Deviations from the Mean

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 21
- How well does the expected value (mean) summarize a random variable?
- Variance
- Variance of a sum
- Law of large numbers
- The 3- σ rule

Probability for Analyzing a Random Experiment

- An experiment typically has the following stages

Experiment (random)	Outcomes (complex)	Measurement X (random variable)	$\begin{gathered} \text { Summary } \mathbb{E}[X] \\ \text { (expectation) } \end{gathered}$	How good is $\mathbb{E}[X]$?

- We want to know how likely is it that we got an unlikely outcome?
- How much did we learn from that experiment?
- Experiment. Roll n dice and compute X, the average of the rolls

$$
\begin{aligned}
\mathbb{E}[\text { average }] & =\mathbb{E}\left[\frac{1}{n} \times \text { sum }\right]=\frac{1}{n} \mathbb{E}[\text { sum }] \\
& =\frac{1}{n} \times n \times 3.5=3.5
\end{aligned}
$$

- The expected average is the same as a single die roll average!
- Expectation doesn't tell us anything about the spread of the values we'll see

Average of n Dice

- Here's what happens when you roll more dice (and calculate the average)!
- Exciting stuff!

- Huh, looks like the average varies very little for large n
- This is not surprising if you calculate the PDF

- The variable σ measures "the spread" of the PDF
- Notice that the PDF is much more compact for larger n

Variance: Size of the Deviations from the Mean

- As usual, let's start with X, the sum of 2 dice

$$
\mathbb{E}[X]=7
$$

- Denote the mean by $\mu(X)=\mathbb{E}[X]$
- Let $\Delta=X-\mu$, a random variable that measures the deviation from the mean

X	2	3	4	5	6	7	8	9	10	11	12
Δ	-5	-4	-3	-2	-1	0	1	2	3	4	5
$P_{X}(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

- Variance, σ^{2}, is the expected value of the squared deviations,

$$
\sigma^{2}=\mathbb{E}\left[\Delta^{2}\right]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[(X-E[X])^{2}\right]
$$

- Why not just take the expected value of Δ ?

$$
\mathbb{E}[\Delta]=0
$$

- In the dice example,

$$
\sigma^{2}=\mathbb{E}\left[\Delta^{2}\right]=\frac{1}{36} \times 25+\frac{2}{36} \times 16+\frac{3}{36} \times 9+\cdots+\frac{1}{36} \times 25 \approx 5.83
$$

Variance, cont'd

- Variance, σ^{2}, is the expected value of the squared deviations,

$$
\sigma^{2}=\mathbb{E}\left[\Delta^{2}\right]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[(X-E[X])^{2}\right]
$$

- In the dice example,

$$
\sigma^{2}=\mathbb{E}\left[\Delta^{2}\right]=\frac{1}{36} \times 25+\frac{2}{36} \times 16+\frac{3}{36} \times 9+\cdots+\frac{1}{36} \times 25 \approx 5.83
$$

- Standard Deviation, σ, is the square-root of the variance

$$
\begin{gathered}
\sigma=\sqrt{\mathbb{E}\left[\Delta^{2}\right]}=\sqrt{\mathbb{E}\left[(X-\mu)^{2}\right]}=\sqrt{\mathbb{E}\left[(X-E[X])^{2}\right]} \\
\sigma=\sqrt{5.83} \approx 2.52
\end{gathered}
$$

- The standard deviation is typically used to construct confidence intervals around your mean
- You will often hear statisticians report the mean ± 1 standard deviation

$$
\text { sum of two dice rolls }=7 \pm 2.52
$$

- Practice. Exercise 21.2.

Variance is a Measure of Risk

- Suppose I give you 2 possible games
- Game 1.

$$
X_{1}=\left\{\begin{array}{c}
\text { win } \$ 2 \text { probability }=\frac{2}{3} \\
\text { lose } \$ 1 \text { probability }=\frac{1}{3} \\
\mathbb{E}\left[X_{1}\right]=\$ 1
\end{array}\right.
$$

- Game 2.

$$
X_{1}=\left\{\begin{array}{c}
\text { win } \$ 102 \text { probability }=\frac{2}{3} \\
\text { lose } \$ 201 \text { probability }=\frac{1}{3} \\
\mathbb{E}\left[X_{1}\right]=\$ 1
\end{array}\right.
$$

- Which one do you prefer?

Variance is a Measure of Risk, cont'd

- Suppose I give you 2 possible games
- Game 1.

$$
\begin{gathered}
X_{1}=\left\{\begin{array}{l}
\text { win } \$ 2 \text { probability }=\frac{2}{3} \\
\text { lose } \$ 1 \text { probability }=\frac{1}{3}
\end{array}\right. \\
\mathbb{E}\left[X_{1}\right]=\$ 1
\end{gathered}
$$

- Game 2.
$X_{1}=\left\{\begin{array}{l}\text { win } \$ 102 \text { probability }=\frac{2}{3} \\ \text { lose } \$ 201 \text { probability }=\frac{1}{3}\end{array}\right.$
$\mathbb{E}\left[X_{1}\right]=\$ 1$
- Let's calculate the variances:

$$
\begin{aligned}
\sigma^{2}\left(X_{1}\right) & =\frac{2}{3}(2-1)^{2}+\frac{1}{3}(-1-1)^{2}=2 \\
\sigma^{2}\left(X_{2}\right) & =\frac{2}{3}(102-1)^{2}+\frac{1}{3}(-201-1)^{2} \approx 2 \times 10^{4}
\end{aligned}
$$

- So,

$$
\begin{aligned}
& X_{1}=1 \pm \sqrt{2} \\
& X_{2}=1 \pm 100 \sqrt{2}
\end{aligned}
$$

- For a small expected profit you might risk a small loss (Game 1), not a huge loss (Game 2).

A More Convenient Formula for Variance

- Let's play around with the variance definition

$$
\begin{array}{rlr}
\sigma^{2} & =\mathbb{E}\left[(X-\mu)^{2}\right] & \\
& =\mathbb{E}\left[X^{2}-2 X \mu+\mu^{2}\right] & \text { [expand the square] } \\
& =\mathbb{E}\left[X^{2}\right]-2 \mu \mathbb{E}[X]+\mu^{2} & \text { [Linearity of expectation] } \\
& =\mathbb{E}\left[X^{2}\right]-2 \mu^{2}+\mu^{2} & {[\mathbb{E}[X]=\mu]} \\
& =\mathbb{E}\left[X^{2}\right]-\mu^{2} &
\end{array}
$$

- Variance: $\sigma^{2}=\mathbb{E}\left[X^{2}\right]-\mu^{2}=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$
- Sum of 2 dice:

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\sum_{x=2}^{12} P_{X}(x) x^{2} \\
& =\frac{1}{36} 2^{2}+\frac{2}{36} 3^{2}+\cdots+\frac{1}{36} 12^{2} \approx 54.83
\end{aligned}
$$

- Since $\mu=7, \sigma^{2}=54.83-7^{2}=5.83$
- Theorem. Variance ≥ 0, which means $\mathbb{E}\left[X^{2}\right] \geq \mathbb{E}[X]^{2}$ for any random variable X

Variance of Uniform Random Variable

- Let X be drawn from a uniform distribution. We saw earlier that $\mathbb{E}[X]=\frac{1}{2}(n+1)$
- Let's now calculate $\mathbb{E}\left[X^{2}\right]$:

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\frac{1}{n}\left(1^{2}+\cdots+n^{2}\right)= \\
& =\frac{1}{n} \times \frac{n}{6}(n+1)(2 n+1)= \\
& =\frac{1}{6}(n+1)(2 n+1)
\end{aligned}
$$

- So, what is the variance?

$$
\begin{aligned}
\sigma^{2}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{1}{6}(n+1)(2 n+1)-\frac{1}{4}(n+1)^{2}= \\
& =\frac{1}{12}(n+1)(4 n+2-3 n-3) \\
& =\frac{1}{12}\left(n^{2}-1\right)
\end{aligned}
$$

Variance of Bernoulli Random Variable

- We saw earlier that $\mathbb{E}[X]=p$
- What is $\mathbb{E}\left[X^{2}\right]$?

$$
\mathbb{E}\left[X^{2}\right]=p \times 1^{2}+(1-p) \times 0^{2}=p
$$

- So, the variance is:

$$
\sigma^{2}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=p-p^{2}=p(1-p)
$$

Linearity of Variance

- We know expectation is a linear operator, but how about variance?
- Let's look at an example first
- Let X be a Bernoulli variable and let $Y=a+X$, where a is a constant
- What is the PDF of Y ?

$$
\begin{aligned}
& Y=a+1, \text { with probability } p \\
& Y=a, \text { with probability } 1-p
\end{aligned}
$$

- What is $\mathbb{E}[Y]$?

$$
\mathbb{E}[Y]=p \times(a+1)+(1-p) \times a=p+a=a+\mathbb{E}[X]
$$

- Linear as expected
- How about the deviations Δ_{Y}

$$
\begin{aligned}
& \Delta_{Y}=1-p, \text { with probability } p \\
& \Delta_{Y}=-p, \text { with probability } 1-p
\end{aligned}
$$

- Deviations don't depend on a !
- Therefore, $\sigma^{2}(Y)=\sigma^{2}(X)$

Linearity of Variance, cont'd

- Theorem. Let $Y=a+b X$. Then,

$$
\sigma^{2}(Y)=b^{2} \sigma^{2}(X)
$$

Variance of a Sum

- Let X_{1} and X_{2} be any two random variables
- What is the variance $\sigma^{2}(X)$, where $X=X_{1}+X_{2}$?
- Let's calculate the relevant quantities:

$$
\begin{aligned}
\mathbb{E}[X]^{2} & =\left(\mathbb{E}\left[X_{1}+X_{2}\right]\right)^{2}=\left(\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]\right)^{2} & & \text { [linearity of expectation] } \\
& =\mathbb{E}\left[X_{1}\right]^{2}+2 \mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{2}\right]^{2} & & \\
\mathbb{E}\left[X^{2}\right] & =\mathbb{E}\left[\left(X_{1}+X_{2}\right)^{2}\right]=\mathbb{E}\left[X_{1}^{2}+2 X_{1} X_{2}+X_{2}^{2}\right] & & \\
& =\mathbb{E}\left[X_{1}^{2}\right]+2 \mathbb{E}\left[X_{1} X_{2}\right]+\mathbb{E}\left[X_{2}^{2}\right] & & \text { [linearity of expectation] }
\end{aligned}
$$

- Then, the variance is

$$
\begin{aligned}
\sigma^{2}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}= \\
& =\left(\mathbb{E}\left[X_{1}^{2}\right]+2 \mathbb{E}\left[X_{1} X_{2}\right]+\mathbb{E}\left[X_{2}^{2}\right]\right)-\left(\mathbb{E}\left[X_{1}\right]^{2}+2 \mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{2}\right]^{2}\right) \\
& =\left(\mathbb{E}\left[X_{1}^{2}\right]-\mathbb{E}\left[X_{1}\right]^{2}\right)+\left(\mathbb{E}\left[X_{2}^{2}\right]-\mathbb{E}\left[X_{2}\right]^{2}\right)+2\left(\mathbb{E}\left[X_{1} X_{2}\right]-\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right]\right) \\
& =\sigma^{2}\left(X_{1}\right)+\sigma^{2}\left(X_{2}\right)+2\left(\mathbb{E}\left[X_{1} X_{2}\right]-\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right]\right)
\end{aligned}
$$

- Note that last term is 0 if X_{1} and X_{2} are independent
- Variance of a Sum. For independent random variables, the variance of the sum is a sum of the variances.

Variance of a Sum, cont'd

- Practice. Compute the variance of 1 die roll. Compute the variance of the sum of n dice rolls.
- Example. The Variance of the Binomial (sum of independent Bernoullis)
- Let $X=X_{1}+\cdots+X_{n}$ (sum of independent Bernoullis)
- Let $\sigma\left(X_{i}\right)=p(1-p)$. Show that

$$
\begin{aligned}
\sigma^{2}(\text { Binomial }) & =\sigma^{2}\left(X_{1}\right)+\cdots+\sigma^{2}\left(X_{n}\right) \\
& =p(1-p)+\cdots+p(1-p)=n p(1-p)
\end{aligned}
$$

3- σ Rule: $X=\mu(X) \pm 3 \sigma(X)$

- 3- $\boldsymbol{\sigma}$ Rule. For any random variable X, the chances are at least (about) 90% that

$$
\mu-3 \sigma<X<\mu+3 \sigma \quad \text { or } \quad X=\mu(X) \pm 3 \sigma
$$

- Allows us to judge the spread of a distribution by knowing σ
- Also allows us to judge the quality of our current measurement
- Lemma [Markov Inequality]. For a positive random variable X,

$$
\mathbb{P}[X \geq \alpha] \leq \frac{\mathbb{E}[X]}{\alpha}
$$

- Proof.

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x \geq 0} x P_{X}(x) \\
& \geq \sum_{x \geq \alpha} x P_{X}(x) \\
& \geq \sum_{x \geq \alpha} \alpha P_{X}(x) \\
& =\alpha \mathbb{P}[X \geq \alpha]
\end{aligned}
$$

- Allows to bound the tail end of the distribution

3- σ Rule: $X=\mu(X) \pm 3 \sigma(X)$

- 3- $\boldsymbol{\sigma}$ Rule. For any random variable X, the chances are at least (about) 90% that

$$
\mu-3 \sigma<X<\mu+3 \sigma \quad \text { or } \quad X=\mu(X) \pm 3 \sigma
$$

- Allows us to judge the spread of a distribution by knowing σ
- Also allows us to judge the quality of our current measurement
- Lemma [Markov Inequality]. For a positive random variable X,

$$
\mathbb{P}[X \geq \alpha] \leq \frac{\mathbb{E}[X]}{\alpha}
$$

- Lemma [Chebyshev Inequality].

$$
\mathbb{P}[|X-\mu| \geq t \sigma] \leq \frac{1}{t^{2}}
$$

- Proof.

$$
\begin{aligned}
\mathbb{P}[|X-\mu| \geq t \sigma] & =\mathbb{P}\left[|X-\mu|^{2} \geq t^{2} \sigma^{2}\right] \\
& \leq \frac{\mathbb{E}\left[|X-\mu|^{2}\right]}{t^{2} \sigma^{2}} \\
& =\frac{\sigma^{2}}{t^{2} \sigma^{2}}=\frac{1}{t^{2}}
\end{aligned}
$$

[Markov Inequality]

- To get the 3- σ rule, use Chebyshev's Inequality with $t=3$

Law of Large Numbers

- We know that the expected average of a sum is unchanged with n
- E.g., expectation of the average of n dice:

$$
\mathbb{E}[\text { average }]=\mathbb{E}\left[\frac{1}{n} \times \text { sum }\right]=\frac{1}{n} \mathbb{E}[\text { sum }]=\frac{1}{n} \times n \times 3.5=3.5
$$

- But the variance gets smaller and smaller:

$$
\begin{aligned}
\sigma^{2}(\text { average }) & =\sigma^{2}\left(\frac{1}{n} \times \text { sum }\right)=\frac{1}{n^{2}} \times \sigma^{2}(\text { sum }) \\
& =\frac{1}{n^{2}} \times n \times \sigma^{2}(\text { one die })=\frac{1}{n} \times \sigma^{2}(\text { one die })
\end{aligned}
$$

- As we increase n, the variance goes down to 0
- This is another way of saying that the sample average gets closer to \mathbb{E} [one die] as n gets large
- Law of Large Numbers!

