What is Computing?

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 23
- Decision problems
- Languages
- Describing a language
- Complexity of a computing problem

What is a Computing Problem?

- There are many classes of computing problems
- And many questions one can ask whose answers can be computed
- For example, decide YES or NO whether a given integer $n \in \mathbb{N}$ is prime
- This is an example of a decision problem
- First, list the primes in increasing order (primes are countable)

$$
\text { primes }=\{2,3,5,7,11,13,17,19,23, \ldots\}
$$

- Here's a quick decision algorithm:
- Given $n \in \mathbb{N}$, walk through primes

1. If you come to n output YES
2. If you come to a number bigger than n, output NO

- Not the fastest approach to primality testing, but gets to the heart of computing
- To talk about what is computable, we need to come up with the LANGUAGES of computing!

Decision Problems

- Consider the set of all primary numbers in binary:

$$
\mathcal{L}_{\text {prime }}=\{10,11,101,111,1011,1101,10001,10011,10111,11101, \ldots\}
$$

- To answer a question like "Is 9 prime?", we need to look up the binary representation of 9,1001 , and check if $1001 \in \mathcal{L}_{\text {prime }}$
- Consider a push-lamp. Every push toggles between on and off
- Given the number of pushes, decide whether the light is on or off
- Encode number of pushes by a binary string, e.g. 101 means 5 pushes
- Assuming lamp starts in OFF state, what number of pushes correspond to ON?
- 1, 3, 5, 7, ..., i.e., all odd numbers
- What binary strings correspond to all odd numbers?
- All strings that end in 1 bit:

$$
\mathcal{L}_{\text {push }}=\{1,01,11,001,011,101,111,0001,0011,0101,0111,1001, \ldots\}
$$

- The light is on after 1010 pushes if and only if $1010 \in \mathcal{L}_{\text {push }}$

Decision Problems, cont'd

- Consider an electric door with an electric doormat
- Door opens if you step on the doormat
- If you step on the doormat, we encode the event as 1

- If you step off the doormat, we encode the event as 0
- E.g., 10110 means on, off, on, on, off \rightarrow open
- (Two people can step on it at the same time)
- What are all strings that should lead to the door being open?
- All strings that start with 1 and have more 1's than 0's

$$
\mathcal{L}_{\text {door }}=\{1,11,101,110,111,1011,1101,1110,1111, \ldots\}
$$

- Given input w, e.g., $w=1011$, the door is open if and only if $w \in \mathcal{L}_{\text {door }}$
- Decision problems can be formulated as testing membership in a set of strings

A Decision Problem on Graphs

- (a) [Optimization] What's distance between nodes 1 and 3?
- Answer: 2
- (b) [Decision] Is there a path between 1 and 3 of length at most 3 ?
- Answer: yes

- Which problem is harder?
- (a) is harder than (b): (a)'s answer gives (b)'s answer instantly.
- Let's encode (b) as a string identifying the graph, nodes of interest and target distance
- "Is there a path of length at most 3 between nodes 1 and 3 in the graph above"
- What information does a decision algorithm need?
- Encode the vertices | edges | start/end nodes | path length

$$
\text { " } 1,2,3,4|(1,2)(2,3)(3,4)(4,1)| 1,3 \mid 3 "
$$

- The graph problem can be encoded as a binary string using ASCII

Is Optimization Really Harder than Decision?

- Can I use the decision problem to obtain an answer for the optimization problem?
- Suppose I ask the decision procedure the following questions
- Is there a path in the graph between nodes x and y of length at most 1?
- Suppose I get back NO
- Is there a path in the graph between nodes x and y of length at most 2 ?
- Suppose I get back NO
- Is there a path in the graph between nodes x and y of length at most 3 ?
- Suppose I get back NO
- Is there a path in the graph between nodes x and y of length at most 4?
- Suppose I get back YES
- Keep asking the decision question until the answer is YES
- The minimum-pathlength between x and y is 4
- It can take long, but it works.
- Decision and optimization are "equivalent" when it comes to solvability.
- A computing problem is a decision problem.

Languages

- Standard formulation of a decision problem:
- Problem: GRAPH-DISTANCE-D
- Input: Finite graph G; nodes x, y; target distance D
- Question: Is there an (x, y)-path in G of length at most D
- Every decision problem has a YES-set, which we usually don't explicitly list

$$
\begin{aligned}
\text { YES-set } & =\{\text { input strings } w \text { for which the answer is yes }\} \\
& =\left\{w_{1}, w_{2}, w_{3}, \ldots\right\}
\end{aligned}
$$

- A language is any set of finite binary strings
- A computing problem is a YES-set, a set of finite binary strings.

Computing Problems Are Languages

- Language: Set of finite binary strings.
- Solving the problem. Give a "procedure" to tell if a general input w is in the language (YES-set).
- Abstract, precise and general formulation of a computing problem.
- Examples:
- A finite language

$$
\{\varepsilon, 1,10,01\}
$$

- All finite strings

$$
\Sigma^{*}=\{\varepsilon, 0,1,00,01,10,11,000,001,010,011, \ldots\}
$$

- All prime numbers

$$
\mathcal{L}_{\text {prime }}=\{10,11,101,111,1011,1101,10001\}
$$

- Push-lamp language

$$
\mathcal{L}_{\text {push }}=\{1,01,11,001,011,101,111,0001,0011,0101,0111,1001, \ldots\}
$$

- Doormat language

$$
\mathcal{L}_{\text {door }}=\{1,11,101,110,111,1011,1101,1110,1111, \ldots\}
$$

Computing Problems Are Languages, cont'd

- More examples
- All unary strings (strings of all 1's)

$$
\mathcal{L}_{\text {unary }}=\{1,11,111,1111, \ldots\}=\left\{1^{\bullet} n \mid n \geq 0\right\}
$$

- All strings with repeated 01 substrings

$$
\mathcal{L}_{(01)^{n}}=\{01,0101,010101, \ldots\}=\left\{(01)^{\bullet n} \mid n \geq 0\right\}
$$

- All strings where $n 0$'s are followed by $n 1 \mathrm{~s}$

$$
\mathcal{L}_{0^{n} 1^{n}}=\{01,0011,000111, \ldots\}=\left\{0^{\bullet n} 1^{\bullet n} \mid n \geq 0\right\}
$$

- All palindromes

$$
\mathcal{L}_{\text {pal }}=\{\varepsilon, 0,1,00,11,000,010,101,111, \ldots\}
$$

Describing a Language: String Patterns and Variables

- Some languages are easier to describe than others

$$
\mathcal{L}=\{01,0101,010101, \ldots\}
$$

- In this case, we can use a variable to formally define \mathcal{L} :

$$
\mathcal{L}=\left\{w \mid w=(01)^{\bullet} \text {, where } n \geq 0\right\}
$$

- (informally, $\left\{(01)^{\bullet n} \mid n \geq 0\right\}$)
- Some cases are slightly harder (maybe use 2 variables):

$$
\begin{aligned}
\left\{u \bullet v \mid u \in \Sigma^{*} \text { and } v=u^{R}\right\} & = \\
& =\{\varepsilon, 00,11,0000,1111, \ldots\}
\end{aligned}
$$

- What is this set?
- All even palindromes
- Exercise. Define
$\mathcal{L}_{\text {add }}=\{0100,011000,001000,00110000,00010000,0001100000,01110000,0011100000,000111000000, \ldots\}$
- Answer: $\left\{0^{\bullet}{ }^{\bullet} \bullet 1^{\bullet m} \bullet 0^{\bullet} n+m\right\}$

Regular Expressions

- For more complicated patterns, we use regular expressions
- e.g. the Unix/Linux command:
ls FOCS*
- Does anyone know what that command does?
- lists everything in the folder that starts with FOCS
- the * is a "wild-card", means "everything"

The Regular Expression:

$\{1,11\} \bullet \overline{\{0,01}\}^{*} \bullet\left(\{00\} \cup\{1\}^{*}\right)$

- Regular expression basic building blocks are finite languages:

$$
\{1,11\} \quad\{0,01\} \quad\{00\} \quad\{1\}
$$

- Combine these using
- union, intersection, complement
- So far so good
- concatenation (\cdot), Kleene-star (*)
- Um, OK?
- Concatenation of languages.

$$
\mathcal{L}_{1} \bullet \mathcal{L}_{2} \bullet \mathcal{L}_{3}=\left\{w_{1} w_{2} w_{3} \mid w_{1} \in \mathcal{L}_{1}, w_{2} \in \mathcal{L}_{2}, w_{3} \in \mathcal{L}_{3}\right\}
$$

- Example:

$$
\{0,01\} \bullet\{0,11\}=\{00,011,010,0111\}
$$

- What about $\{0,11\} \bullet\{0,01\}$?

$$
\{0,11\} \bullet\{0,01\}=\{00,001,110,1101\}
$$

- Concatenation is not commutative! $\left(\mathcal{L}_{1} \bullet \mathcal{L}_{2} \neq \mathcal{L}_{2} \bullet \mathcal{L}_{1}\right)$
- Self-concatenation:

$$
\{0,01\} \bullet\{0,01\}=\{0,01\}^{\bullet 2}=\{00,001,010,0101\}
$$

The Regular Expression:

$\{1,11\} \cdot \overline{\{0,01\}} \bullet \bullet\left(\{00\} \cup\{1\}^{*}\right)$

- Kleene star: All possible concatenations of a finite number of strings from a language

$$
\begin{aligned}
\{0,01\}^{*} & =\{\varepsilon, 0,01,00,001,010,0101,000, \ldots\} \\
& =\bigcup_{n=0}^{\infty}\{0,01\}^{\bullet n}
\end{aligned}
$$

- Similarly,

$$
\begin{aligned}
\{1\}^{*} & =\{\varepsilon, 1,11,111,1111,11111, \ldots\} \\
& =\bigcup_{n=0}^{\infty}\{1\}^{\bullet n}
\end{aligned}
$$

- To generate 1110111 (from the regular expression in the title):

$$
\begin{aligned}
11 & \in\{1,11\} \\
10 & \in\{0,01\}^{*} \\
111 & \in\{00\} \cup\{1\}^{*}
\end{aligned}
$$

- Hence,

$$
1110111 \in\{1,11\} \bullet \overline{\{0,01\} *} \bullet\left(\{00\} \cup\{1\}^{*}\right)
$$

Questions Regarding Regular Expressions

- Is there a simple procedure to test if a given string satisfies a regular expression?

$$
1110111 \in\{1,11\} \bullet \overline{\{0,01\} *} \bullet\left(\{00\} \cup\{1\}^{*}\right)
$$

- The approach we've seen so far requires a lot of search
- Can we write a regular expression for all palindromes (strings which equal their reversal)?
- "Reverse" is not an operator in regular expressions

Recursively Defined Languages: Palindromes

- Let's define the palindromes language:
$\varepsilon, 0,1 \in \mathcal{L}_{\text {palindrome }}$
[basis]
$\begin{aligned} w \in \mathcal{L}_{\text {palindrome }} & \rightarrow 0 \bullet w \bullet 0 \in \mathcal{L}_{\text {palindrome }} \\ & \rightarrow 1 \bullet w \bullet 1 \in \mathcal{L}_{\text {palindrome }}\end{aligned}$
Nothing else is in $\mathcal{L}_{\text {palindrome }}$
[minimality]

Recursively Defined Languages, cont'd

- Here are two very similar looking languages:

$$
\begin{aligned}
& \left\{0^{\bullet n}, 1^{\bullet k} \mid n, k \geq 0\right\} \\
& \left\{0^{\bullet n}, 1^{\bullet n} \mid n \geq 0\right\}
\end{aligned}
$$

- Are they the same?
- Second one only has strings with the same number of 0s and 1s
- These computing problems look similar.
- They are VERY different. Which do you think is more "complex"?
- Turns out the second one is much harder. Why?
- We need to remember the number of $0 s$ in order to check if the number of 1 s is the same
- How to define complexity of a computing problem?

Complexity of a Computing Problem

- Remember the lamp-push language:

$$
\mathcal{L}_{\text {push }}=\{1,01,11,001,011,101,111,0001,0011,0101,0111,1001, \ldots\}
$$

- (strings ending in 1)
- We define a difficult set intuitively as a set where:
- We have a "complex" YES-set
- It is computationally "hard" to test membership in YES-set
- How do we test membership? That brings us to Models Of Computing.
- Suppose we are given a string 1101
- Is it in the push language?
- Yes
- Turns out we can come up with a very simple device to test membership

Complexity of a Computing Problem, cont'd

- Remember the lamp-push language:

$$
\mathcal{L}_{\text {push }}=\{1,01,11,001,011,101,111,0001,0011,0101,0111,1001, \ldots\}
$$

- (strings ending in 1)
- Suppose we are given a string 1101
- Consider the following machine with two states

- Depending on the machine's state, there are four possible rules:

Complexity of a Computing Problem, cont'd

- Remember the lamp-push language:

$$
\mathcal{L}_{\text {push }}=\{1,01,11,001,011,101,111,0001,0011,0101,0111,1001, \ldots\}
$$

- (strings ending in 1)
- Suppose we are given a string 1101
- Consider the following machine with two states

- Depending on the machine's state, there are four possible rules:

1. In state q_{0}, when you process a 0 , transition to state q_{0}

Complexity of a Computing Problem, cont'd

- Remember the lamp-push language:

$$
\mathcal{L}_{\text {push }}=\{1,01,11,001,011,101,111,0001,0011,0101,0111,1001, \ldots\}
$$

- (strings ending in 1)
- Suppose we are given a string 1101
- Consider the following machine with two states

- Depending on the machine's state, there are four possible rules:

1. In state q_{0}, when you process a 0 , transition to state q_{0}
2. In state q_{0}, when you process a 1 , transition to state q_{1}

Complexity of a Computing Problem, cont'd

- Remember the lamp-push language:

$$
\mathcal{L}_{\text {push }}=\{1,01,11,001,011,101,111,0001,0011,0101,0111,1001, \ldots\}
$$

- (strings ending in 1)
- Suppose we are given a string 1101
- Consider the following machine with two states

- Depending on the machine's state, there are four possible rules:

1. In state q_{0}, when you process a 0 , transition to state q_{0}
2. In state q_{0}, when you process a 1 , transition to state q_{1}
3. In state q_{1}, when you process a 0 , transition to state q_{0}

Complexity of a Computing Problem, cont'd

- Remember the lamp-push language:

$$
\mathcal{L}_{\text {push }}=\{1,01,11,001,011,101,111,0001,0011,0101,0111,1001, \ldots\}
$$

- (strings ending in 1)
- Suppose we are given a string 1101
- Consider the following machine with two states

- Depending on the machine's state, there are four possible rules:

1. In state q_{0}, when you process a 0 , transition to state q_{0}
2. In state q_{0}, when you process a 1 , transition to state q_{1}
3. In state q_{1}, when you process a 0 , transition to state q_{0}
4. In state q_{1}, when you process a 1 , transition to state q_{1}

- Full machine is then

A Simple Computing Machine (DFA)

- DFA stands for deterministic finite automaton
- Let's see how the computing machine works
- We process the string in order
- After each symbol we perform a transition in the DFA
- We start from the DFA initial state
- If we end in an accepting state, the string is accepted, i.e., it is in the language

A Simple Computing Machine, cont'd

- Start the machine in the initial state

- Then process the string in order

1101

1101

1101

- Remember the lamp-push language:
$\mathcal{L}_{\text {push }}=\{1,01,11,001,011,101,111,0001,0011,0101,0111,1001, \ldots\}$
- Strings in $\mathcal{L}_{\text {push }}$ end in "accepting" state q_{1}

1101

Computing Problems and Their Difficulty

Computing Problems and Their Difficulty, cont'd Rensselaer

- A problem can be harder in two ways.

1. The problem needs more resources.

- For example, the problem can be solved with a similar machine to ours, except with more states.

2. The problem needs a different kind of computing machine, with superior capabilities.

- The first type of "harder" is the focus of a follow-on algorithms course.
- We focus on what can and can't be solved on a particular kind of machine.

