Deviations from the Mean

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 21

Overview

- How well does the expected value (mean) summarize a random variable?
- Variance
- Variance of a sum
- Law of large numbers
 - The 3- σ rule

Probability for Analyzing a Random Experiment

• An experiment typically has the following stages

- We want to know how likely is it that we got an unlikely outcome?
- How much did we learn from that experiment?
- Experiment. Roll *n* dice and compute *X*, the average of the rolls

$$\mathbb{E}[average] = \mathbb{E}\left[\frac{1}{n} \times sum\right] = \frac{1}{n}\mathbb{E}[sum]$$
$$= \frac{1}{n} \times n \times 3.5 = 3.5$$

- The expected average is the same as a single die roll average!
 - Expectation doesn't tell us anything about the spread of the values we'll see

Average of n Dice

• Here's what happens when you roll more dice (and calculate the average)!

- Huh, looks like the average varies very little for large n
- This is not surprising if you calculate the PDF

- The variable σ measures "the spread" of the PDF
- Notice that the PDF is much more compact for larger n

Variance: Size of the Deviations from the Mean

• As usual, let's start with X, the sum of 2 dice

$$\mathbb{E}[X] = 7$$

- Denote the mean by $\mu(X) = \mathbb{E}[X]$
- Let $\Delta = X \mu$, a random variable that measures the deviation from the mean

X	2	3	4	5	6	7	8	9	10	11	12
Δ	-5	-4	-3	-2	-1	0	1	2	3	4	5
$P_X(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

• Variance, σ^2 , is the expected value of the squared deviations, $\sigma^2 = \mathbb{E}[\Delta^2] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[(X - E[X])^2]$

– Why not just take the expected value of Δ ?

$$\mathbb{E}[\Delta] = 0$$

• In the dice example,

$$\sigma^2 = \mathbb{E}[\Delta^2] = \frac{1}{36} \times 25 + \frac{2}{36} \times 16 + \frac{3}{36} \times 9 + \dots + \frac{1}{36} \times 25 \approx 5.83$$

Rensselaer

Variance, cont'd

- Variance, σ^2 , is the expected value of the squared deviations, $\sigma^2 = \mathbb{E}[\Delta^2] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[(X - E[X])^2]$
- In the dice example,

$$\sigma^2 = \mathbb{E}[\Delta^2] = \frac{1}{36} \times 25 + \frac{2}{36} \times 16 + \frac{3}{36} \times 9 + \dots + \frac{1}{36} \times 25 \approx 5.83$$

• Standard Deviation, σ , is the square-root of the variance $\sigma = \sqrt{\mathbb{E}[\Delta^2]} = \sqrt{\mathbb{E}[(X - \mu)^2]} = \sqrt{\mathbb{E}[(X - E[X])^2]}$

$$\sigma=\sqrt{5.83}\approx 2.52$$

- The standard deviation is typically used to construct confidence intervals around your mean
 - You will often hear statisticians report the mean \pm 1 standard deviation

sum of two dice rolls = 7 \pm 2.52

• **Practice.** Exercise 21.2.

Variance is a Measure of Risk

- Suppose I give you 2 possible games
- Game 1.

$$X_{1} = \begin{cases} win \ \$2 \ probability = \frac{2}{3} \\ lose \ \$1 \ probability = \frac{1}{3} \\ \mathbb{E}[X_{1}] = \$1 \end{cases}$$

• Game 2.

$$X_{1} = \begin{cases} win \ \$102 \ probability = \frac{2}{3} \\ lose \ \$201 \ probability = \frac{1}{3} \\ \mathbb{E}[X_{1}] = \$1 \end{cases}$$

• Which one do you prefer?

• For a small expected profit you might risk a small loss (Game 1), not a huge loss (Game 2).

Variance is a Measure of Risk, cont'd

• Suppose I give you 2 possible games

• Game 1.

$$X_{1} = \begin{cases} win \ \$2 \ probability = \frac{2}{3} \\ lose \ \$1 \ probability = \frac{1}{3} \end{cases}$$

$$\mathbb{E}[X_{1}] = \$1$$
• Game 2.

$$X_{1} = \begin{cases} win \ \$102 \ probability = \frac{2}{3} \\ lose \ \$201 \ probability = \frac{1}{3} \end{cases}$$

$$\mathbb{E}[X_{1}] = \$1$$

• Let's calculate the variances:

$$\sigma^{2}(X_{1}) = \frac{2}{3}(2-1)^{2} + \frac{1}{3}(-1-1)^{2} = 2$$

$$\sigma^{2}(X_{2}) = \frac{2}{3}(102-1)^{2} + \frac{1}{3}(-201-1)^{2} \approx 2 \times 10^{4}$$

• So,

 $X_1 = 1 \pm \sqrt{2}$ $X_2 = 1 \pm 100\sqrt{2}$

A More Convenient Formula for Variance

- Let's play around with the variance definition
 - $\sigma^{2} = \mathbb{E}[(X \mu)^{2}]$ = $\mathbb{E}[X^{2} - 2X\mu + \mu^{2}]$ [expand the square]
 - $= \mathbb{E}[X^2] 2\mu\mathbb{E}[X] + \mu^2$ [Linearity of expectation]

$$[\mathbb{E}[X] = \mu]$$

- Variance: $\sigma^2 = \mathbb{E}[X^2] \mu^2 = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- Sum of 2 dice:

$$\mathbb{E}[X^2] = \sum_{\substack{x=2\\x=2}}^{12} P_X(x) x^2$$

= $\frac{1}{36} 2^2 + \frac{2}{36} 3^2 + \dots + \frac{1}{36} 12^2 \approx 54.83$

 $= \mathbb{E}[X^2] - 2\mu^2 + \mu^2$

 $= \mathbb{E}[X^2] - \mu^2$

- Since $\mu = 7$, $\sigma^2 = 54.83 7^2 = 5.83$
- **Theorem.** Variance ≥ 0 , which means $\mathbb{E}[X^2] \geq \mathbb{E}[X]^2$ for any random variable X

Variance of Uniform Random Variable

- Let's now calculate $\mathbb{E}[X^2]$: $\mathbb{E}[X^2] = \frac{1}{n}(1^2 + \dots + n^2) =$ $= \frac{1}{n} \times \frac{n}{6}(n+1)(2n+1) =$ $= \frac{1}{6}(n+1)(2n+1)$
- So, what is the variance?

$$\sigma^{2}(X) = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} = \frac{1}{6}(n+1)(2n+1) - \frac{1}{4}(n+1)^{2} =$$
$$= \frac{1}{12}(n+1)(4n+2-3n-3)$$
$$= \frac{1}{12}(n^{2}-1)$$

Variance of Bernoulli Random Variable

- We saw earlier that $\mathbb{E}[X] = p$
- What is $\mathbb{E}[X^2]$?

$$\mathbb{E}[X^2] = p \times 1^2 + (1-p) \times 0^2 = p$$

• So, the variance is:

$$\sigma^2(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1-p)$$

Linearity of Variance

- We know expectation is a linear operator, but how about variance?
- Let's look at an example first
- Let X be a Bernoulli variable and let Y = a + X, where a is a constant
 What is the PDF of Y?

Y = a + 1, with probability p

Y = a, with probability 1 - p

• What is $\mathbb{E}[Y]$?

 $\mathbb{E}[Y] = p \times (a+1) + (1-p) \times a = p + a = a + \mathbb{E}[X]$

- Linear as expected
- How about the deviations Δ_Y

 $\Delta_Y = 1 - p$, with probability p

 $\Delta_Y = -p$, with probability 1-p

- Deviations don't depend on a!
- Therefore, $\sigma^2(Y) = \sigma^2(X)$

Linearity of Variance, cont'd

• *Theorem*. Let Y = a + bX. Then,

 $\overset{'}{\sigma^2}(Y) = b^2 \sigma^2(X)$

Variance of a Sum

- Let X_1 and X_2 be any two random variables
- What is the variance $\sigma^2(X)$, where $X = X_1 + X_2$?
- Let's calculate the relevant quantities:

$$\begin{split} \mathbb{E}[X]^2 &= (\mathbb{E}[X_1 + X_2])^2 = (\mathbb{E}[X_1] + \mathbb{E}[X_2])^2 & \text{[linearity of expectation]} \\ &= \mathbb{E}[X_1]^2 + 2\mathbb{E}[X_1]\mathbb{E}[X_2] + \mathbb{E}[X_2]^2 \\ \mathbb{E}[X^2] &= \mathbb{E}[(X_1 + X_2)^2] = \mathbb{E}[X_1^2 + 2X_1X_2 + X_2^2] \\ &= \mathbb{E}[X_1^2] + 2\mathbb{E}[X_1X_2] + \mathbb{E}[X_2^2] & \text{[linearity of expectation]} \end{split}$$

• Then, the variance is

$$\begin{split} \sigma^{2}(X) &= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} = \\ &= \left(\mathbb{E}[X_{1}^{2}] + 2\mathbb{E}[X_{1}X_{2}] + \mathbb{E}[X_{2}^{2}]\right) - \left(\mathbb{E}[X_{1}]^{2} + 2\mathbb{E}[X_{1}]\mathbb{E}[X_{2}] + \mathbb{E}[X_{2}]^{2}\right) \\ &= \left(\mathbb{E}[X_{1}^{2}] - \mathbb{E}[X_{1}]^{2}\right) + \left(\mathbb{E}[X_{2}^{2}] - \mathbb{E}[X_{2}]^{2}\right) + 2(\mathbb{E}[X_{1}X_{2}] - \mathbb{E}[X_{1}]\mathbb{E}[X_{2}]) \\ &= \sigma^{2}(X_{1}) + \sigma^{2}(X_{2}) + 2(\mathbb{E}[X_{1}X_{2}] - \mathbb{E}[X_{1}]\mathbb{E}[X_{2}]) \end{split}$$

- Note that last term is 0 if X_1 and X_2 are independent
- Variance of a Sum. For *independent* random variables, the variance of the sum is a sum of the variances.

Variance of a Sum, cont'd

- **Practice.** Compute the variance of 1 die roll. Compute the variance of the sum of *n* dice rolls.
- Example. The Variance of the Binomial (sum of independent Bernoullis)

- Let $X = X_1 + \dots + X_n$ (sum of independent Bernoullis)

- Let
$$\sigma(X_i) = p(1-p)$$
. Show that
 $\sigma^2(Binomial) = \sigma^2(X_1) + \dots + \sigma^2(X_n)$
 $= p(1-p) + \dots + p(1-p) = np(1-p)$

3- σ Rule: $X = \mu(X) \pm 3\sigma(X)$

 $\mu - 3\sigma < X < \mu + 3\sigma$ or $X = \mu(X) \pm 3\sigma$

- Allows us to judge the spread of a distribution by knowing σ
- Also allows us to judge the quality of our current measurement
- Lemma [Markov Inequality]. For a positive random variable X,

$$\mathbb{P}[X \ge \alpha] \le \frac{\mathbb{E}[X]}{\alpha}$$

• Proof.

$$\mathbb{E}[X] = \sum_{x \ge 0} x P_X(x)$$

$$\ge \sum_{x \ge \alpha} x P_X(x)$$

$$\ge \sum_{x \ge \alpha} \alpha P_X(x)$$

$$= \alpha \mathbb{P}[X \ge \alpha]$$

Allows to bound the tail end of the distribution

3- σ Rule: $X = \mu(X) \pm 3\sigma(X)$

 $\mu - 3\sigma < X < \mu + 3\sigma$ or $X = \mu(X) \pm 3\sigma$

- Allows us to judge the spread of a distribution by knowing σ
- Also allows us to judge the quality of our current measurement
- Lemma [Markov Inequality]. For a positive random variable X,

$$\mathbb{P}[X \ge \alpha] \le \frac{\mathbb{E}[X]}{\alpha}$$

• Lemma [Chebyshev Inequality].

$$\mathbb{P}[|X - \mu| \ge t\sigma] \le \frac{1}{t^2}$$

• Proof.

$$\mathbb{P}[|X - \mu| \ge t\sigma] = \mathbb{P}\left[|X - \mu|^2 \ge t^2 \sigma^2\right]$$
$$\leq \frac{\mathbb{E}\left[|X - \mu|^2\right]}{t^2 \sigma^2}$$
$$= \frac{\sigma^2}{t^2 \sigma^2} = \frac{1}{t^2}$$

[Markov Inequality]

• To get the 3- σ rule, use Chebyshev's Inequality with t = 3

Law of Large Numbers

- We know that the expected average of a sum is unchanged with *n*
- E.g., expectation of the average of *n* dice:

$$\mathbb{E}[average] = \mathbb{E}\left[\frac{1}{n} \times sum\right] = \frac{1}{n}\mathbb{E}[sum] = \frac{1}{n} \times n \times 3.5 = 3.5$$

• But the variance gets smaller and smaller:

$$\sigma^{2}(average) = \sigma^{2}\left(\frac{1}{n} \times sum\right) = \frac{1}{n^{2}} \times \sigma^{2}(sum)$$
$$= \frac{1}{n^{2}} \times n \times \sigma^{2}(one \ die) = \frac{1}{n} \times \sigma^{2}(one \ die)$$

- As we increase n, the variance goes down to 0

- This is another way of saying that the sample average gets closer to $\mathbb{E}[one \ die]$ as n gets large
 - Law of Large Numbers!

