### **Expected Value of a Sum**

#### Reading



- Malik Magdon-Ismail. Discrete Mathematics and Computing.
  - Chapter 20

#### **Overview**



- Expected value of a sum
  - Sum of dice
  - Binomial
  - Waiting time
  - Coupon collecting
- Iterated expectation
- Build-up expectation
- Expected value of a product
- Sum of indicators

#### **Expected Value of a Sum**



- Suppose you play the lottery. If you get two tickets, you expect to win two times as much money
- If you flip two coins, you expect to get two times as many H's (1 vs. 0.5)
- The expected value of a sum is a sum of the expected values.
- Theorem [Linearity of Expectation]. Let  $X_1, X_2, ..., X_k$  be random variables and let  $Z = a_1X_1 + a_2X_2 + \cdots + a_kX_k$  be a linear combination of the  $X_i$ 's. Then,  $\mathbb{E}[Z] = a_1\mathbb{E}[X_1] + a_2\mathbb{E}[X_2] + \cdots + a_k\mathbb{E}[X_k]$
- Proof.

$$\begin{split} \mathbb{E}[Z] &= \sum_{\omega \in \Omega} \left( a_1 X_1(\omega) + a_2 X_2(\omega) + \dots + a_k X_k(\omega) \right) \cdot \mathbb{P}[\omega] \\ &= a_1 \sum_{\omega \in \Omega} X_1(\omega) \cdot \mathbb{P}[\omega] + a_2 \sum_{\omega \in \Omega} X_2(\omega) \cdot \mathbb{P}[\omega] + \dots + a_k \sum_{\omega \in \Omega} X_k(\omega) \cdot \mathbb{P}[\omega] \\ &= a_1 \mathbb{E}[X_1] + a_2 \mathbb{E}[X_2] + \dots + a_k \mathbb{E}[X_k] \end{split}$$

• QED.

#### Expected Value of a Sum, cont'd



- Summation can be taken inside or pulled outside an expectation
- Constants can be taken inside or pulled outside an expectation

$$\mathbb{E}\left[\sum_{i=1}^{k} a_i X_i\right] = \sum_{i=1}^{k} a_i \mathbb{E}[X_i]$$

#### Sum of Dice



- Let X be the sum of 4 fair dice. What is  $\mathbb{E}[X]$ ?
- Let's list the outcome tree!

| sum    | 4                | 5                | 6                 | 7 | <br>24               |
|--------|------------------|------------------|-------------------|---|----------------------|
| ₽[sum] | $\frac{1}{1296}$ | $\frac{4}{1296}$ | $\frac{10}{1296}$ | ? | <br>$\frac{1}{1296}$ |

• So the expected value is,

$$\mathbb{E}[X] = 4 \times \frac{1}{1296} + 5 \times \frac{4}{1296} + \cdots$$

- Um, this is going to take a while...
- MUCH faster to observe that *X* is a sum:

$$X = X_1 + X_2 + X_3 + X_4$$

- where  $X_i$  is the value rolled by die i
- what is the expected value of each  $X_i$ ?

$$\mathbb{E}[X_i] = 3.5$$

• By Linearity of Expectation:

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \mathbb{E}[X_3] + \mathbb{E}[X_4] = 14$ 

in general  $n \times 3.5$ 

#### Sum of Dice Exercise



• **Exercise.** Compute the full PDF for the sum of 4 dice and expected value from the PDF.

Expected Number of Successes in n Coin Tosses (m) Rensselaer

- Suppose we have *n* trials, and the probability of success is *p*
- Let *X* denote the number of successes

$$X = X_1 + X_2 + \dots + X_n$$

• Each  $X_i$  is a Bernoulli and

$$\mathbb{E}[X_i] = p$$

- Why?

$$\mathbb{E}[X_i] = 1 \times p + 0 \times (1 - p)$$

• By linearity of expectation,

$$\mathbb{E}[X] = \mathbb{E}[X_1 + X_2 + \dots + X_n]$$
  
=  $\mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_n]$   
=  $n \times p$ 

#### Expected Waiting Time to *n* Successes



- Let X be the waiting time for n successes with success probability p
- How do we define *X* formally?

$$X = X_1 + X_2 + \dots + X_n$$

- where  $X_1$  is the waiting time until the first success

- where  $X_2$  is the waiting time from the first to the second success
- Each X<sub>i</sub> is a waiting time to one success
   What is E[X<sub>i</sub>]?

$$\mathbb{E}[X_i] = \frac{1}{p}$$

• By linearity of expectation:

$$\mathbb{E}[X] = \mathbb{E}[X_1 + X_2 + \dots + X_n]$$
  
=  $\mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_n]$   
=  $\frac{n}{p}$ 

- Example. If you are waiting for 3 heads, you have to wait 3-times as long as for 1 head.
- **Exercise.** Compute the expected *square* of the waiting time.

#### **Coupon Collection**



- When I was a kid, when the Soccer World Cup started, we would try to collect stickers of all the players
  - Each pack had 5 stickers, but there were loooots of repeats
- Kids also would collect country flags from gum packs
  - There were 169 flags in total, but lots of repeats again
  - How many gum-purchases would one have to make on average?
- Let *X* be the waiting time to collect all 169 flags

 $X = X_1 + X_2 + \dots + X_n$ 

- where  $X_1$  is the waiting time until the first success
- where  $X_2$  is the waiting time from the first to the second success, etc.
- Are probabilities of success the same?
  - Chance of repeats increases after each new flag

#### **Coupon Collection, cont'd**



• Let *X* be the waiting time to collect all 169 flags

$$X = X_1 + X_2 + \dots + X_n$$

- where  $X_1$  is the waiting time until the first success
- where  $X_2$  is the waiting time from the first to the second success, etc.
- What is  $\mathbb{E}[X_1]$ ?

$$\mathbb{E}[X_1] = 1 = \frac{n}{n}$$

- No repeats
- The probability of the 2<sup>nd</sup> success is  $\frac{n-1}{n}$ , so  $\mathbb{E}[X_2] = \frac{n}{n-1}$
- The probability of the 3<sup>rd</sup> success is  $\frac{n-2}{n}$ , so  $\mathbb{E}[X_3] = \frac{n}{n-2}$
- By linearity of expectation:

$$\mathbb{E}[X] = n \times \left(\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{1}\right) = nH_n \approx n(\ln n + 0.577)$$

- When n = 169, you expect to buy 965 gum packs! Better have strong teeth!

#### **Coupon Collection Example**



- **Example.** Cereal box contains 1-of-5 cartoon characters. Collect all to get \$2 rebate
  - Expect to buy about 12 cereal boxes
  - If a cereal box costs \$5, that's a whopping 3.3% discount

#### **Iterated Expectation**



- Here's a convoluted experiment (probabilists like twisted expectations...)
- Experiment. Roll a die and let X<sub>1</sub> be the value. Now, roll a second die X<sub>1</sub> times and let X<sub>2</sub> be the sum of these X<sub>1</sub> rolls of the second die.
  - An example outcome is (4; 2, 1, 2, 6)
    - with  $X_1 = 4, X_2 = 11$
- What is  $\mathbb{E}[X_2]$ ?
  - Can use the law of total expectation to calculate it. How?  $\mathbb{E}[X_2] = \mathbb{E}[X_2|X_1 = 1] \times \mathbb{P}[X_1 = 1] + \dots + \mathbb{E}[X_2|X_1 = 6] \times \mathbb{P}[X_1 = 6]$
- Let's look at another approach. What is the conditional expectation  $\mathbb{E}[X_2|X_1]$ ?  $\mathbb{E}[X_2|X_1] = X_1 \times 3.5$ 
  - The RHS is a *function* of  $X_1$ , a random variable. Compute its expectation.
- Another version of the law of total expectation lets us write

$$\mathbb{E}[X_2] = \mathbb{E}_{X_1} \big[ \mathbb{E}[X_2 | X_1] \big]$$
$$= \mathbb{E}[X_1] \times 3.5$$
$$= 3.5 \times 3.5 = 12.25$$

Build-Up Expectation: Waiting for 2 Hs and 6 Ts ( Rensselaer

- Probabilists also like waiting!
  - And while they wait, they like to calculate how long they are expected to wait
- Suppose we have a potentially biased coin,  $\mathbb{P}[H] = p$
- Let's introduce the relevant notation:

 $W(k, l) = \mathbb{E}[waiting time to k Hs and l Ts]$ 

- The first toss is either a H or a T, so by total expectation:  $W(k,l) = \mathbb{E}[waiting \ time|H] \times \mathbb{P}[H] + \mathbb{E}[waiting \ time|T] \times \mathbb{P}[T]$  = 1 + pW(k-1,l) + (1-p)W(k,l-1)
- Aha, this is a recursion similar to the candies counting problem!
  - What are the base cases:

$$W(0, l) = \frac{l}{1-p}$$
$$W(k, 0) = \frac{k}{p}$$

# Build-Up Expectation: Waiting for 2 Hs and 6 Ts, Rensselaer cont'd

- Suppose we have a potentially biased coin,  $\mathbb{P}[H] = p$
- Let's introduce the relevant notation:

 $W(k, l) = \mathbb{E}[waiting time to k Hs and l Ts]$ 

- The first toss is either a H or a T, so by total expectation: W(k,l) = 1 + pW(k-1,l) + (1-p)W(k,l-1)
- Aha, this is a recursion similar to the candies counting problem!
  - What are the base cases:



#### Build-Up Expectation: Waiting for 2 Hs and 6 Ts, Rensselaer cont'd

- Suppose we have a potentially biased coin,  $\mathbb{P}[H] = p$
- Let's introduce the relevant notation: •

 $W(k, l) = \mathbb{E}[waiting time to k Hs and l Ts]$ 

- The first toss is either a H or a T, so by total expectation: • W(k,l) = 1 + pW(k-1,l) + (1-p)W(k,l-1)
- Aha, this is a recursion similar to the candies counting problem! •

– What are the base cases:



16

#### **Expected Value of a Product**



- Suppose I roll a single die (phew, simple!)
  - Wait for it...
  - What is the expected value of the squared die roll?
    - What are the outcomes?

• 
$$X = 1 \left( \mathbb{P}[X = 1] = \frac{1}{6} \right), \dots, X = 36 \left( \mathbb{P}[X = 36] = \frac{1}{6} \right)$$
  
 $\mathbb{E}[X^2] = \frac{1}{6} \times 1 + \frac{1}{6} \times 4 + \dots + \frac{1}{6} \times 36 = 15.16$ 

- BEWARE!
  - Expectation is linear, but it's not quadratic (i.e., it does not distribute inside)  $\mathbb{E}[X] \times \mathbb{E}[X] = 12.25 \neq \mathbb{E}[X^2] = 15.16$
- Expectation does distribute inside if the variables are independent!
- Let  $X_1$  and  $X_2$  be two independent rolls  $\mathbb{E}[X_1X_2] = \frac{1}{36}(1+2+\dots+6+2+4+\dots+8+\dots+6+12+\dots+36)$   $= \frac{441}{36} = 12.25$   $= \mathbb{E}[X_1]\mathbb{E}[X_2] = (3.5)^2$  (i) (



- In general, the expected product is not a product of expectations.
- For independent random variables, it is:  $\mathbb{E}[XY] = \mathbb{E}[X] \times \mathbb{E}[Y]$

- Why?

$$\mathbb{E}[XY] = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} xy \mathbb{P}[X = x, Y = y]$$
  
= 
$$\sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} xy \mathbb{P}[X = x] \mathbb{P}[Y = y]$$
  
= 
$$\sum_{x \in X(\Omega)} x \mathbb{P}[X = x] \sum_{y \in Y(\Omega)} y \mathbb{P}[Y = y]$$
  
= 
$$\mathbb{E}[X] \mathbb{E}[Y]$$

## Sum of Indicators: Successes in a Random Assignment



- Another fun experiment!
  - Consider 4 people with hats. I take their hats and throw them randomly. What is the expected number of hats that land on a correct head?
    - (Assuming hats only land on heads!)
- Let *X* be the number of correct hats when 4 hats randomly land on 4 heads



- What is the distribution of each X<sub>i</sub>?
  - Bernoully, with  $\mathbb{P}[X_i = 1] = \frac{1}{4}$ 
    - Hats are randomly distributed
- By linearity of expectation:

 $\mathbb{E}[X] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \mathbb{E}[X_3] + \mathbb{E}[X_4] = 1$ 

#### **Sums of Indicators Exercises**



- **Exercise.** What about if there are *n* people?
- Interesting Example (see text). Apply sum of indicators to breaking of records
- Instructive Exercise. Compute the PDF of X and the expectation from the PDF