Expected Value

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 19

Overview

- Expected value approximates the sample average.
- Mathematical Expectation
- Examples
 - Sum of dice.
 - Bernoulli.
 - Uniform.
 - Binomial.
 - Waiting time.
- Conditional Expectation
- Law of Total Expectation

4

Sample Average: Toss Two Coins Many Times

• Suppose I have 2 coins. Suppose I toss them 1 time each

ΗT

- What is the probability that I get 1 H?
- Let X denote the number of heads

ΗH

ω

$\mathbb{P}[\omega]$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$P_X[x]$
$X(\omega)$	2	1	1	0	

ΤH

x	0	1	2
$P_X[x]$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

• Repeat the experiment n = 24 times and suppose I get the following outcomes:

TT

 $\mathbf{2}$ $\mathbf{2}$ 2 0 0 2 0 21 0 2 1 1 1 0 1 0

– What is the average value of X?

 $\frac{2+1+1+2+2+1+0+0+2+0+1+1+2+1+0+1+0+1+1+1+2+1+0+1}{24} = \frac{24}{24} = 1$

Sample Average: Toss Two Coins Many Times

- Suppose I have 2 coins. Suppose I toss them 1 time each
 - What is the probability that I get 1 H?
 - Let X denote the number of heads

ω	НН	HI	IH		
$\mathbb{P}[\omega]$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	
$X(\omega)$	2	1	1	0	_

x	0	1	2
$P_X[x]$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

• Repeat the experiment n = 24 times and suppose I get the following outcomes:

ΗF Ω

• To make it easier to count, let's reorder outcomes

 $n_1 = 12$ $n_0 = 6$ $n_2 = 6$ \cap

– Can you rewrite the average by grouping similar terms?

 $6 \times 0 + 12 \times 1 + 6 \times 2 \quad 24$

$$24 = \frac{1}{24}$$

Mathematical Expectation of a Random Variable *X*

• Let's go back to our 2 coins

• The general formula for the average value of *X* is:

$$\frac{n_0 \times 0 + n_1 \times 1 + n_2 \times 2}{n} = \frac{n_0}{n} \times 0 + \frac{n_1}{n} \times 1 + \frac{n_2}{n} \times 2$$

- What is
$$\frac{n_0}{n}$$
 roughly?

- Approximately $P_X(0)$
- Law of Large Numbers: as n gets large, $\frac{n_i}{n}$ will converge to $P_X(i)$

• So,

$$\frac{n_0 \times 0 + n_1 \times 1 + n_2 \times 2}{n} \approx P_X(0) \times 0 + P_X(1) \times 1 + P_X(2) \times 2$$
$$= \sum_{x \in X(\Omega)} x P_X(x)$$

• For two coins, the expected value is $0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1$

Mathematical Expectation of a Random Variable *X*, cont'd

• Definition [Expected Value]. The expected value of a random variable X is defined as the sum of all values x that X can take, weighted by their probabilities, $P_X(x)$:

$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P_X(x)$$

- **Synonyms:** Expectation; Expected Value; Mean; Average.
- Important Exercise. Show that $\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}[\omega]$

Expected Number of Heads from 3 Coin Tosses is 1.5!

$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x \cdot P_X(x)$$

• Recall the outcome space:

ω	ннн	HHT	HTH	HTT	ТНН	THT	TTH	TTT	
$\mathbb{P}[\omega]$	$\frac{1}{8}$	_							
$X(\omega)$	3	2	2	1	2	1	1	0	-

x	0	1	2	3
$P_X(x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

1 Rensselaer

• So, what is $\mathbb{E}[X]$?

$$\mathbb{E}[X] = 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8}$$
$$= \frac{12}{8} = 1.5$$

- What does this mean?!? CAN'T GET HALF A HEAD!
 - It's just an average. The average may not correspond to a possible outcome
- **Exercise.** Let X be the value of a fair die roll. Show that $\mathbb{E}[X] = 3.5$

Expected Sum of Two Dice

• Consider two fair dice, X_1 and X_2 . Let $X = X_1 + X_2$

• What is the probability of each outcome for *X*?

x	2	3	4	5	6	7	8	9	10	11	12
P(x)	1	2	3	4	5	6	5	4	3	2	1
$\Gamma_X(x)$	36	36	36	36	36	36	36	36	36	36	36

• What is $\mathbb{E}[X]$?

$$\mathbb{E}[X] = \sum_{x} x \cdot P_X(x) =$$

$$= \frac{1}{36} (2 \times 1 + 3 \times 2 + 4 \times 3 + 5 \times 4 + 6 \times 5 + 7 \times 6 + 8 \times 5 + 9 \times 4 + 10 \times 3 + 11 \times 2 + 12 \times 1) = 7$$

• Hm,

$$\mathbb{E}[X] = 7$$

- But $\mathbb{E}[X_1] = \mathbb{E}[X_2] = 3.5$
- So $\mathbb{E}[X] = \mathbb{E}[X_1] + \mathbb{E}[X_2]$
- Interesting...

Expected Value of a Bernoulli Random Variable

• A Bernoulli random variable *X* takes a value in {0,1}

x	0	1
$P_X(x)$	1 - p	р

• The expected value is

$$\mathbb{E}[X] = 0 \times (1-p) + 1 \times p = p$$

- A Bernoulli random variable with success probability p has expected value p
 - Duh...
 - Again, the mean does not correspond to an actual outcome

Expected Value of a Uniform Random Variable

• A uniform random variable *X* takes a value in {1, ..., *n*}

x	1	2		п
$P_X(x)$	$\frac{1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$

• The expected value is

$$E[X] = 1 \times \frac{1}{n} + 2 \times \frac{1}{n} + \dots + n \times \frac{1}{n}$$

= $\frac{1}{n} (1 + 2 + \dots + n)$
= $\frac{1}{n} \times \frac{1}{2} n(n+1) = \frac{n+1}{2}$

- A uniform random variable on [1, n] has expected value $=\frac{1}{2}(n+1)$
 - Notation: [1, *n*] means {1,2, ..., *n*}

What is the Expected Number of Heads in n Coin Rensselaer Tosses?

- What is the distribution of the number of heads in *n* coin tosses?
 - A binomial distribution

$$P_X(k) = B(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

x	0	1	 k	 n
$P_X(x)$	$\binom{n}{0}p^0(1-p)^n$	$\binom{n}{1}p^1(1-p)^{n-1}$	 $\binom{n}{k}p^k(1-p)^{n-k}$	 $\binom{n}{n}p^n(1-p)^0$

• What is the expected number of heads?

$$\mathbb{E}[X] = 0 \times \binom{n}{0} p^0 q^n + 1 \times \binom{n}{1} p^1 q^{n-1} + \dots + n \times \binom{n}{n} p^n q^0$$

- where q = 1 p
- Hm, this looks very similar to the standard binomial theorem!

$$(p+q)^{n} = \binom{n}{0} p^{0} q^{n} + \binom{n}{1} p^{1} q^{n-1} + \dots + \binom{n}{n} p^{n} q^{0}$$

What is the Expected Number of Heads in n Coin Rensselaer Tosses?, cont'd

- What is the distribution of the number of heads in *n* coin tosses?
 - A binomial distribution

$$P_X(k) = B(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

• What is the expected number of heads?

$$\mathbb{E}[X] = 0 \times \binom{n}{0} p^0 q^n + 1 \times \binom{n}{1} p^1 q^{n-1} + \dots + n \times \binom{n}{n} p^n q^0$$

- where q = 1 p
- Hm, this looks very similar to the standard binomial theorem! $(p+q)^n = \binom{n}{0}p^0q^n + \binom{n}{1}p^1q^{n-1} + \dots + \binom{n}{n}p^nq^0$
- Taking the derivative of both sides w.r.t. p $n(p+q)^{n-1} = 1 \times {n \choose 1} p^0 q^{n-1} + 2 \times {n \choose 2} p^1 q^{n-2} + \dots + n \times {n \choose n} p^{n-1} q^0$
- Finally, multiplying both sides by p $pn(p+q)^{n-1} = 1 \times {n \choose 1} p^1 q^{n-1} + 2 \times {n \choose 2} p^2 q^{n-2} + \dots + n \times {n \choose n} p^n q^0$
- RHS is = $\mathbb{E}[X]$ (why?)

$$\mathbb{E}[X] = 0 \times \binom{n}{0} p^0 q^n + RHS$$

What is the Expected Number of Heads in n Coin Rensselaer Tosses?, cont'd

- What is the distribution of the number of heads in *n* coin tosses?
 - A binomial distribution

$$P_X(k) = B(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

• What is the expected number of heads?

$$\mathbb{E}[X] = 0 \times \binom{n}{0} p^0 q^n + 1 \times \binom{n}{1} p^1 q^{n-1} + \dots + n \times \binom{n}{n} p^n q^0$$

- where q = 1 p
- Hm, this looks very similar to the standard binomial theorem! $(p+q)^n = \binom{n}{0}p^0q^n + \binom{n}{1}p^1q^{n-1} + \dots + \binom{n}{n}p^nq^0$
- Taking the derivative of both sides w.r.t. p $n(p+q)^{n-1} = 1 \times {n \choose 1} p^0 q^{n-1} + 2 \times {n \choose 2} p^1 q^{n-2} + \dots + n \times {n \choose n} p^{n-1} q^0$
- Finally, multiplying both sides by p $pn(p+q)^{n-1} = 1 \times {n \choose 1} p^1 q^{n-1} + 2 \times {n \choose 2} p^2 q^{n-2} + \dots + n \times {n \choose n} p^n q^0$
- But p + q = 1 by definition; RHS is = $\mathbb{E}[X]$ $\mathbb{E}[X] = np$

Binomial Distribution Example

– What do you expect to get?

$$15 \times \frac{1}{5} = 3$$
 correct answers

Expected Waiting Time to Success

- Recall our success-waiting problem
 - We derived the **Exponential Waiting Time Distribution** as: $P_X(t) = \beta(1-p)^t$

- Note that $\mathbb{E}[X] = \beta (1 \times (1-p) + 2 \times (1-p)^2 + \dots + k \times (1-p)^k + \dots)$
- We'll use a similar derivation to the binomial distribution
- Recall the geometric series:

$$\frac{1}{1-a} = 1 + a + a^2 + a^3 + \cdots$$

• Taking the derivative w.r.t. *a*:

$$\frac{1}{(1-a)^2} = 1 + 2a + 3a^2 + 4a^3 + \cdots$$

• Multiplying by *a*:

$$\frac{a}{(1-a)^2} = 1a + 2a^2 + 3a^3 + 4a^4 + \cdots$$

Expected Waiting Time to Success

- Recall our success-waiting problem
 - We derived the **Exponential Waiting Time Distribution** as: $P_X(t) = \beta(1-p)^t$

- Note that $\mathbb{E}[X] = \beta (1 \times (1-p) + 2 \times (1-p)^2 + \dots + k \times (1-p)^k + \dots)$
- We'll use a similar derivation to the binomial distribution

$$\frac{a}{(1-a)^2} = 1a + 2a^2 + 3a^3 + 4a^4 + \cdots$$

• So finally,

$$\mathbb{E}[X] = \beta \times \frac{1-p}{p^2} = \frac{1}{p}$$

• Expected waiting time is $\frac{1}{n}$

Conditional Expectation

- New information changes a probability. Hence, the expected value also changes.
- Average annual precipitation in the US is 30.28 inches
 - Source: https://www.ncei.noaa.gov/access/monitoring/monthlyreport/national/202013

 $\mathbb{E}[Precipitation] = 30.28$

• Average annual precipitation in the northeast is 43.61 inches $\mathbb{E}[Precipitation|Northeast] = 43.61$

Conditional Expectation Definition

• Conditional Expected Value $\mathbb{E}[X|A]$:

$$\mathbb{E}[X|A] = \sum_{x \in X(\Omega)} x \cdot \mathbb{P}[X = x|A] = \sum_{x \in X(\Omega)} x \cdot P_X(x|A)$$

Law of Total Expectation

- Case by case analysis for expectation (similar to the Law of Total Probability).
- Law of Total Expectation:

$$\mathbb{E}[X] = \mathbb{E}[X|A] \times \mathbb{P}[A] + \mathbb{E}[X|\bar{A}] \times \mathbb{P}[\bar{A}]$$

- For example, $\mathbb{E}[Precipitation] = \mathbb{E}[Precipitation|Northeast] \times \mathbb{P}[Northeast] + \\
 + \mathbb{E}[Precipitation|Northeast] \times \mathbb{P}[Northeast] \\
 \approx 43.61 \times 0.05 + 29.58 \times 0.95$
- Of course, can sub-divide \overline{A} (i.e., $\overline{Northeast}$) into more regions for more refined information

Example

- Suppose a jar has 9 fair coins and 1 two-headed coin.
- Choose a random coin and flip it 10 times.
- Let X be the number of heads you see. What is $\mathbb{E}[X]$?
- Use the law of total expectation
 - What are the events?
 - Coin is fair vs. coin is 2-headed

$$\mathbb{E}[X] = \mathbb{E}[X|fair] \times \mathbb{P}[fair] + \mathbb{E}[X|2 - headed] \times \mathbb{P}[2 - headed]$$
$$= 5 \times \frac{9}{10} + 10 \times \frac{1}{10} = 5.5$$

Expected Waiting Time from Law of Total Expectation

- Go back to the expected waiting time example, where success comes w.p. p
- Let *X* be the waiting time. There are two cases:
 - First trial is a succeeds (S) with probability p, i.e., X = 1
 - First trial is a fails (F) with probability 1 p, i.e., "restart"

• Using the law of total expectation:

$$\mathbb{E}[X] = \mathbb{E}[X|S] \times \mathbb{P}[S] + \mathbb{E}[X|F] \times \mathbb{P}[F]$$

= 1 × p + (1 + \mathbb{E}[X]) × (1 - p)

• Solving for $\mathbb{E}[X]$:

$$\mathbb{E}[X] = \frac{1}{p}$$

- which we already knew
- the law of total expectation gives a neat way to calculate this expectation!
- **Practice.** Exercise 6.5 and 6.8.