Expected Value

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 19
- Expected value approximates the sample average.
- Mathematical Expectation
- Examples
- Sum of dice.
- Bernoulli.
- Uniform.
- Binomial.
- Waiting time.
- Conditional Expectation
- Law of Total Expectation

Sample Average: Toss Two Coins Many Times

- Suppose I have 2 coins. Suppose I toss them 1 time each
- What is the probability that I get 1 H ?
- Let X denote the number of heads

ω	HH	HT	TH	TT
$\mathbb{P}[\omega]$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$X(\omega)$	2	1	1	0

x	0	1	2
$P_{X}[x]$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

- Repeat the experiment $n=24$ times and suppose I get the following outcomes:

HH	TH	HT	HH	HH	TH	TT	TT	HH	TT	HT	HT	HH	HT	TT	HT	TT	HT	HT	TH	HH	TH	TT	TH
2	1	1	2	2	1	0	0	2	0	1	1	2	1	0	1	0	1	1	1	2	1	0	1

- What is the average value of X ?
$\frac{2+1+1+2+2+1+0+0+2+0+1+1+2+1+0+1+0+1+1+1+2+1+0+1}{24}=\frac{24}{24}=1$

Sample Average: Toss Two Coins Many Times

- Suppose I have 2 coins. Suppose I toss them 1 time each
- What is the probability that I get 1 H ?
- Let X denote the number of heads

ω	HH	HT	TH	TT
$\mathbb{P}[\omega]$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$X(\omega)$	2	1	1	0

x	0	1	2
$P_{X}[x]$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

- Repeat the experiment $n=24$ times and suppose I get the following outcomes:

- To make it easier to count, let's reorder outcomes

TT TT TT TT TT TT HT HT HT HT HT HT HT TH TH TH TH TH HH HH HH HH HH HH

- Can you rewrite the average by grouping similar terms?

$$
\frac{6 \times 0+12 \times 1+6 \times 2}{24}=\frac{24}{24}
$$

Mathematical Expectation of a Random Variable X

- Let's go back to our 2 coins

- The general formula for the average value of X is:

$$
\frac{n_{0} \times 0+n_{1} \times 1+n_{2} \times 2}{n}=\frac{n_{0}}{n} \times 0+\frac{n_{1}}{n} \times 1+\frac{n_{2}}{n} \times 2
$$

- What is $\frac{n_{0}}{n}$ roughly?
- Approximately $P_{X}(0)$
- Law of Large Numbers: as n gets large, $\frac{n_{i}}{n}$ will converge to $P_{X}(i)$
- So,

$$
\begin{aligned}
\frac{n_{0} \times 0+n_{1} \times 1+n_{2} \times 2}{n} & \approx P_{X}(0) \times 0+P_{X}(1) \times 1+P_{X}(2) \times 2 \\
& =\sum_{x \in X(\Omega)} x P_{X}(x)
\end{aligned}
$$

- For two coins, the expected value is $0 \times \frac{1}{4}+1 \times \frac{1}{2}+2 \times \frac{1}{4}=1$

Mathematical Expectation of a Random Variable X, cont'd

- Definition [Expected Value]. The expected value of a random variable X is defined as the sum of all values x that X can take, weighted by their probabilities, $P_{X}(x)$:

$$
\mathbb{E}[X]=\sum_{x \in X(\Omega)} x \cdot P_{X}(x)
$$

- Synonyms: Expectation; Expected Value; Mean; Average.
- Important Exercise. Show that $\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}[\omega]$

Expected Number of Heads from 3 Coin Tosses

 is 1.5 !$$
\mathbb{E}[X]=\sum_{x \in X(\Omega)} x \cdot P_{X}(x)
$$

- Recall the outcome space:

ω	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0

x	0	1	2	3
$P_{X}(x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

- So, what is $\mathbb{E}[X]$?

$$
\begin{aligned}
\mathbb{E}[X] & =0 \times \frac{1}{8}+1 \times \frac{3}{8}+2 \times \frac{3}{8}+3 \times \frac{1}{8} \\
& =\frac{12}{8}=1.5
\end{aligned}
$$

- What does this mean?!? CAN'T GET HALF A HEAD!
- It's just an average. The average may not correspond to a possible outcome
- Exercise. Let X be the value of a fair die roll. Show that $\mathbb{E}[X]=3.5$

Expected Sum of Two Dice

- Consider two fair dice, X_{1} and X_{2}. Let $X=X_{1}+X_{2}$

$$
\underline{X}=\operatorname{sum}
$$

- What is the probability of each outcome for X ?

x	2	3	4	5	6	7	8	9	10	11	12
$P_{X}(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

- What is $\mathbb{E}[X]$?

$$
\begin{aligned}
\mathbb{E}[X]= & \sum_{x} x \cdot P_{X}(x)= \\
= & \frac{1}{36}(2 \times 1+3 \times 2+4 \times 3+5 \times 4+6 \times 5+7 \times 6+ \\
& +8 \times 5+9 \times 4+10 \times 3+11 \times 2+12 \times 1)=7
\end{aligned}
$$

Expected Sum of Two Dice, cont'd

- Hm,

$$
\mathbb{E}[X]=7
$$

- But $\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[X_{2}\right]=3.5$
- So $\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]$
- Interesting...

Expected Value of a Bernoulli Random Variable

- A Bernoulli random variable X takes a value in $\{0,1\}$

x	0	1
$P_{X}(x)$	$1-p$	p

- The expected value is

$$
\mathbb{E}[X]=0 \times(1-p)+1 \times p=p
$$

- A Bernoulli random variable with success probability p has expected value p
- Duh...
- Again, the mean does not correspond to an actual outcome

Expected Value of a Uniform Random Variable

- A uniform random variable X takes a value in $\{1, \ldots, n\}$

x	1	2	\cdots	n
$P_{X}(x)$	$\frac{1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$

- The expected value is

$$
\begin{aligned}
\mathbb{E}[X] & =1 \times \frac{1}{n}+2 \times \frac{1}{n}+\cdots+n \times \frac{1}{n} \\
& =\frac{1}{n}(1+2+\cdots+n) \\
& =\frac{1}{n} \times \frac{1}{2} n(n+1)=\frac{n+1}{2}
\end{aligned}
$$

- A uniform random variable on $[1, n]$ has expected value $=\frac{1}{2}(n+1)$
- Notation: $[1, n]$ means $\{1,2, \ldots, n\}$

What is the Expected Number of Heads in n Coin Tosses?

- What is the distribution of the number of heads in n coin tosses?
- A binomial distribution

$$
P_{X}(k)=B(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

x	0	1	\ldots	k	\ldots	n
$P_{X}(x)$	$\binom{n}{0} p^{0}(1-p)^{n}$	$\binom{n}{1} p^{1}(1-p)^{n-1}$	\ldots	$\binom{n}{k} p^{k}(1-p)^{n-k}$	\ldots	$\binom{n}{n} p^{n}(1-p)^{0}$

- What is the expected number of heads?

$$
\mathbb{E}[X]=0 \times\binom{ n}{0} p^{0} q^{n}+1 \times\binom{ n}{1} p^{1} q^{n-1}+\cdots+n \times\binom{ n}{n} p^{n} q^{0}
$$

- where $q=1-p$
- Hm, this looks very similar to the standard binomial theorem!

$$
(p+q)^{n}=\binom{n}{0} p^{0} q^{n}+\binom{n}{1} p^{1} q^{n-1}+\cdots+\binom{n}{n} p^{n} q^{0}
$$

What is the Expected Number of Heads in n Coin Tosses?, cont'd

- What is the distribution of the number of heads in n coin tosses?
- A binomial distribution

$$
P_{X}(k)=B(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- What is the expected number of heads?

$$
\mathbb{E}[X]=0 \times\binom{ n}{0} p^{0} q^{n}+1 \times\binom{ n}{1} p^{1} q^{n-1}+\cdots+n \times\binom{ n}{n} p^{n} q^{0}
$$

- where $q=1-p$
- Hm, this looks very similar to the standard binomial theorem!

$$
(p+q)^{n}=\binom{n}{0} p^{0} q^{n}+\binom{n}{1} p^{1} q^{n-1}+\cdots+\binom{n}{n} p^{n} q^{0}
$$

- Taking the derivative of both sides w.r.t. p

$$
n(p+q)^{n-1}=1 \times\binom{ n}{1} p^{0} q^{n-1}+2 \times\binom{ n}{2} p^{1} q^{n-2}+\cdots+n \times\binom{ n}{n} p^{n-1} q^{0}
$$

- Finally, multiplying both sides by p

$$
p n(p+q)^{n-1}=1 \times\binom{ n}{1} p^{1} q^{n-1}+2 \times\binom{ n}{2} p^{2} q^{n-2}+\cdots+n \times\binom{ n}{n} p^{n} q^{0}
$$

- RHS is $=\mathbb{E}[X]$ (why?)

$$
\mathbb{E}[X]=0 \times\binom{ n}{0} p^{0} q^{n}+R H S
$$

What is the Expected Number of Heads in n Coin Tosses?, cont'd

- What is the distribution of the number of heads in n coin tosses?
- A binomial distribution

$$
P_{X}(k)=B(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- What is the expected number of heads?

$$
\mathbb{E}[X]=0 \times\binom{ n}{0} p^{0} q^{n}+1 \times\binom{ n}{1} p^{1} q^{n-1}+\cdots+n \times\binom{ n}{n} p^{n} q^{0}
$$

- where $q=1-p$
- Hm, this looks very similar to the standard binomial theorem!

$$
(p+q)^{n}=\binom{n}{0} p^{0} q^{n}+\binom{n}{1} p^{1} q^{n-1}+\cdots+\binom{n}{n} p^{n} q^{0}
$$

- Taking the derivative of both sides w.r.t. p

$$
n(p+q)^{n-1}=1 \times\binom{ n}{1} p^{0} q^{n-1}+2 \times\binom{ n}{2} p^{1} q^{n-2}+\cdots+n \times\binom{ n}{n} p^{n-1} q^{0}
$$

- Finally, multiplying both sides by p

$$
p n(p+q)^{n-1}=1 \times\binom{ n}{1} p^{1} q^{n-1}+2 \times\binom{ n}{2} p^{2} q^{n-2}+\cdots+n \times\binom{ n}{n} p^{n} q^{0}
$$

- But $p+q=1$ by definition; RHS is $=\mathbb{E}[X]$

$$
\mathbb{E}[X]=n p
$$

Binomial Distribution Example

- Example. Answer randomly 15 multiple choice questions with 5 choices ($p=\frac{1}{5}$)
- What do you expect to get?

$$
15 \times \frac{1}{5}=3 \text { correct answers }
$$

Expected Waiting Time to Success

- Recall our success-waiting problem
- We derived the Exponential Waiting Time Distribution as: $P_{X}(t)=\beta(1-p)^{t}$
- where $\beta=\frac{p}{1-p}$

x	1	2	3	\ldots	k
$P_{X}(x)$	$\beta(1-p)$	$\beta(1-p)^{2}$	$\beta(1-p)^{3}$	\ldots	$\beta(1-p)^{k}$

- Note that $\mathbb{E}[X]=\beta\left(1 \times(1-p)+2 \times(1-p)^{2}+\cdots+k \times(1-p)^{k}+\cdots\right)$
- We'll use a similar derivation to the binomial distribution
- Recall the geometric series:

$$
\frac{1}{1-a}=1+a+a^{2}+a^{3}+\cdots
$$

- Taking the derivative w.r.t. a :

$$
\frac{1}{(1-a)^{2}}=1+2 a+3 a^{2}+4 a^{3}+\cdots
$$

- Multiplying by a :

$$
\frac{a}{(1-a)^{2}}=1 a+2 a^{2}+3 a^{3}+4 a^{4}+\cdots
$$

Expected Waiting Time to Success

- Recall our success-waiting problem
- We derived the Exponential Waiting Time Distribution as: $P_{X}(t)=\beta(1-p)^{t}$
- where $\beta=\frac{p}{1-p}$

x	1	2	3	\ldots	k
$P_{X}(x)$	$\beta(1-p)$	$\beta(1-p)^{2}$	$\beta(1-p)^{3}$	\ldots	$\beta(1-p)^{k}$

- Note that $\mathbb{E}[X]=\beta\left(1 \times(1-p)+2 \times(1-p)^{2}+\cdots+k \times(1-p)^{k}+\cdots\right)$
- We'll use a similar derivation to the binomial distribution

$$
\frac{a}{(1-a)^{2}}=1 a+2 a^{2}+3 a^{3}+4 a^{4}+\cdots
$$

- So finally,

$$
\mathbb{E}[X]=\beta \times \frac{1-p}{p^{2}}=\frac{1}{p}
$$

- Expected waiting time is $\frac{1}{p}$

Conditional Expectation

- New information changes a probability. Hence, the expected value also changes.
- Average annual precipitation in the US is 30.28 inches
- Source: https://www.ncei.noaa.gov/access/monitoring/monthlyreport/national/202013

$$
\mathbb{E}[\text { Precipitation }]=30.28
$$

- Average annual precipitation in the northeast is 43.61 inches $\mathbb{E}[$ Precipitation \mid Northeast $]=43.61$

Conditional Expectation Definition

- Conditional Expected Value $\mathbb{E}[X \mid A]$:

$$
\mathbb{E}[X \mid A]=\sum_{x \in X(\Omega)} x \cdot \mathbb{P}[X=x \mid A]=\sum_{x \in X(\Omega)} x \cdot P_{X}(x \mid A)
$$

Law of Total Expectation

- Case by case analysis for expectation (similar to the Law of Total Probability).
- Law of Total Expectation:

$$
\mathbb{E}[X]=\mathbb{E}[X \mid A] \times \mathbb{P}[A]+\mathbb{E}[X \mid \bar{A}] \times \mathbb{P}[\bar{A}]
$$

- For example,

$$
\begin{aligned}
& \mathbb{E}[\text { Precipitation }]=\mathbb{E}[\text { Precipitation } \mid \text { Northeast }] \times \mathbb{P}[\text { Northeast }]+ \\
&+\mathbb{E}[\text { Precipitation } \mid \overline{\text { Northeast }] \times \mathbb{P}[\overline{\text { Northeast }]}]} \\
& \approx 43.61 \times 0.05+29.58 \times 0.95
\end{aligned}
$$

- Of course, can sub-divide \bar{A} (i.e., $\overline{N o r t h e a s t) ~ i n t o ~ m o r e ~ r e g i o n s ~ f o r ~ m o r e ~ r e f i n e d ~}$ information

Example

- Suppose a jar has 9 fair coins and 1 two-headed coin.
- Choose a random coin and flip it 10 times.
- Let X be the number of heads you see. What is $\mathbb{E}[X]$?
- Use the law of total expectation
- What are the events?
- Coin is fair vs. coin is 2-headed

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}[X \mid \text { fair }] \times \mathbb{P}[\text { fair }]+\mathbb{E}[X \mid 2-\text { headed }] \times \mathbb{P}[2-\text { headed }] \\
& =5 \times \frac{9}{10}+10 \times \frac{1}{10}=5.5
\end{aligned}
$$

Expected Waiting Time from Law of Total Expectation

- Go back to the expected waiting time example, where success comes w.p. p
- Let X be the waiting time. There are two cases:
- First trial is a succeeds (S) with probability p, i.e., $X=1$
- First trial is a fails (F) with probability $1-p$, i.e., "restart"

- Using the law of total expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}[X \mid S] \times \mathbb{P}[S]+\mathbb{E}[X \mid F] \times \mathbb{P}[F] \\
& =1 \times p+(1+\mathbb{E}[X]) \times(1-p)
\end{aligned}
$$

- Solving for $\mathbb{E}[X]$:

$$
\mathbb{E}[X]=\frac{1}{p}
$$

- which we already knew
- the law of total expectation gives a neat way to calculate this expectation!
- Practice. Exercise 6.5 and 6.8.

