Random Variables

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 18

Overview

Rensselaer

- What is a random variable?
- Probability distribution function (PDF) and Cumulative distribution function (CDF).
- Joint probability distribution and independent random variables
- Important random variables
 - Bernoulli: indicator random variables
 - Uniform: simple and powerful. An equalizing force
 - Binomial: sum of independent indicator random variables
 - Exponential: the waiting time to the first success

A Random Variable is a "Measurable Property"

- Temperature: "measurable property" of random positions and velocities of molecules
- Toss 3 coins
 - Define a variable X, to count number of heads (e.g., number-of-heads(HTT) = 1)
 - Define a variable Y, which is 1 if all tosses match (all-tosses-match(HTT) = 0)
 - Define a variable Z, which is doubled for each H and halved for each T

ω	ннн	ННТ	HTH	HTT	ТНН	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0
$Y(\omega)$	1	0	0	0	0	0	0	1
$Z(\omega)$	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$

A Random Variable is a "Measurable Property", cont'd

(ω	ннн	HHT	HTH	HTT	THH	THT	TTH	TTT	
\mathbb{P}	[ω]	$\frac{1}{8}$								
X	(ω)	3	2	2	1	2	1	1	0	-
Y((ω)	1	0	0	0	0	0	0	1	
Z((ω)	8	2	2	$\frac{1}{2}$	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	

• Can define events based on these random variables

$$\{X = 2\} = \{HHT, HTH, THH\}$$
$$\mathbb{P}[X = 2] = \frac{3}{8}$$
$$\{X \ge 2\} = \{HHH, HHT, HTH, THH\}$$
$$\mathbb{P}[X \ge 2] = \frac{1}{2}$$
$$\{Y = 1\} = \{HHH, TTT\}, \mathbb{P}[Y = 1] = \frac{1}{4}$$
$$\{X \ge 2 \text{ AND } Y = 1\} = \{HHH\}, \mathbb{P}[X \ge 2 \text{ AND } Y = 1] = \frac{1}{8}$$

Probability Distribution Function (PDF)

- A random variable is a function from the space of outcomes, Ω , to the reals, $\mathbb R$
- For example, X maps $\Omega \to X(\Omega)$

 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \xrightarrow{X} \{3, 2, 1, 0\}$

• Each *possible* value x of the random variable X corresponds to an event

x	0	1	2	3
Event	$\{TTT\}$	$\{HTT, THT, TTH\}$	{HHT,HTH,THH}	{HHH}

• For each $x \in X(\Omega)$, compute $\mathbb{P}[X = x]$ by adding the outcome-probabilities

x	0	1	2	3
$P_X[x]$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Probability Distribution Function (PDF), cont'd

• **Probability Distribution Function (PDF).** The probability distribution function $P_X(x)$ is the probability for the random variable X to take value x,

 $P_X(x) = \mathbb{P}[X = x]$

- Note: typically the abbreviation PDF is used for probability density function
 - i.e., when the variable can take on infinitely many values

Rensselaer

PDF for the Sum of Two Dice

- Define the random variable X which is the sum of two dice •
 - How many outcomes does the event $\{X = 9\}$ contain?

$$\mathbb{P}[X=9] = 4 \times \frac{1}{36} = \frac{1}{9}$$

- What are all possible sums? •
 - Possible sums are $X \in \{2, 3, ..., 12\}$ and the PDF is

x	2	3	4	5	6	7	8	9	10	11	12
$P_X(x)$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	5 36	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

Joint PDF: More Than One Random Variable

- Consider again the variables X and Y
 - Define a variable X, to count number of heads (e.g., number-of-heads(HTT) = 1)
 - Define a variable Y, which is 1 if all tosses match (all-tosses-match(HTT) = 0)

ω	ннн	HHT	HTH	HTT	ТНН	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0
$Y(\omega)$	1	0	0	0	0	0	0	1

0

 $\frac{3}{8}$

- What is $\mathbb{P}[X = 0, Y = 0]$?
- What is $\mathbb{P}[X = 1, Y = 0]$?

• Can now define the joint function
$$P_{XY}(x, y) = \mathbb{P}[X = x, Y = y]$$

Joint PDF: More Than One Random Variable, cont'd

ω	ННН	HHT	HTH	HTT	тнн	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0
$Y(\omega)$	1	0	0	0	0	0	0	1

• Can now define the joint function $P_{XY}(x, y) = \mathbb{P}[X = x, Y = y]$

Joint PDF: More Than One Random Variable, cont'd

ω	ннн	ННТ	HTH	HTT	ТНН	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							
$X(\omega)$	3	2	2	1	2	1	1	0
$Y(\omega)$	1	0	0	0	0	0	0	1

• Can also compute other events

$$\mathbb{P}[X+Y \le 2] = 0 + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} + 0 = \frac{7}{8}$$
$$\mathbb{P}[Y = 1 \text{ and } X + Y \le 2] = \frac{1}{8} + 0 = \frac{1}{8}$$
$$\mathbb{P}[Y = 1|X+Y \le 2] = \frac{\mathbb{P}[Y = 1 \text{ and } X + Y \le 2]}{\mathbb{P}[X+Y \le 2]} = \frac{1}{8} \div \frac{7}{8} = \frac{1}{7}$$

$$P_{XY}(x, y) = X$$

$$0 = 1 = 2 = 3 \quad \text{row} \quad \text{sums}$$

$$Y = 0 \quad 0 = \frac{3}{8} = \frac{3}{8} = 0 \quad \frac{3}{4} \quad P_{Y}(y) = \sum_{x \in X(\Omega)} P_{XY}(x, y)$$

$$\frac{1}{1} = 0 \quad 0 = \frac{1}{8} \quad \frac{3}{4} \quad \frac{3}{4} \quad P_{Y}(y) = \sum_{x \in X(\Omega)} P_{XY}(x, y)$$

$$\frac{1}{8} = \frac{3}{8} = \frac{3}{8} = \frac{3}{8} \quad \frac{1}{8}$$

$$P_{X}(x) = \sum_{y \in Y(\Omega)} P_{XY}(x, y)$$

Independent Random Variables

• Independent Random Variables measure unrelated quantities. The joint-PDF is *always* the product of the marginals.

$$P_{XY}(x,y) = P_X(x)P_Y(y) \ \forall (x,y) \in X(\Omega) \times Y(\Omega)$$

• Our *X* and *Y* are **not** independent

• **Practice:** Exercise 18.4, Pop Quizzes 18.5, 18.6.

Cumulative Distribution Function (CDF)

• We are also interested in the probability that a variable is less than a certain number

• Cumulative Distribution Function (CDF). The cumulative distribution function $F_X(x)$ is the probability for the random variable X to be at most x, $F_X(x) = \mathbb{P}[X \le x]$

Bernoulli Random Variable: Binary Measurable (0,1)

- Bernoulli distributions used to model settings with two possible outcomes
 e.g., coin tosses, random walks
- The Bernoulli random variable is a binary variable that *indicates* which outcome:

$$X = \begin{cases} 1 \text{ with probability } p \\ 0 \text{ with probability } 1-p \end{cases}$$

- We can add Bernoullis. Toss *n* independent coins. *X* is the number of H: $X = X_1 + X_2 + \dots + X_n$
 - The variable X is a sum of Bernoullis, each X_i is an independent Bernoulli
- Suppose I make n steps during my random walk. Let R be the number of right steps: $R = X_1 + X_2 + \dots + X_n$
 - (Assuming a right/left step corresponds to a value of 1/0)
- Similarly, the number of left steps is:

$$L = (1 - X_1) + (1 - X_2) + \dots + (1 - X_n)$$

• The final position is:

$$X = R - L = 2R - n = 2(X_1 + \dots + X_n) - n$$

Rensselaer

Uniform Random Variable: Every Value Equally Likely

- Suppose a random variable can take on n possible values, $\{1, 2, ..., n\}$
 - Each with probability $\frac{1}{n}$

$$P_X(k) = \frac{1}{n}$$
, for $k = 1, ..., n$

- For example, the roll of a 6-sided *fair* die is uniform on {1, ..., 6}
 Written X~U[6], where X is the fair die
- Roulette outcomes are uniform on {00,0,1, ..., 36}
 - Can remap to $\{1, \dots, 38\}$

Binomial Random Variable: Sum of Bernoullis

- Let *X* be the sum of *n* Bernoulli random variables
 - e.g., X = number of heads in n independent coin tosses with probability p of heads:

$$X = X_1 + \dots + X_n$$

- sum of *n* independent Bernoullis, $X_i \sim Bernoulli(p)$
- Suppose n = 5. What is the probability I get 3 Hs?
 - All 10 outcomes are: {HHHTT, HHTTH, HTTHH, TTHHH, HHTHT, HTHTH, THTHH, HTHHT, THHTH, THHHT}
 - each independently with probability $p^3(1-p)^2$ $\mathbb{P}[X = 3|n = 5] = 10p^3(1-p)^2$
 - (add outcome probabilities)
- In general, how many outcomes with k Hs are there?
 - each with probability $p^k(1-p)^{n-k}$, so

$$\mathbb{P}[X = k|n] = \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial Distribution

• **Binomial Distribution. X** is the number of successes in *n* independent trials with success probability *p* on each trial: $X = X_1 + \cdots + X_n$, where $X_i \sim Bernoulli(p)$

$$P_X(k) = \mathbb{P}[X = k|n] = B(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

• Example: guessing correctly on the multiple choice quiz: n = 15 questions, 5 choices ($p = \frac{1}{5}$).

number correct, k	0	1	2	3	4	5	6	7	8	9	10	11	12	13
probability	0.035	0.132	0.231	0.250	0.188	0.103	0.043	0.014	0.003	< 10 ⁻³	10-4	10 ⁻⁵	10 ⁻⁶	~0

Exponential Random Variable: Waiting Time to Success

- Suppose that you are waiting for a coin to flip H
 - Or waiting for a packet to be successfully transmitted
 - Let p be the probability to succeed on a trial

$$\mathbb{P}[t \ trials] = \mathbb{P}[F^{\bullet t-1}S] = (1-p)^{t-1}p$$
$$P_X(t) = (1-p)^{t-1}p = \frac{p}{1-p} \times (1-p)^t$$

• Let's rename $\beta = \frac{p}{1-p}$

 $P_X(t) = \beta \times (1-p)^t$

21

Exponential Random Variable Example

- **Example**. 3 people randomly access the wireless channel. A packet is transmitted (i.e., success) only if exactly one is attempting.
 - How do we make sure we make progress?
 - Suppose everyone tries every timestep
 - No one succeeds because there is a collision every time.
 - Suppose everyone tries $\frac{1}{3}$ of the time (randomly)
 - Success probability for *someone* is $3 \times \frac{4}{27} = \frac{4}{9}$
 - Success probability for you is $\frac{4}{27}$

wait, t	1	2	3	4	5	6	7	8	9	10	11	• • •
$\mathbb{P}[\text{someone succeeds}]$	0.444	0.247	0.137	0.076	0.042	0.024	0.013	0.007	0.004	0.002	0.001	• • •
$\mathbb{P}[\text{you succeed}]$	0.148	0.126	0.108	0.092	0.078	0.066	0.057	0.048	0.051	0.035	0.030	

