Expected Value of a Sum

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 20
- Expected value of a sum
- Sum of dice
- Binomial
- Waiting time
- Coupon collecting
- Iterated expectation
- Build-up expectation
- Expected value of a product
- Sum of indicators

Expected Value of a Sum

- Suppose you play the lottery. If you get two tickets, you expect to win two times as much money
- If you flip two coins, you expect to get two times as many H's (1 vs. 0.5)
- The expected value of a sum is a sum of the expected values.
- Theorem [Linearity of Expectation]. Let $X_{1}, X_{2}, \ldots, X_{k}$ be random variables and let $Z=a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{k} X_{k}$ be a linear combination of the X_{i}^{\prime} s. Then,

$$
\mathbb{E}[Z]=a_{1} \mathbb{E}\left[X_{1}\right]+a_{2} \mathbb{E}\left[X_{2}\right]+\cdots+a_{k} \mathbb{E}\left[X_{k}\right]
$$

- Proof.

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{\omega \in \Omega}\left(a_{1} X_{1}(\omega)+a_{2} X_{2}(\omega)+\cdots+a_{k} X_{k}(\omega)\right) \cdot \mathbb{P}[\omega] \\
& =a_{1} \sum_{\omega \in \Omega} X_{1}(\omega) \cdot \mathbb{P}[\omega]+a_{2} \sum_{\omega \in \Omega} X_{2}(\omega) \cdot \mathbb{P}[\omega]+\cdots+a_{k} \sum_{\omega \in \Omega} X_{k}(\omega) \cdot \mathbb{P}[\omega] \\
& =a_{1} \mathbb{E}\left[X_{1}\right]+a_{2} \mathbb{E}\left[X_{2}\right]+\cdots+a_{k} \mathbb{E}\left[X_{k}\right]
\end{aligned}
$$

- QED.

Expected Value of a Sum, cont'd

- Summation can be taken inside or pulled outside an expectation
- Constants can be taken inside or pulled outside an expectation

$$
\mathbb{E}\left[\sum_{i=1}^{k} a_{i} X_{i}\right]=\sum_{i=1}^{k} a_{i} \mathbb{E}\left[X_{i}\right]
$$

Sum of Dice

- Let X be the sum of 4 fair dice. What is $\mathbb{E}[X]$?
- Let's list the outcome tree!

sum	4	5	6	7	\ldots	24
$\mathbb{P}[$ sum $]$	$\frac{1}{1296}$	$\frac{4}{1296}$	$\frac{10}{1296}$	$?$	\ldots	$\frac{1}{1296}$

- So the expected value is,

$$
\mathbb{E}[X]=4 \times \frac{1}{1296}+5 \times \frac{4}{1296}+\cdots
$$

- Um, this is going to take a while...
- MUCH faster to observe that X is a sum:

$$
X=X_{1}+X_{2}+X_{3}+X_{4}
$$

- where X_{i} is the value rolled by die i
- what is the expected value of each X_{i} ?

$$
\mathbb{E}\left[X_{i}\right]=3.5
$$

- By Linearity of Expectation:

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{3}\right]+\mathbb{E}\left[X_{4}\right]=14
$$

Sum of Dice Exercise

- Exercise. Compute the full PDF for the sum of 4 dice and expected value from the PDF.

Expected Number of Successes in \boldsymbol{n} Coin Tosses Rensselaer

- Suppose we have n trials, and the probability of success is p
- Let X denote the number of successes

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

- Each X_{i} is a Bernoulli and

$$
\mathbb{E}\left[X_{i}\right]=p
$$

- Why?

$$
\mathbb{E}\left[X_{i}\right]=1 \times p+0 \times(1-p)
$$

- By linearity of expectation,

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right] \\
& =\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right] \\
& =n \times p
\end{aligned}
$$

Expected Waiting Time to \boldsymbol{n} Successes

- Let X be the waiting time for n successes with success probability p
- How do we define X formally?

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

- where X_{1} is the waiting time until the first success
- where X_{2} is the waiting time from the first to the second success
- Each X_{i} is a waiting time to one success
- What is $\mathbb{E}\left[X_{i}\right]$?

$$
\mathbb{E}\left[X_{i}\right]=\frac{1}{p}
$$

- By linearity of expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right] \\
& =\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right] \\
& =\frac{n}{p}
\end{aligned}
$$

- Example. If you are waiting for 3 heads, you have to wait 3-times as long as for 1 head.
- Exercise. Compute the expected square of the waiting time.

Coupon Collection

- When I was a kid, when the Soccer World Cup started, we would try to collect stickers of all the players
- Each pack had 5 stickers, but there were loooots of repeats
- Kids also would collect country flags from gum packs
- There were 169 flags in total, but lots of repeats again
- How many gum-purchases would one have to make on average?
- Let X be the waiting time to collect all 169 flags

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

- where X_{1} is the waiting time until the first success
- where X_{2} is the waiting time from the first to the second success, etc.
- Are probabilities of success the same?
- Chance of repeats increases after each new flag

Coupon Collection, cont'd

- Let X be the waiting time to collect all 169 flags

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

- where X_{1} is the waiting time until the first success
- where X_{2} is the waiting time from the first to the second success, etc.
- What is $\mathbb{E}\left[X_{1}\right]$?

$$
\mathbb{E}\left[X_{1}\right]=1=\frac{n}{n}
$$

- No repeats
- The probability of the $2^{\text {nd }}$ success is $\frac{n-1}{n}$, so $\mathbb{E}\left[X_{2}\right]=\frac{n}{n-1}$
- The probability of the $3^{\text {rd }}$ success is $\frac{n-2}{n}$, so $\mathbb{E}\left[X_{3}\right]=\frac{n}{n-2}$
- By linearity of expectation:

$$
\mathbb{E}[X]=n \times\left(\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{1}\right)=n H_{n} \approx n(\ln n+0.577)
$$

- When $n=169$, you expect to buy 965 gum packs! Better have strong teeth!

Coupon Collection Example

- Example. Cereal box contains 1-of-5 cartoon characters. Collect all to get \$2 rebate
- Expect to buy about 12 cereal boxes
- If a cereal box costs $\$ 5$, that's a whopping 3.3% discount
- Here's a convoluted experiment (probabilists like twisted expectations...)
- Experiment. Roll a die and let X_{1} be the value. Now, roll a second die X_{1} times and let X_{2} be the sum of these X_{1} rolls of the second die.
- An example outcome is ($4 ; 2,1,2,6$)
- with $X_{1}=4, X_{2}=11$
- What is $\mathbb{E}\left[X_{2}\right]$?
- Can use the law of total expectation to calculate it. How?

$$
\mathbb{E}\left[X_{2}\right]=\mathbb{E}\left[X_{2} \mid X_{1}=1\right] \times \mathbb{P}\left[X_{1}=1\right]+\cdots+\mathbb{E}\left[X_{2} \mid X_{1}=6\right] \times \mathbb{P}\left[X_{1}=6\right]
$$

- Let's look at another approach. What is the conditional expectation $\mathbb{E}\left[X_{2} \mid X_{1}\right]$?

$$
\mathbb{E}\left[X_{2} \mid X_{1}\right]=X_{1} \times 3.5
$$

- The RHS is a function of X_{1}, a random variable. Compute its expectation.
- Another version of the law of total expectation lets us write

$$
\begin{aligned}
\mathbb{E}\left[X_{2}\right] & =\mathbb{E}_{X_{1}}\left[\mathbb{E}\left[X_{2} \mid X_{1}\right]\right] \\
& =\mathbb{E}\left[X_{1}\right] \times 3.5 \\
& =3.5 \times 3.5=12.25
\end{aligned}
$$

Build-Up Expectation: Waiting for 2 Hs and 6 Ts

- Probabilists also like waiting!
- And while they wait, they like to calculate how long they are expected to wait
- Suppose we have a potentially biased coin, $\mathbb{P}[H]=p$
- Let's introduce the relevant notation:

$$
W(k, l)=\mathbb{E}[\text { waiting time to } k H s \text { and } l T s]
$$

- The first toss is either a H or a T , so by total expectation:

$$
\begin{aligned}
W(k, l) & =\mathbb{E}[\text { waiting time } \mid H] \times \mathbb{P}[H]+\mathbb{E}[\text { waiting time } \mid T] \times \mathbb{P}[T] \\
& =1+p W(k-1, l)+(1-p) W(k, l-1)
\end{aligned}
$$

- Aha, this is a recursion similar to the candies counting problem!
- What are the base cases:

$$
\begin{gathered}
W(0, l)=\frac{l}{1-p} \\
W(k, 0)=\frac{k}{p}
\end{gathered}
$$

Build-Up Expectation: Waiting for 2 Hs and 6 Ts, cont'd

- Suppose we have a potentially biased coin, $\mathbb{P}[H]=p$
- Let's introduce the relevant notation:

$$
W(k, l)=\mathbb{E}[\text { waiting time to } k H s \text { and } l T s]
$$

- The first toss is either a H or a T , so by total expectation:

$$
W(k, l)=1+p W(k-1, l)+(1-p) W(k, l-1)
$$

- Aha, this is a recursion similar to the candies counting problem!
- What are the base cases:

$$
\begin{gathered}
W(0, l)=\frac{l}{1-p} \\
W(k, 0)=\frac{k}{p}
\end{gathered}
$$

Build-Up Expectation: Waiting for 2 Hs and 6 Ts, cont'd

- Suppose we have a potentially biased coin, $\mathbb{P}[H]=p$
- Let's introduce the relevant notation:

$$
W(k, l)=\mathbb{E}[\text { waiting time to } k H s \text { and } l T s]
$$

- The first toss is either a H or a T , so by total expectation:

$$
W(k, l)=1+p W(k-1, l)+(1-p) W(k, l-1)
$$

- Aha, this is a recursion similar to the candies counting problem!
- What are the base cases:

$$
\begin{gathered}
W(0, l)=\frac{l}{1-p} \\
W(k, 0)=\frac{k}{p}
\end{gathered}
$$

Expected Value of a Product

- Suppose I roll a single die (phew, simple!)
- Wait for it...
- What is the expected value of the squared die roll?
- What are the outcomes?
- $X=1\left(\mathbb{P}[X=1]=\frac{1}{6}\right), \ldots, X=36\left(\mathbb{P}[X=36]=\frac{1}{6}\right)$

$$
\mathbb{E}\left[X^{2}\right]=\frac{1}{6} \times 1+\frac{1}{6} \times 4+\cdots+\frac{1}{6} \times 36=15.16
$$

- BEWARE!
- Expectation is linear, but it's not quadratic (i.e., it does not distribute inside)

$$
\mathbb{E}[X] \times \mathbb{E}[X]=12.25 \neq \mathbb{E}\left[X^{2}\right]=15.16
$$

- Expectation does distribute inside if the variables are independent!
- Let X_{1} and X_{2} be two independent rolls

$$
\begin{aligned}
\mathbb{E}\left[X_{1} X_{2}\right] & =\frac{1}{36}(1+2+\cdots+6+2+4+\cdots+8+\cdots+6+12+\cdots+36) \\
& =\frac{441}{36}=12.25 \\
& =\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right]=(3.5)^{2}
\end{aligned}
$$

- Expected value of a product $X Y$
- In general, the expected product is not a product of expectations.
- For independent random variables, it is: $\mathbb{E}[X Y]=\mathbb{E}[X] \times \mathbb{E}[Y]$
- Why?

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} x y \mathbb{P}[X=x, Y=y] \\
& =\sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} x y \mathbb{P}[X=x] \mathbb{P}[Y=y] \\
& =\sum_{x \in X(\Omega)} x \mathbb{P}[X=x] \sum_{y \in Y(\Omega)} y \mathbb{P}[Y=y] \\
& =\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

Sum of Indicators: Successes in a Random Assignment

- Another fun experiment!
- Consider 4 people with hats. I take their hats and throw them randomly. What is the expected number of hats that land on a correct head?
- (Assuming hats only land on heads!)
- Let X be the number of correct hats when 4 hats randomly land on 4 heads

Hat \#
Person \#

(1)

(2)

(3)

(4)

$$
\begin{gathered}
X_{1}=0 \quad X_{2}=1 \quad X_{3}=1 \quad X_{4}=0 \\
X=X_{1}+X_{2}+X_{3}+X_{4}
\end{gathered}
$$

- What is the distribution of each X_{i} ?
- Bernoully, with $\mathbb{P}\left[X_{i}=1\right]=\frac{1}{4}$
- Hats are randomly distributed
- By linearity of expectation:

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\mathbb{E}\left[X_{3}\right]+\mathbb{E}\left[X_{4}\right]=1
$$

Sums of Indicators Exercises

- Exercise. What about if there are n people?
- Interesting Example (see text). Apply sum of indicators to breaking of records
- Instructive Exercise. Compute the PDF of X and the expectation from the PDF

