Random Variables

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 18

Overview

- What is a random variable?
- Probability distribution function (PDF) and Cumulative distribution function (CDF).
- Joint probability distribution and independent random variables
- Important random variables
- Bernoulli: indicator random variables
- Uniform: simple and powerful. An equalizing force
- Binomial: sum of independent indicator random variables
- Exponential: the waiting time to the first success

A Random Variable is a "Measurable Property"

- Temperature: "measurable property" of random positions and velocities of molecules
- Toss 3 coins
- Define a variable X, to count number of heads (e.g., number-of-heads $(H T T)=1$)
- Define a variable Y, which is 1 if all tosses match (all-tosses-match $(\mathrm{HTT})=0$)
- Define a variable Z, which is doubled for each H and halved for each T

ω	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0
$Y(\omega)$	1	0	0	0	0	0	0	1
$Z(\omega)$	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$

A Random Variable is a "Measurable Property", cont'd

ω	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0
$Y(\omega)$	1	0	0	0	0	0	0	1
$Z(\omega)$	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$

- Can define events based on these random variables

$$
\begin{aligned}
\{X=2\} & =\{H H T, H T H, T H H\} \\
\mathbb{P}[X=2] & =\frac{3}{8} \\
\{X \geq 2\} & =\{H H H, H H T, H T H, T H H\} \\
\mathbb{P}[X \geq 2] & =\frac{1}{2} \\
\{Y=1\} & =\{H H H, T T T\}, \mathbb{P}[Y=1]=\frac{1}{4} \\
\{X \geq 2 \text { AND } Y=1\} & =\{H H H\}, \mathbb{P}[X \geq 2 \text { AND } Y=1]=\frac{1}{8}
\end{aligned}
$$

Probability Distribution Function (PDF)

- A random variable is a function from the space of outcomes, Ω, to the reals, \mathbb{R}
- For example, X maps $\Omega \rightarrow X(\Omega)$

$$
\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\} \xrightarrow{X}\{3,2,1,0\}
$$

- Each possible value x of the random variable X corresponds to an event

x	0	1	2	3
Event	$\{T T T\}$	$\{H T T, T H T, T T H\}$	$\{H H T, H T H, T H H\}$	$\{H H H\}$

- For each $x \in X(\Omega)$, compute $\mathbb{P}[X=x]$ by adding the outcome-probabilities

x	0	1	2	3
$P_{X}[x]$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Probability Distribution Function (PDF), cont'd

- Probability Distribution Function (PDF). The probability distribution function $P_{X}(x)$ is the probability for the random variable X to take value x,

$$
P_{X}(x)=\mathbb{P}[X=x]
$$

- Note: typically the abbreviation PDF is used for probability density function
- i.e., when the variable can take on infinitely many values

PDF for the Sum of Two Dice

- Define the random variable X which is the sum of two dice
- How many outcomes does the event $\{X=9\}$ contain?

$$
\mathbb{P}[X=9]=4 \times \frac{1}{36}=\frac{1}{9}
$$

- What are all possible sums?
- Possible sums are $X \in\{2,3, \ldots, 12\}$ and the PDF is

x	2	3	4	5	6	7	8	9	10	11	12
$P_{X}(x)$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

Joint PDF: More Than One Random Variable

- Consider again the variables X and Y
- Define a variable X, to count number of heads (e.g., number-of-heads $(H T T)=1$)
- Define a variable Y, which is 1 if all tosses match (all-tosses-match $(\mathrm{HTT})=0$)

ω	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0
$Y(\omega)$	1	0	0	0	0	0	0	1

- What is $\mathbb{P}[X=0, Y=0]$?
- What is $\mathbb{P}[X=1, Y=0]$?
$\frac{3}{8}$
- Can now define the joint function $P_{X Y}(x, y)=\mathbb{P}[X=x, Y=y]$

Joint PDF: More Than One Random Variable, cont'd

ω	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0
$Y(\omega)$	1	0	0	0	0	0	0	1

- Can now define the joint function $P_{X Y}(x, y)=\mathbb{P}[X=x, Y=y]$

$$
\begin{aligned}
& P_{X Y}(x, y) \quad X \\
& \begin{array}{lllll}
0 & 1 & 2 & 3 & \begin{array}{c}
\text { row } \\
\text { sums }
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& P_{X}(x)=\sum_{y \in Y(\Omega)} P_{X Y}(x, y)
\end{aligned}
$$

Joint PDF: More Than One Random Variable, cont'd

ω	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0
$Y(\omega)$	1	0	0	0	0	0	0	1

- Can also compute other events

$$
\begin{aligned}
& \mathbb{P}[X+Y \leq 2]=0+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}+0=\frac{7}{8} \\
& \mathbb{P}[Y=1 \text { and } X+Y \leq 2]=\frac{1}{8}+0=\frac{1}{8} \\
& \mathbb{P}[Y=1 \mid X+Y \leq 2]=\frac{\mathbb{P}[Y=1 \text { and } X+Y \leq 2]}{\mathbb{P}[X+Y \leq 2]}=\frac{1}{8} \div \frac{7}{8}=\frac{1}{7}
\end{aligned}
$$

$$
\begin{aligned}
& P_{X}(x)=\sum_{y \in Y(\Omega)} P_{X Y}(x, y)
\end{aligned}
$$

Independent Random Variables

- Independent Random Variables measure unrelated quantities. The joint-PDF is always the product of the marginals.

$$
P_{X Y}(x, y)=P_{X}(x) P_{Y}(y) \forall(x, y) \in X(\Omega) \times Y(\Omega)
$$

- Our X and Y are not independent

- Practice: Exercise 18.4, Pop Quizzes 18.5, 18.6.

Cumulative Distribution Function (CDF)

- We are also interested in the probability that a variable is less than a certain number

x	0	1	2	3
$P_{X}[x]$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$
$\mathbb{P}[X \leq x]$	$\frac{1}{8}$	$\frac{4}{8}$	$\frac{7}{8}$	$\frac{8}{8}$

- Cumulative Distribution Function (CDF). The cumulative distribution function $F_{X}(x)$ is the probability for the random variable X to be at most x,

$$
F_{X}(x)=\mathbb{P}[X \leq x]
$$

Bernoulli Random Variable: Binary Measurable $(0,1)$

- Bernoulli distributions used to model settings with two possible outcomes
- e.g., coin tosses, random walks
- The Bernoulli random variable is a binary variable that indicates which outcome:

$$
X=\left\{\begin{array}{lc}
1 \text { with probability } & p \\
0 \text { with probability } & 1-p
\end{array}\right.
$$

- We can add Bernoullis. Toss n independent coins. X is the number of H :

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

- The variable X is a sum of Bernoullis, each X_{i} is an independent Bernoulli
- Suppose I make n steps during my random walk. Let R be the number of right steps:

$$
R=X_{1}+X_{2}+\cdots+X_{n}
$$

- (Assuming a right/left step corresponds to a value of 1/0)
- Similarly, the number of left steps is:

$$
L=\left(1-X_{1}\right)+\left(1-X_{2}\right)+\cdots+\left(1-X_{n}\right)
$$

- The final position is:

$$
X=R-L=2 R-n=2\left(X_{1}+\cdots+X_{n}\right)-n
$$

Uniform Random Variable: Every Value Equally Likely

- Suppose a random variable can take on n possible values, $\{1,2, \ldots, n\}$
- Each with probability $\frac{1}{n}$

$$
P_{X}(k)=\frac{1}{n}, \text { for } k=1, \ldots, n
$$

- For example, the roll of a 6 -sided fair die is uniform on $\{1, \ldots, 6\}$

- Written $X \sim U[6]$, where X is the fair die
- Roulette outcomes are uniform on $\{00,0,1, \ldots, 36\}$
- Can remap to $\{1, \ldots, 38\}$

Binomial Random Variable: Sum of Bernoullis

- Let X be the sum of n Bernoulli random variables
- e.g., $X=$ number of heads in n independent coin tosses with probability p of heads:

$$
X=X_{1}+\cdots+X_{n}
$$

- sum of n independent Bernoullis, $X_{i} \sim \operatorname{Bernoulli}(p)$
- Suppose $n=5$. What is the probability I get 3 Hs ?
- All 10 outcomes are: \{HHHTT, HHTTH, HTTHH, TTHHH, HHTHT, HTHTH, THTHH, HTHHT, THHTH, THHHT\}
- each independently with probability $p^{3}(1-p)^{2}$

$$
\mathbb{P}[X=3 \mid n=5]=10 p^{3}(1-p)^{2}
$$

- (add outcome probabilities)
- In general, how many outcomes with $k \mathrm{Hs}$ are there?

$$
\binom{n}{k}
$$

- each with probability $p^{k}(1-p)^{n-k}$, so

$$
\mathbb{P}[X=k \mid n]=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Binomial Distribution

- Binomial Distribution. \mathbf{X} is the number of successes in n independent trials with success probability p on each trial: $X=X_{1}+\cdots+X_{n}$, where $X_{i} \sim \operatorname{Bernoulli}(p)$

$$
P_{X}(k)=\mathbb{P}[X=k \mid n]=B(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Example: guessing correctly on the multiple choice quiz: $n=15$ questions, 5 choices ($p=\frac{1}{5}$).

number correct, k	0	1	2	3	4	5	6	7	8	9	10	11	12	13
probability	0.035	0.132	0.231	0.250	0.188	0.103	0.043	0.014	0.003	$<10^{-3}$	10^{-4}	10^{-5}	10^{-6}	~ 0

Exponential Random Variable: Waiting Time to Success

- Suppose that you are waiting for a coin to flip H
- Or waiting for a packet to be successfully transmitted
- Let p be the probability to succeed on a trial

Exponential Random Variable Example

- Example. 3 people randomly access the wireless channel. A packet is transmitted (i.e., success) only if exactly one is attempting.
- How do we make sure we make progress?
- Suppose everyone tries every timestep
- No one succeeds because there is a collision every time.
- Suppose everyone tries $\frac{1}{3}$ of the time (randomly)
- Success probability for someone is $3 \times \frac{4}{27}=\frac{4}{9}$
- Success probability for you is $\frac{4}{27}$

wait, t	1	2	3	4	5	6	7	8	9	10	11	\cdots
\mathbb{P} [someone succeeds]	0.444	0.247	0.137	0.076	0.042	0.024	0.013	0.007	0.004	0.002	0.001	\cdots
\mathbb{P} [you succeed]	0.148	0.126	0.108	0.092	0.078	0.066	0.057	0.048	0.051	0.035	0.030	\cdots

