Sigma^{*}\right)$

M_{2}

DFAs for Infinite Languages

- What is this language:

$$
\begin{aligned}
\mathcal{L}_{1} & =* 0 * \\
& =\{\text { strings with a } 0\} \\
& =\{0,00,01,10,000,001,010,011,110, \ldots\}
\end{aligned}
$$

- Complement. Consider $\overline{\mathcal{L}}_{1}$
- Must accept strings M_{1} rejects
- Flip YES and NO states

$\overline{M_{1}}$

Two DFAs in One: Union and Intersection

- Let's look at our two small languages:
\mathcal{L}_{1}

M_{1}
\mathcal{L}_{2}

M_{2}
- What's the DFA for $\mathcal{L}_{1} \cup \mathcal{L}_{2}$?
- The Joint-DFA has product states $\left\{q_{0} s_{0}, q_{0} s_{1}, q_{1} s_{0}, q_{1} s_{1}\right\}$

$q_{0} s_{0}: M_{1}$ is in state q_{0} and M_{2} is in state s_{0} $q_{0} s_{1}: M_{1}$ is in state q_{0} and M_{2} is in state s_{1} $q_{1} s_{0}: M_{1}$ is in state q_{1} and M_{2} is in state s_{0} $q_{1} s_{1}: M_{1}$ is in state q_{1} and M_{2} is in state s_{1}

Two DFAs in One: Union and Intersection

- Let's look at our two small languages:
\mathcal{L}_{1}

M_{1}
\mathcal{L}_{2}

M_{2}
- What's the DFA for $\mathcal{L}_{1} \cup \mathcal{L}_{2}$?
- The Joint-DFA has product states $\left\{q_{0} s_{0}, q_{0} s_{1}, q_{1} s_{0}, q_{1} s_{1}\right\}$

$q_{0} s_{0}: M_{1}$ is in state q_{0} and M_{2} is in state s_{0} $q_{0} s_{1}: M_{1}$ is in state q_{0} and M_{2} is in state s_{1} $q_{1} s_{0}: M_{1}$ is in state q_{1} and M_{2} is in state s_{0} $q_{1} s_{1}: M_{1}$ is in state q_{1} and M_{2} is in state s_{1}
$M_{1} \cup M_{2}$

Concatenation and Kleene Star

- What is the DFA for $\mathcal{L}_{1}=\{1\}$
M_{1}

Concatenation and Kleene Star, cont'd

- What is the DFA for $\mathcal{L}_{2}=\{0\}$
M_{2}

Concatenation and Kleene Star, cont'd

- Let's look at our two small languages:

- What is the DFA for $\mathcal{L}_{1} \bullet \mathcal{L}_{2}$?

Concatenation and Kleene Star, cont'd

- Let's look at our two small languages:

- What is the DFA for \mathcal{L}_{1}^{*} ?

The Power of DFAs: What can they Solve?

- Finite languages.
- (building blocks of regular expressions)
- Complement, intersection, union.
- (operations to form complex regular expressions)
- Concatenation and Kleene-star (a little more complicated, see text).
- (operations to form complex regular expressions)
- That's what we need for regular expressions.
- DFAs solve languages (computing problems) expressed as regular expressions.
- (That is why the languages solved by DFAs are called regular languages.)

Is There Anything DFAs Can't Solve?

- Exercise. Give a DFA to solve $\{0\}^{*} \bullet\{1\}^{*}=\left\{0^{\bullet n} 1^{\bullet k} \mid n \geq 0, k \geq 0\right\}$
- What about "equality":

$$
\mathcal{L}_{0^{n} 1^{n}}=\left\{0^{\bullet n} 1^{\bullet} \mid n \geq 0\right\}
$$

- Theorem. There is no DFA that solves $\mathcal{L}_{0^{n} 1^{n}}$.
- Proof.
- By Contradiction. Suppose a DFA with k states solves $\left\{0^{n} 1^{n}\right\}$
- What happens to this DFA when you keep feeding it 0's?

$$
q_{0}=\operatorname{state}\left(0^{\bullet 0}\right) \xrightarrow{M} \operatorname{state}\left(0^{\bullet} 1\right) \xrightarrow{M} \cdots \xrightarrow{M} \operatorname{state}\left(0^{\bullet} k-1\right) \xrightarrow{M} \operatorname{state}\left(0^{\bullet}\right)
$$

- After $k 0$'s, $k+1$ states visited. There must be a repetition (pigeonhole)

$$
\operatorname{state}\left(0^{\bullet i}\right)=\operatorname{state}\left(0^{\bullet j}\right)=q, \quad i<j \leq k
$$

- Consider the two input strings $0^{\bullet i} 1^{\bullet i} \in \mathcal{L}_{0^{n} 1^{n}}$ and $0^{\bullet j} 1^{\bullet i} \notin \mathcal{L}_{0^{n} 1^{n}}$
- After M has processed the 0 's in both strings, it is in state q
- What then?
- Same number of 1's remain, from state q. Either both rejected or both accepted. FISHY!
- Intuition: The DFA has no "memory" to remember n.

Our First Computing Machine

- DFAs can be implemented using basic technology, so practical.
- Powerful (regular languages), but also limited.

Computing Model Rules to

1. Construct machine
2. Solve problems

Analyze Model

1. Capabilities: what can be solved
2. Limitations: what can't be solved?

- DFAs fail at so simple a problem as equality.
- That's not acceptable.
- We need a more powerful machine.

Adding Memory

- DFAs have no scratch paper. It's hard to compute entirely in your head.
- Stack Memory. Think of a file-clerk with a stack of papers.
- The clerk's capabilities:
- see the top sheet;
- remove the top sheet (pop)
- push something new onto the top of the stack.
- no access to inner sheets without removing top.

- DFA with a stack is a pushdown automaton (PDA)
- How does the stack help to solve $\mathcal{L}_{0^{n} 1^{n}}=\left\{0^{\bullet} 1^{\bullet} n \mid n \geq 0\right\}$?

1. When you read in each 0 , write it to the stack.
2. For each 1, pop the stack. At the end if the stack is empty, accept.

- The memory allows the automaton to "remember" n.

