
What is Computing?
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Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 23
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Overview

• Decision problems

• Languages

– Describing a language

• Complexity of a computing problem
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What is a Computing Problem?

• There are many classes of computing problems

– And many questions one can ask whose answers can be computed

• For example, decide YES or NO whether a given integer 𝑛 ∈ ℕ is prime

– This is an example of a decision problem

• First, list the primes in increasing order (primes are countable)
𝑝𝑟𝑖𝑚𝑒𝑠 = {2,3,5,7,11,13,17,19,23, … }

• Here’s a quick decision algorithm:

– Given 𝑛 ∈ ℕ, walk through 𝑝𝑟𝑖𝑚𝑒𝑠

1. If you come to 𝑛 output YES

2. If you come to a number bigger than 𝑛, output NO

• Not the fastest approach to primality testing, but gets to the heart of computing

• To talk about what is computable, we need to come up with the LANGUAGES of 
computing!
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Decision Problems

• Consider the set of all primary numbers in binary:
ℒ𝑝𝑟𝑖𝑚𝑒 = 10,11,101,111,1011,1101,10001,10011,10111,11101, …

– To answer a question like “Is 9 prime?”, we need to look up the binary 
representation of 9, 1001, and check if 1001 ∈ ℒ𝑝𝑟𝑖𝑚𝑒

• Consider a push-lamp. Every push toggles between on and off

– Given the number of pushes, decide whether the light is on or off

– Encode number of pushes by a binary string, e.g. 101 means 5 pushes

– Assuming lamp starts in OFF state, what number of pushes correspond to ON?

• 1, 3, 5, 7, …, i.e., all odd numbers

– What binary strings correspond to all odd numbers?

– All strings that end in 1 bit:
ℒ𝑝𝑢𝑠ℎ = {1,01,11,001,011,101,111,0001,0011,0101,0111,1001, … }

– The light is on after 1010 pushes if and only if 1010 ∈ ℒ𝑝𝑢𝑠ℎ
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Decision Problems, cont’d

• Consider an electric door with an electric doormat

– Door opens if you step on the doormat

– If you step on the doormat, we encode the event as 1

– If you step off the doormat, we encode the event as 0

– E.g., 10110 means on, off, on, on, off → open

• (Two people can step on it at the same time)

– What are all strings that should lead to the door being open?

– All strings that start with 1 and have more 1’s than 0’s
ℒ𝑑𝑜𝑜𝑟 = {1,11,101,110,111,1011,1101,1110,1111, … }

– Given input 𝑤, e.g., 𝑤 = 1011, the door is open if and only if 𝑤 ∈ ℒ𝑑𝑜𝑜𝑟

• Decision problems can be formulated as testing membership in a set of strings
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A Decision Problem on Graphs

• (a) [Optimization] What’s distance between nodes 1 and 3? 

– Answer: 2

• (b) [Decision] Is there a path between 1 and 3 of length at most 3? 

– Answer: yes

• Which problem is harder?

– (a) is harder than (b): (a)’s answer gives (b)’s answer instantly.

• Let’s encode (b) as a string identifying the graph, nodes of interest and target 
distance

– “Is there a path of length at most 3 between nodes 1 and 3 in the graph above”

– What information does a decision algorithm need?

• Encode the vertices | edges | start/end nodes | path length

“ 1, 2, 3, 4 | (1, 2)(2, 3)(3, 4)(4, 1) | 1, 3 | 3 ”

• The graph problem can be encoded as a binary string using ASCII
0011000100101100001100100010110000110011001011000011010001111100001010000011000100101100001100100010100100101000001100100010110000110011
0010100100101000001100110010110000110100001010010010100000110100001011000011000100101001011111000011000100101100001100110111110000110011

ℒ𝑝𝑎𝑡ℎ = {𝐴𝑙𝑙 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑜𝑓 𝑓𝑜𝑟𝑚 "𝑛𝑜𝑑𝑒𝑠 𝑒𝑑𝑔𝑒𝑠 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑝𝑎𝑡ℎ|𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒" 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 

 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑖𝑠 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒}
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Is Optimization Really Harder than Decision?

• Can I use the decision problem to obtain an answer for the optimization problem?

• Suppose I ask the decision procedure the following questions

– Is there a path in the graph between nodes 𝑥 and 𝑦 of length at most 1?

• Suppose I get back NO

– Is there a path in the graph between nodes 𝑥 and 𝑦 of length at most 2?

• Suppose I get back NO

– Is there a path in the graph between nodes 𝑥 and 𝑦 of length at most 3?

• Suppose I get back NO

– Is there a path in the graph between nodes 𝑥 and 𝑦 of length at most 4?

• Suppose I get back YES

• Keep asking the decision question until the answer is YES

– The minimum-pathlength between 𝑥 and 𝑦 is 4

– It can take long, but it works.

• Decision and optimization are “equivalent” when it comes to solvability.

• A computing problem is a decision problem.
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Languages

• Standard formulation of a decision problem:

– Problem: GRAPH-DISTANCE-𝐷

– Input: Finite graph 𝐺; nodes 𝑥, 𝑦; target distance 𝐷

– Question: Is there an (𝑥, 𝑦)-path in 𝐺 of length at most 𝐷

• Every decision problem has a YES-set, which we usually don’t explicitly list

YES-set = {input strings 𝑤 for which the answer is yes}
= 𝑤1, 𝑤2, 𝑤3, …  

• A language is any set of finite binary strings

• A computing problem is a YES-set, a set of finite binary strings.
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Computing Problems Are Languages

• Language: Set of finite binary strings.

• Solving the problem. Give a “procedure” to tell if a general input 𝑤 is in the 
language (YES-set).

• Abstract, precise and general formulation of a computing problem.

• Examples:

– A finite language
𝜀, 1,10,01

– All finite strings
Σ∗ = {𝜀, 0,1,00,01,10,11,000,001,010,011, … }

– All prime numbers
ℒ𝑝𝑟𝑖𝑚𝑒 = {10, 11, 101, 111, 1011, 1101, 10001}

– Push-lamp language
ℒ𝑝𝑢𝑠ℎ = {1,01,11,001,011,101,111,0001,0011,0101,0111,1001, … }

– Doormat language
ℒ𝑑𝑜𝑜𝑟 = {1,11,101,110,111,1011,1101,1110,1111, … }
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Computing Problems Are Languages, cont’d

• More examples

– All unary strings (strings of all 1’s)

ℒ𝑢𝑛𝑎𝑟𝑦 = 1,11,111,1111, … = 1•𝑛 𝑛 ≥ 0

– All strings with repeated 01 substrings

ℒ 01 𝑛 = 01,0101,010101, … = (01)•𝑛 𝑛 ≥ 0

– All strings where 𝑛 0’s are followed by 𝑛 1s

ℒ0𝑛1𝑛 = 01,0011,000111, … = 0•𝑛1•𝑛 𝑛 ≥ 0

– All palindromes
ℒ𝑝𝑎𝑙 = {𝜀, 0,1,00,11,000,010,101,111, … }
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Describing a Language: String Patterns and 

Variables

• Some languages are easier to describe than others
ℒ = 01,0101,010101, …

• In this case, we can use a variable to formally define ℒ:

ℒ = 𝑤 𝑤 = (01)•𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 0

– (informally, (01)•𝑛 𝑛 ≥ 0 )

• Some cases are slightly harder (maybe use 2 variables):

𝑢•𝑣 𝑢 ∈ Σ∗ 𝑎𝑛𝑑 𝑣 = 𝑢𝑅 = 

= {𝜀, 00,11,0000,1111, … }

– What is this set?

– All even palindromes

• Exercise. Define 
ℒ𝑎𝑑𝑑 = {0100,011000,001000,00110000,00010000,0001100000,01110000,0011100000,000111000000, … }

– Answer: {0•𝑛•1•𝑚•0•𝑛+𝑚}
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Regular Expressions

• For more complicated patterns, we use regular expressions

– e.g. the Unix/Linux command:

ls FOCS*

– Does anyone know what that command does?

• lists everything in the folder that starts with FOCS

• the * is a “wild-card”, means “everything”
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The Regular Expression: 

𝟏, 𝟏𝟏 • 𝟎, 𝟎𝟏 ∗• 𝟎𝟎 ∪ 𝟏 ∗

• Regular expression basic building blocks are finite languages:

{1,11}     {0,01}     {00} 1

• Combine these using 

– union, intersection, complement

• So far so good

– concatenation (•), Kleene-star (∗)

• Um, OK?

• Concatenation of languages.
ℒ1•ℒ2•ℒ3 = 𝑤1𝑤2𝑤3 𝑤1 ∈ ℒ1, 𝑤2 ∈ ℒ2, 𝑤3 ∈ ℒ3

• Example:
0,01 • 0,11 = {00,011,010,0111}

• What about 0,11 • 0,01 ?
0,11 • 0,01 = {00,001,110,1101}

– Concatenation is not commutative! (ℒ1•ℒ2 ≠ ℒ2•ℒ1)

• Self-concatenation:
0,01 • 0,01 = 0,01 •2 = 00,001,010,0101 14



The Regular Expression: 

𝟏, 𝟏𝟏 •{0,01}∗• 𝟎𝟎 ∪ 𝟏 ∗

• Kleene star: All possible concatenations of a finite number of strings from a 
language

0,01 ∗ = {𝜀, 0,01,00,001,010,0101,000, … }

= ራ

𝑛=0

∞

0,01 •𝑛  

• Similarly,
1 ∗ = 𝜀, 1,11,111,1111,11111, …

= ራ

𝑛=0

∞

1 •𝑛  

• To generate 1110111 (from the regular expression in the title):
11 ∈ 1,11  
10 ∈ {0,01}∗ 

111 ∈ 00 ∪ 1 ∗ 

• Hence, 
1110111 ∈ 1,11 •{0,01}∗• 00 ∪ 1 ∗
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Questions Regarding Regular Expressions

• Is there a simple procedure to test if a given string satisfies a regular expression?
1110111 ∈ 1,11 •{0,01}∗• 00 ∪ 1 ∗

– The approach we’ve seen so far requires a lot of search

• Can we write a regular expression for all palindromes (strings which equal their 
reversal)?

– “Reverse” is not an operator in regular expressions
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Recursively Defined Languages: Palindromes

• Let’s define the palindromes language:

𝜀, 0,1 ∈ ℒ𝑝𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑚𝑒                                                                             [basis]

       𝑤 ∈ ℒ𝑝𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑚𝑒 → 0 • 𝑤 • 0 ∈ ℒ𝑝𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑚𝑒       [constructor rules]

→ 1 • 𝑤 • 1 ∈ ℒ𝑝𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑚𝑒 

Nothing else is in ℒ𝑝𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑚𝑒                                             [minimality]
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Recursively Defined Languages, cont’d

• Here are two very similar looking languages:

0•𝑛, 1•𝑘 𝑛, 𝑘 ≥ 0

0•𝑛, 1•𝑛 𝑛 ≥ 0  

– Are they the same?

– Second one only has strings with the same number of 0s and 1s

• These computing problems look similar.

• They are VERY different. Which do you think is more “complex”?

– Turns out the second one is much harder. Why?

– We need to remember the number of 0s in order to check if the number of 1s is 
the same

• How to define complexity of a computing problem?
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Complexity of a Computing Problem

• Remember the lamp-push language:
ℒ𝑝𝑢𝑠ℎ = {1,01,11,001,011,101,111,0001,0011,0101,0111,1001, … }

– (strings ending in 1)

• We define a difficult set intuitively as a set where:

– We have a “complex” YES-set

– It is computationally “hard” to test membership in YES-set

• How do we test membership? That brings us to Models Of Computing.

• Suppose we are given a string 1101

– Is it in the push language?

– Yes

– Turns out we can come up with a very simple device to test membership
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Complexity of a Computing Problem, cont’d

• Remember the lamp-push language:
ℒ𝑝𝑢𝑠ℎ = {1,01,11,001,011,101,111,0001,0011,0101,0111,1001, … }

– (strings ending in 1)

• Suppose we are given a string 1101

• Consider the following machine with two states

• Depending on the machine’s state, there are four possible rules:
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Complexity of a Computing Problem, cont’d

• Remember the lamp-push language:
ℒ𝑝𝑢𝑠ℎ = {1,01,11,001,011,101,111,0001,0011,0101,0111,1001, … }

– (strings ending in 1)

• Suppose we are given a string 1101

• Consider the following machine with two states

• Depending on the machine’s state, there are four possible rules:

1. In state 𝑞0, when you process a 0, transition to state 𝑞0
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Complexity of a Computing Problem, cont’d

• Remember the lamp-push language:
ℒ𝑝𝑢𝑠ℎ = {1,01,11,001,011,101,111,0001,0011,0101,0111,1001, … }

– (strings ending in 1)

• Suppose we are given a string 1101

• Consider the following machine with two states

• Depending on the machine’s state, there are four possible rules:

1. In state 𝑞0, when you process a 0, transition to state 𝑞0

2. In state 𝑞0, when you process a 1, transition to state 𝑞1
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Complexity of a Computing Problem, cont’d

• Remember the lamp-push language:
ℒ𝑝𝑢𝑠ℎ = {1,01,11,001,011,101,111,0001,0011,0101,0111,1001, … }

– (strings ending in 1)

• Suppose we are given a string 1101

• Consider the following machine with two states

• Depending on the machine’s state, there are four possible rules:

1. In state 𝑞0, when you process a 0, transition to state 𝑞0

2. In state 𝑞0, when you process a 1, transition to state 𝑞1

3. In state 𝑞1, when you process a 0, transition to state 𝑞0
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Complexity of a Computing Problem, cont’d

• Remember the lamp-push language:
ℒ𝑝𝑢𝑠ℎ = {1,01,11,001,011,101,111,0001,0011,0101,0111,1001, … }

– (strings ending in 1)

• Suppose we are given a string 1101

• Consider the following machine with two states

• Depending on the machine’s state, there are four possible rules:

1. In state 𝑞0, when you process a 0, transition to state 𝑞0

2. In state 𝑞0, when you process a 1, transition to state 𝑞1

3. In state 𝑞1, when you process a 0, transition to state 𝑞0

4. In state 𝑞1, when you process a 1, transition to state 𝑞1

• Full machine is then
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A Simple Computing Machine (DFA)

• DFA stands for deterministic finite automaton

• Let’s see how the computing machine works

• We process the string in order

– After each symbol we perform a transition in the DFA

– We start from the DFA initial state

– If we end in an accepting state, the string is accepted, i.e., it is in the language

26



A Simple Computing Machine, cont’d

• Start the machine in the initial state

• Then process the string in order

1101

1101

1101

1101
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How hard is the problem?

Computing Problems and Their Difficulty

29

Computing Problem

Decision Problem Language ℒ: YES-set of finite binary strings

How complex is ℒ?

How hard is it to test membership in ℒ?

?



Computing Problems and Their Difficulty, cont’d

• A problem can be harder in two ways.

1. The problem needs more resources. 

• For example, the problem can be solved with a similar machine to ours, 
except with more states.

2. The problem needs a different kind of computing machine, with superior 
capabilities.

• The first type of “harder” is the focus of a follow-on algorithms course.

• We focus on what can and can’t be solved on a particular kind of machine.
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