Infinity

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 22

Summary of Our Stroll Through Discrete Math

- Precise statements, proofs and logic.
- INDUCTION.
- Recursively defined structures and Induction. (Data structures; PL)
- Sums and asymptotics. (Algorithm analysis)
- Number theory. (Cryptography; probability; fun)
- Graphs. (Relationships/conflicts; resource allocation; routing; scheduling,. . .)
- Counting. (Enumeration and brute force algorithms)
- Probability. (Real world algorithms involve randomness/uncertainty)
- Inputs arrive in a random order;
- Randomized algorithms (primality testing, machine learning, routing, conflict resolution...)
- Expected value is a summary of what happens. Variance tells you how good the summary is.
- Comparing "sizes" of sets: countable.
- Rationals are countable.
- Uncountable
- Infinite binary strings.
- What does Infinity have to do with computing?

Georg Cantor

"Size" of a Set: Cardinality

- There's a reason why small kids use fingers to count
- They map their intuitive knowledge of 2-fingers to 2 of another object
- You have an equal number of fingers on each hand
- You can map your left hand's fingers to your right hand's fingers
- Recall some types of such maps

1-1, but not onto.
(injection, $A \xrightarrow{I N J} B$)
$|A| \leq|B|$

onto; not 1-1
(surjection, $A \xrightarrow{\text { SUR }} B$) $|A| \geq|B|$

onto and 1-1 (bijection, $A \xrightarrow{B} B$) $|A|=|B|$

not a function

1-1, but not onto.
(injection, $A \xrightarrow{I N J} B$) $|A| \leq|B|$

onto; not 1-1
(surjection, $A \xrightarrow{S U R} B$)
$|A| \geq|B|$

onto and 1-1
(bijection, $A \xrightarrow{B I J} B$)
$|A|=|B|$

not a function

- Cardinality $|A|$ ("size"), read "cardinality of A," is the number of elements for finite sets
- In general, we can define the following relations between sets:

$$
\begin{aligned}
& |A| \leq|B| \text { iff there is an injection (1-to-1) from } A \text { to } B, \text { i.e., } f: A \xrightarrow{I N J} B \\
& |A|>|B| \text { iff there is no injection (1-to-1) from } A \text { to } B \\
& |A| \geq|B| \text { iff there is a surjection (onto) from } A \text { to } B, \text { i.e., } f: A \xrightarrow{S U R} B \\
& |A|=|B| \text { iff there is a bijection (1-1 and onto) from } A \text { to } B \text {, i.e., } f: A \xrightarrow{B I J} B \\
& |A| \leq|B| \text { and }|B| \leq|A| \rightarrow|A|=|B| \quad \text { [Cantor-Bernstein Theorem] }
\end{aligned}
$$

A Countable Set's Cardinality is at most $|\mathbb{N}|$

- Suppose we have a finite set $A=\left\{a_{1}, \ldots, a_{n}\right\}$
- Cardinality is $|A|=n$ if and only if there is a bijection from A to $\{1, \ldots, n\}$
- Can you come up with such a function?

$$
f\left(a_{i}\right)=i
$$

- For infinite sets: the set A is countable if $|A| \leq|\mathbb{N}|$.
- Intuitively, A is "smaller than" \mathbb{N}
- Sometimes we say A is at most countable to include both finite and infinite sets that are "smaller than" \mathbb{N}
- To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N}

A :
$\mathbb{N}:$

- You cannot skip over any elements of A, but you might not use every element of \mathbb{N}

A Countable Set's Cardinality is at most $|\mathbb{N}|$, cont'd

- To prove that a function $f: A \mapsto \mathbb{N}$ is an injection:
- Assume f is not an injection. (Proof by contradiction.)
- This means there is a pair $x, y \in A$ for which $x \neq y$ and $f(x)=f(y)$
- Use $f(x)=f(y)$ to prove that $x=y$, a contradiction. Hence, f is an injection

All Finite Sets are Countable

- Suppose $A=\{3,6,8\}$
- To show $|A| \leq|\mathbb{N}|$, we give an injection from A to \mathbb{N}

$$
3 \mapsto 1,6 \mapsto 23134,8 \mapsto 8
$$

- For an arbitrary set $A=\left\{a_{1}, \ldots, a_{n}\right\}$

$$
a_{1} \mapsto 1, a_{2} \mapsto 2, \ldots, a_{n} \mapsto n
$$

Non-negative integers $\mathbb{N}_{0}=\{0,1,2, \ldots\}$ are countable

- How can this be??
- I know for a fact that \mathbb{N}_{0} contains every element in \mathbb{N}, plus an extra 0
- It's clearly bigger!!
- Well, if they were finite sets, I would agree. But let's recall the definition.
- To prove that $\left|\mathbb{N}_{0}\right| \leq|\mathbb{N}|$, we need an injection $f: \mathbb{N}_{0} \stackrel{I N J}{\longmapsto} \mathbb{N}$
- Ideas?
- Let's try $f(x)=x+1, \forall x \in \mathbb{N}_{0}$
- Proof.
- Assume f is not an injection. So, there are $x \neq y$ in \mathbb{N}_{0} with $f(x)=f(y)$:

$$
x+1=f(x)=f(y)=y+1
$$

- But that means $x+1=y+1$, i.e., $x=y$. Contradiction.
- Also, we know that $|\mathbb{N}| \leq\left|\mathbb{N}_{0}\right|$ since $\mathbb{N} \subseteq \mathbb{N}_{0}$
- By the Cantor-Bernstein Theorem, $\mathbb{N}=\mathbb{N}_{0}$

Positive Even Numbers and Integers and Countable

- Huh? The even numbers are exactly half of all natural numbers!!

$$
E=\{2,4,6, \ldots\}, \text { so surely }|E|=\frac{1}{2} \mathbb{N}!!
$$

- Turns out, not quite. Can you see a bijection?
- The bijection $f(x)=\frac{1}{2} x$ proves $|E|=|\mathbb{N}|$

- OK, fine, but all integers?? It has to be the case that $|\mathbb{Z}|=2|\mathbb{N}|$!!
- Is there a bijection? ©
- Recall the integers are $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$
\mathbb{N} :

- Exercise. What is a mathematical formula for the bijection?

Every Countable Set Can Be "Listed"

- What does it mean for a set to be "listed"?
- You know the exact position of each element in the set
- Regardless of whether the set is finite or infinite
- For example:
$-\{3,6,8\}$ is a list (why?)
- (because it's a finite set)
$-E=\{2,4,6, \ldots\}$ is a list (why?)
- element i is just $2 i$
- What about \mathbb{Z} ?
- Suppose I represent it as $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- Unclear what the indices are
- Suppose I represent it as $\{0,-1,1,-2,2, \ldots\}$
- Element 1 is 0 , o.w. it is $-i / 2$ (if is even), $(i-1) / 2$ (if i is odd)

Every Countable Set Can Be "Listed", cont'd

- Suppose I give you the following mapping between sets A and \mathbb{N} A:
\mathbb{N} :

- How do I"list" A ?
- Order elements according to their assigned value

A :
\mathbb{N} :

- In general, a set can be "listed" if
- Different elements are assigned to different list-positions.
- We can determine the list-position of any element in the set.

Union of Two Countable Sets is Countable

- Consider two countable sets, A and B
- They are countable, so I can write $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$
- Now, let's look at the union

$$
A \cup B=\left\{a_{1}, a_{2}, a_{3}, \ldots, b_{1}, b_{2}, b_{3}, \ldots\right\}
$$

- Hm, how do I show this is countable?
- Can't use "..." twice
- How do I reorder terms?
- Need to know the position of each b_{i}
- Here's a better reordering:

$$
A \cup B=\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right\}
$$

- Now I know the position of each element
- List-position of a_{i} is $2 i-1$
- List-position of b_{i} is $2 i$
- Exercise. Get a list of \mathbb{Z} with $A=\{0,-1,-2,-3, \ldots\}$ and $B=\{1,2,3, \ldots\}$ using union.

Rationals are Countable: $|\mathbb{Q}|=|\mathbb{N}|$

- OK, this one is very surprising!
- There are infinitely many rationals between every two integers!
- The rationals are dense (there is a rational between any two rationals)!
- Natural numbers are not!
- Also, the set of rationals can be expressed as the product of integers and natural numbers:
$\cdot|\mathbb{Q}|=|\mathbb{N}| \times|\mathbb{Z}|$, so of course $|\mathbb{Q}| \gg|\mathbb{N}|$??
- Well, let's see...

Rationals are Countable: $|\mathbb{Q}|=|\mathbb{N}|$, cont'd

\mathbb{Q}	0	1	-1	2	-2	3	-3	4	-4
1	$\frac{0}{1} \longrightarrow \frac{1}{1}$	$\frac{-1}{1} \longrightarrow \frac{2}{1}$	$\frac{-2}{1}$	$\frac{3}{1}$	$\frac{-3}{1}$	$\frac{4}{1}$	$\frac{-4}{1}$		

- How do I "list" all rationals?
- I need a list that visits each rational exactly once!
- I need to know each rational's position exactly

$$
\begin{gathered}
\mathbb{Q}=\left\{\frac{0}{1}, \frac{1}{1}, \frac{1}{2}, \frac{0}{2}, \frac{0}{3}, \frac{1}{3}, \ldots\right\} \\
\mid\{\text { Rational Values }\}|\leq|\mathbb{Q}| \leq|\mathbb{N}|
\end{gathered}
$$

- Exercise. What is a mathematical formula for the list-position of $z / n \in \mathbb{Q}$?

Programs are Countable

- Programs are finite binary strings. We show that all finite binary strings \mathcal{B} are countable
- How do I list them?
- Start with the empty string (duh...)
- Then list all strings of length 1 , length 2 , etc.

$$
\mathcal{B}=\{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111, \ldots\}
$$

- I now know the exact position of every string!
- Exercise. What is the list-position of 0110?
- Exercise. For the $(k+1)$-bit string $b=b_{k} b_{k-1} \cdots b_{1} b_{0}$, define the string's numerical value:

$$
\operatorname{value}(b)=b_{0} \cdot 2^{0}+b_{1} \cdot 2^{1}+\cdots+b_{k-1} 2^{k-1}+b_{k} 2^{k}
$$

- Show:

$$
\text { list-position of } b=2^{\text {length }(b)}+\operatorname{value}(b)
$$

- Wait a second... We keep seeing larger and larger sets that are countable!!

$$
\mathbb{N}, \mathbb{N}_{0}, \mathbb{Z}, \mathbb{Q}, \mathcal{B}
$$

- SURELY EVERYTHING IS COUNTABLE!?!

Infinite Binary Strings Are Uncountable!

- One of the most cool results in computational theory
- Cantor's Diagonal Argument: Assume there is a list of all infinite binary strings
$\left.\begin{array}{llllllllllllllll}b_{1}: & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
- We'll now show that there exists a string that cannot be in that list!
- Look at the (red) diagonal string:

$$
b=0000100101 \cdots
$$

- What's so special about this string?
- Let's flip the bits

$$
\bar{b}=1111011010 \cdots
$$

- This string is not in the list!
- Differs from each string b_{i} in position i

The Real Numbers are Uncountable

- Every real between 0 and 1 has an infinite binary representation and every infinite binary string evaluates to a real number

$$
\text { e.g., } 0.00111111111111111 \cdots=\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\cdots=\frac{1}{4}
$$

- This means

$$
\mid\{\text { reals in }[0,1]\}|=|\{\text { infinite binary strings }\}|>|\mathbb{N}|
$$

- Aha, found one!
- Brain-breaking exercise (Continuum Hypothesis). Prove that there is no set \mathcal{R} s.t. $\mid\{$ reals in $[0,1]\}|>|\mathcal{R}|>|\mathbb{N}|$

Infinity and Computing

- Cantor took on the abstract beast Infinity. (1874)
- ~60 years later, Alan Turing asked the abstract question: What can we compute? (1936)
- For example, consider the set of binary functions f defined on \mathbb{N}

$n:$	1	2	3	4	5	6	7	8	9	10	\cdots
$f(n):$	0	1	1	0	1	0	0	0	1	1	\cdots

- Turns out the set of all such functions is uncountable
- Corresponds to the set of all infinite binary strings
- Every program is a finite binary string. For example:

```
int main(); //a program that does nothing
```

- This program corresponds to the finite binary string (ASCII code)

0110100101101110011101000010000001101101011000010110100101101110001010000010100100111011

- So, the number of programs is countable
- But the number of functions is uncountable!
- There are many more functions than we can write/compute!

Infinity and Computing, cont'd

- There are MANY MANY functions that cannot be computed by programs!
- Are there interesting, useful functions that cannot be computed by programs?

