Independence

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 17
- Independence is an assumption
- Fermi method
- Multiway independence
- Coincidence and the birthday paradox
- Application to hashing
- Random walk and gambler's ruin

Independence is a Simplifying Assumption

- Tosses of different coins have nothing to do with each other
- independent
- What about two siblings' eye color?
- (Depends on genes of parent)
- not independent
- Making lecture slides mistakes
- independent (assuming I am equally tired every time I work on slides)
- Cloudy and rainy days.
- When it rains, there must be clouds.
- not independent

Independence is a Simplifying Assumption, cont'd

- Toss two coins:

$$
\mathbb{P}[\operatorname{Coin} 1=H]=\frac{1}{2}, \mathbb{P}[\operatorname{Coin} 2=H]=\frac{1}{2}, \mathbb{P}[\operatorname{Coin} 1=H \text { AND } \operatorname{Coin} 2=H]=\frac{1}{4}
$$

- Toss both coins 100 times:
- Coin $1 \approx 50 \mathrm{H}$
- (of these) Coin $2 \approx 25 \mathrm{H}$
- since they are independent tosses
- Independence allows us to conclude the following:

$$
\mathbb{P}[\operatorname{Coin} 1=H \text { AND } \operatorname{Coin} 2=H]=\frac{1}{4}=\frac{1}{2} \times \frac{1}{2}=\mathbb{P}[\operatorname{Coin} 1=H] \times \mathbb{P}[\operatorname{Coin} 2=H]
$$

- If the variables are not independent, we can't split the probability, e.g.,

$$
\mathbb{P}[\text { rain AND clouds }]=\mathbb{P}[\text { rain }]=\frac{1}{7} \gg \frac{1}{35}=\mathbb{P}[\text { rain }] \times \mathbb{P}[\text { clouds }]
$$

Definition of Independence

- Events A and B are independent if "They have nothing to do with each other."
- Knowing the outcome is in B does not change the probability that the outcome is in A
- Formally, events A and B are independent if

$$
\mathbb{P}[A A N D B]=\mathbb{P}[A \cap B]=\mathbb{P}[A] \times \mathbb{P}[B]
$$

- Keep in mind that in general (regardless of independence):

$$
\mathbb{P}[A \cap B]=\mathbb{P}[A \mid B] \times \mathbb{P}[B]
$$

- So independence means that

$$
\mathbb{P}[A \mid B]=\mathbb{P}[A]
$$

- Independence is a non-trivial assumption, and you can't always assume it.
- When you can assume independence

PROBABILITIES MULTIPLY

Fermi-Method: Chance of Reaching Troy from Albany

- In order to reach Troy from Albany, one needs to overcome many potential obstacles:

$$
\begin{aligned}
& A_{1}=\text { no flat tires } \\
& A_{2}=\text { avoid protruding manholes } \\
& A_{3}=\text { avoid accidentally going the wrong way } \\
& A_{4}=\text { avoid running out of gas } \\
& A_{5}=\text { avoid getting stuck in traffic due to road work }
\end{aligned}
$$

- So $A=$ reach Troy $=A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}$
- All criteria must be met
- These are more or less independent events, so:

$$
\mathbb{P}[A]=\mathbb{P}\left[A_{1}\right] \times \mathbb{P}\left[A_{2}\right] \times \mathbb{P}\left[A_{3}\right] \times \mathbb{P}\left[A_{4}\right] \times \mathbb{P}\left[A_{5}\right]
$$

- All events magically happen with the same probability of $\frac{364}{365}$
- So finally,

$$
\mathbb{P}[\text { reach Troy }]=\left(\frac{364}{365}\right)^{5}=0.986
$$

- i.e., you should expect to not make it to Troy on 5 days/year
- When you have multiple events, independence can be tricky
- Suppose I have 3 fair coins. Here are all the outcomes:

Ω	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							

- Suppose we have the following events:

$$
\begin{aligned}
& A_{1}=\{\text { coins } 1 \text { and } 2 \text { match }\} \\
& A_{2}=\{\text { coins } 2 \text { and } 3 \text { match }\} \\
& A_{3}=\{\text { coins } 1 \text { and } 3 \text { match }\}
\end{aligned}
$$

- What are their probabilities:

$$
\mathbb{P}\left[A_{1}\right]=\mathbb{P}\left[A_{2}\right]=\mathbb{P}\left[A_{3}\right]=\frac{1}{2}
$$

- How about the pairwise conjunctions ("AND"s)?

$$
\mathbb{P}\left[A_{1} \cap A_{2}\right]=\mathbb{P}\left[A_{2} \cap A_{3}\right]=\mathbb{P}\left[A_{1} \cap A_{3}\right]=\frac{1}{4}
$$

- So they are independent (e.g., $\mathbb{P}\left[A_{1} \cap A_{2}\right]=\mathbb{P}\left[A_{1}\right] \times \mathbb{P}\left[A_{2}\right]$)
- When you have multiple events, independence can be tricky
- Suppose I have 3 fair coins. Here are all the outcomes:

Ω	HHH	HHT	HTH	HTT	THH	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							

- Suppose have the following events:

$$
\begin{aligned}
& A_{1}=\{\text { coins } 1 \text { and } 2 \text { match }\} \\
& A_{2}=\{\text { coins } 2 \text { and } 3 \text { match }\} \\
& A_{3}=\{\text { coins } 1 \text { and } 3 \text { match }\}
\end{aligned}
$$

- What are their probabilities: $\mathbb{P}\left[A_{1}\right]=\mathbb{P}\left[A_{2}\right]=\mathbb{P}\left[A_{3}\right]=\frac{1}{2}$
- How about the AND of all 3 events:

$$
\mathbb{P}\left[A_{1} \cap A_{2} \cap A_{3}\right]=\frac{1}{4}
$$

- not independent (why?)
- $(1,2)$ match and $(2,3)$ match $\rightarrow(1,3)$ match.

Multiway Independence, cont'd

- Mutual independence for more than 2 events is stronger than just 2-way independence between all events!
- Formally, events A_{1}, \ldots, A_{n} are independent if the probability of any intersection of distinct events is the product of the event-probabilities of those events,

$$
\mathbb{P}\left[A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right]=\mathbb{P}\left[A_{i_{1}}\right] \times \mathbb{P}\left[A_{i_{2}}\right] \times \cdots \times \mathbb{P}\left[A_{i_{k}}\right]
$$

- Distinct events don't have any outcomes in common

Coincidence: Let's Try to Find a FOCS-Twin

- Assume we have 200 students: $S=\left\{s_{1}, s_{2}, \ldots, s_{200}\right\}$
- Suppose I go in order. How many students do I need to ask until I find a FOCS-twin?
- Assume birthdays are independent (no twins, triplets, etc.) and all birthdays are equally likely
- How do we go about computing the probability that at least two people were born on the same day?
- We want the probability $\mathbb{P}\left[s_{1}, \ldots, s_{200}\right.$ have no FOCS - twin] (why?)
$\mathbb{P}[$ at least one $\operatorname{FOCS}-$ twin $]=1-\mathbb{P}\left[s_{1}, \ldots, s_{200}\right.$ have no FOCS - twin $]$
- I can start with s_{1}. What is $\mathbb{P}\left[s_{1}\right.$ has no FOCS - twin]?
- Suppose s_{1} was born on Jan. 1 (the actual date doesn't matter).
- What is the probability that s_{2} was not born on Jan. 1?

$$
\mathbb{P}\left[s_{2} \text { not born on Jan. } 1\right]=\frac{365}{366}
$$

- In general, what is the probability that all students weren't born on Jan. 1?
$\mathbb{P}\left[s_{2}, \ldots, s_{200}\right.$ not born on Jan. 1] =
$=\mathbb{P}\left[s_{2}\right.$ not born on Jan. 1$] \times \cdots \times \mathbb{P}\left[s_{200}\right.$ not born on Jan. 1$]$

Coincidence: Let's Try to Find a FOCS-Twin, cont'd

- Assume we have 200 students: $S=\left\{s_{1}, s_{2}, \ldots, s_{200}\right\}$
- Suppose I go in order. How many students do I need to ask until I find a FOCS-twin?
- Assume birthdays are independent (no twins, triplets, etc.) and all birthdays are equally likely
- How do we go about computing the probability that at least two people were born on the same day?
- Probability that student s_{1} has no FOCS twin

$$
\mathbb{P}\left[s_{1} \text { has no FOCS }-t \text { win }\right]=\left(\frac{B-1}{B}\right)^{N-1}=\left(\frac{365}{366}\right)^{199}
$$

- Now what about the next student? What is $\mathbb{P}\left[s_{1}, s_{2}\right.$ have no FOCS - twin $]$?
- Let's use the definition of conditional probability
$\mathbb{P}\left[s_{1}, s_{2}\right.$ have no FOCS - twin $]=$

$$
\begin{array}{r}
=\mathbb{P}\left[s_{2} \text { has no FOCS }- \text { twin } \mid s_{1} \text { has no FOCS }- \text { twin }\right] \times \\
\times \mathbb{P}\left[s_{1} \text { has no FOCS }- \text { twin }\right]
\end{array}
$$

Coincidence: Let's Try to Find a FOCS-Twin, cont'd

- Assume we have 200 students: $S=\left\{s_{1}, s_{2}, \ldots, s_{200}\right\}$
- Suppose I go in order. How many students do I need to ask until I find a FOCS-twin?
- Assume birthdays are independent (no twins, triplets, etc.) and all birthdays are equally likely
- How do we go about computing the probability that at least two people were born on the same day?
- Probability that student s_{1} has no FOCS twin

$$
\mathbb{P}\left[s_{1} \text { has no FOCS }-t \text { win }\right]=\left(\frac{B-1}{B}\right)^{N-1}=\left(\frac{365}{366}\right)^{199}
$$

- Now what about the next student?
$\mathbb{P}\left[s_{2}\right.$ has no FOCS $-t w i n \mid s_{1}$ has no FOCS $\left.-t w i n\right]=$

$$
=\left(\frac{B-2}{B-1}\right)^{N-2}=\left(\frac{364}{365}\right)^{198}
$$

- The two birthdays are independent, but the events $A_{1}=\left\{s_{1}\right.$ has no FOCS twin $\}$ and $A_{2}=\left\{s_{2}\right.$ has no FOCS - twin $\}$ are dependent!
- s_{1} constrains the values s_{2} can take (can't equal s_{1})

Coincidence: Let's Try to Find a FOCS-Twin, cont'd

- How do we go about computing the probability that at least two people were born on the same day?

$$
\mathbb{P}\left[s_{1} \text { has no FOCS }- \text { twin }\right]=\left(\frac{B-1}{B}\right)^{N-1}=\left(\frac{365}{366}\right)^{199}
$$

$$
\mathbb{P}\left[s_{2} \text { has no FOCS }-t w i n \mid s_{1} \text { has no FOCS }-t w i n\right]=\left(\frac{B-2}{B-1}\right)^{N-2}=\left(\frac{364}{365}\right)^{198}
$$

$$
\mathbb{P}\left[s_{3} \text { has no FOCS }-t w i n \mid s_{1}, s_{2} \text { have no FOCS }-t w i n\right]=\left(\frac{363}{364}\right)^{197}
$$

$\mathbb{P}\left[s_{k}\right.$ has no FOCS $-\operatorname{twin} \mid s_{1}, \ldots, s_{k-1}$ have no FOCS $\left.-t w i n\right]=\left(\frac{366-k}{366-k+1}\right)^{200-k}$

- Let's see what we can do with this information. We want

$$
\mathbb{P}\left[s_{1}, \ldots, s_{k} \text { have no } F O C S-t w i n\right]
$$

- How do we proceed?

Coincidence: Let's Try to Find a FOCS-Twin, cont'd

- Let's see what we can do with this information. We want

$$
\mathbb{P}\left[s_{1}, \ldots, s_{k} \text { have no FOCS - twin }\right]
$$

- Use the definition of conditional probability
$\mathbb{P}\left[s_{1}, \ldots, s_{k}\right.$ have no FOCS - twin $]=\mathbb{P}\left[s_{k}\right.$ has no FOCS - twin $\mid s_{1}, \ldots, s_{k-1}$ have no FOCS $-t$ win $] \times$ $\times \mathbb{P}\left[s_{1}, \ldots, s_{k-1}\right.$ have no FOCS - twin $]$
$=\mathbb{P}\left[s_{k}\right.$ has no FOCS $-t$ win $\mid s_{1}, \ldots, s_{k-1}$ have no FOCS $\left.-t w i n\right] \times$ $\times \mathbb{P}\left[s_{k-1}\right.$ has no FOCS - twin $\mid s_{1}, \ldots, s_{k-2}$ have no FOCS $\left.-t w i n\right] \times$ $\times \mathbb{P}\left[s_{1}, \ldots, s_{k-2}\right.$ have no FOCS - twin $]$
$=\mathbb{P}\left[s_{k}\right.$ has no FOCS $-t$ win $\mid s_{1}, \ldots, s_{k-1}$ have no FOCS $-t$ win $] \times$ $\ldots \times \mathbb{P}\left[s_{2}\right.$ has no FOCS $-t w i n \mid s_{1}$ has no FOCS $\left.-t w i n\right]$ $\times \mathbb{P}\left[s_{1}\right.$ has no $\left.\operatorname{FOCS}-t w i n\right]$
- So,

$$
\mathbb{P}\left[s_{1}, \ldots, s_{k} \text { have no FOCS }- \text { twin }\right]=\left(\frac{365}{366}\right)^{199} \times\left(\frac{364}{365}\right)^{198} \times \cdots \times\left(\frac{366-k}{366-k+1}\right)^{200-k}
$$

- Probability goes up very quickly

Finding a FOCS-twin by the k th student with class size 200

k	1	2	3	4	5	6	7	8	9	10	23	25
chances (\%)	42.0	66.3	80.4	88.6	93.3	96.1	97.7	98.7	99.2	99.5	99.999	100

The Birthday Paradox

- In a party of 50 people, what are the chances that two have the same birthday?
- Same as asking for

$$
\mathbb{P}\left[s_{1}, \ldots, s_{50} \text { have no FOCS - twin }\right]
$$

- Answer:

$$
\mathbb{P}[\text { no social twins }]=\left(\frac{365}{366}\right)^{49} \times\left(\frac{364}{365}\right)^{48} \times \cdots \times\left(\frac{315}{316}\right)^{0} \approx 0.03
$$

- Chances are about 97% that two people share a birthday!
- Moral: when searching for something among many options (1225 pairs of people), do not be surprised when you find it
- Why 1225 pairs?

$$
\text { \# pairs }=\frac{50!}{2!48!}
$$

- Also known as the infinite monkey problem:
- Given enough time "typing", a monkey will eventually type any given text, including the complete works of Shakespeare

Search and Hashing

- Search is a fundamental part of the modern internet

$$
\text { https://page. } 1
$$

It snows too much in Troy

- It still the main part of Google's business
- To search fast, we need hashing
- Comparing strings is waaay too slow
https://page. 2
It snows more in Hamilton
https://page. 3
It's always sunny in Philadelphia
- Google could just build a sorted list of each word, and the pages it appears in
- How long would search take?
- With binary search, $O(\log n)$
- Too slow for large n, want O (1)

always	\{page.3\}
Hamilton	\{page.2\}
in	\{page.1, page.2,page.3\}
is	$\{$ page.3 $\}$
it	$\{$ page.1, page.2,page.3\}
more	$\{$ page.2\}
much	$\{$ page.1\}
Philadelphia	$\{$ page.3 $\}$
snows	$\{$ page.1, page.2\}
too	$\{$ page.1\}
Troy	$\{$ page.1\}

- Instead of sorting, hash words into a table
- For example, take a word, raise each letter to a large prime power, e.g., 17, and take the remainder w.r.t. another large prime, e.g., 11
- E.g.,

$$
\operatorname{HASH}\left({ }^{\prime} \text { Troy' }\right)=20^{17}+18^{17}+15^{17}+25^{17} \equiv 2(\bmod 11)
$$

- Then, when someone searches for Troy, hash and look up
https://page. 1
It snows too much in Troy

https://page. 2

It snows more in Hamilton
https://page. 3
It's always sunny in Philadelphia page number

- But

$$
\operatorname{HASH}\left({ }^{\prime} i t^{\prime}\right)=9^{17}+20^{17} \equiv 2(\bmod 11)
$$

- This is called a collision
- Needs to be resolved, o.w. search fails
- Good hash function maps words independently and randomly.
- No collisions $\rightarrow O(1)$ search
- (constant time, not $\log n$)

0	Hamilton \rightarrow \{page.2\}
1	
2	it \rightarrow \{page.1,page.2,page.3\}, Troy \rightarrow \{page.1\}
3	too \rightarrow \{page.1\}
4	always \rightarrow \{page.3\}
5	
6	much \rightarrow \{page.1\}, sunny \rightarrow \{page.3\}
7	
8	in \rightarrow \{page.1, page.2, page.3\}, snows \rightarrow \{page.1, page.2\}, Philadelphia \rightarrow \{page.3\}
9	
10	more \rightarrow \{page.2\}

Search and Hashing, cont'd

- There are many ways to resolve collisions
- E.g., linear search
- Won't discuss them in detail in this class
- We assume we're given a good hashing function
- Talk to a number theory expert about various options

Hashing and FOCS-Twins

- The two problems are surprisingly similar

Words $w_{1}, w_{2}, \ldots, w_{N}$ and Hashing \leftrightarrow Students $s_{1}, s_{2}, \ldots, s_{N}$ and Birthdays
w_{1}, \ldots, w_{N} hashed to rows $0,1, \ldots, B-1 \leftrightarrow s_{1}, \ldots, s_{N}$ born on days $0,1, \ldots, B-1$
No collisions, or hash-twins \leftrightarrow No FOCS-twins

- Example: Suppose you have $N=10$ words $w_{1}, w_{2}, \ldots, w_{10}$
- Suppose $B=10$ (hash table has as many rows as words)

$$
\mathbb{P}[\text { no collisions }]=\left(\frac{9}{10}\right)^{9} \times\left(\frac{8}{9}\right)^{8} \times \cdots \times\left(\frac{1}{2}\right)^{1} \times\left(\frac{0}{1}\right)^{0} \approx 0.0004
$$

- Suppose $B=20$ (hash table has twice as many rows as words)

$$
\mathbb{P}[\text { no collisions }]=\left(\frac{19}{20}\right)^{9} \times\left(\frac{18}{19}\right)^{8} \times \cdots \times\left(\frac{11}{12}\right)^{1} \times\left(\frac{10}{11}\right)^{0} \approx 0.07
$$

B	10	20	30	40	50	60	70	80	90	100	500	1000
\mathbb{P} [no collisions]	0.0004	0.07	0.18	0.29	0.38	0.45	0.51	0.56	0.60	0.63	0.91	0.96

- B large enough \rightarrow chances of no collisions are high. How large should B be?
- Theorem. If $B \in \omega\left(n^{2}\right)$, then $\mathbb{P}[$ no collisions $] \rightarrow 1$

Random Walk: What Are the Chances I Return Home?

- When I was in college (at Colgate), there were many foggy days
- On one Thanksgiving, I was the only person on campus
- I walked outside and immediately got lost (couldn't see anything)
- If I randomly go left or right, what are the chances I get back home?

- First, construct the infinite outcome tree
- Sequences leading to home
- L, RLL, RLRLL, RLRLRLL, RLRLRLRLL
- Corresponding probabilities are $\frac{1}{2},\left(\frac{1}{2}\right)^{3},\left(\frac{1}{2}\right)^{5},\left(\frac{1}{2}\right)^{7}$
- So, the sequences look like: $\mathbb{P}\left[(R L)^{\bullet i} L\right]=\left(\frac{1}{2}\right)^{2 i+1}$

$$
\mathbb{P}[\text { home }]=\frac{1}{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{5}+\cdots=\frac{\frac{1}{2}}{1-\frac{1}{4}}=\frac{2}{3}
$$

Random Walk: What Are the Chances I Return Home?

- A slick approach is to use the Law of Total Probability

$$
\begin{aligned}
\mathbb{P}[\text { home }] & =\mathbb{P}[L] \cdot \mathbb{P}[\text { home } \mid L]+\mathbb{P}[R R] \cdot \mathbb{P}[\text { home } \mid R R]+\mathbb{P}[R L] \cdot \mathbb{P}[\text { home } \mid R L] \\
& =\frac{1}{2} \times 1+\frac{1}{4} \times 0+\frac{1}{4} \mathbb{P}[\text { home }]
\end{aligned}
$$

- Solving for $\mathbb{P}[$ home $]$, we get:

$$
\begin{aligned}
\left(1-\frac{1}{4}\right) \mathbb{P}[\text { home }] & =\frac{1}{2} \\
\mathbb{P}[\text { home }] & =\frac{\frac{1}{2}}{1-\frac{1}{4}}=\frac{2}{3}
\end{aligned}
$$

A Random Walk at the Casino

- Suppose you go to the casino to play roulette
- You start with \$2 and say you will quit if you make it \$4
- You bet \$1 on red every time
- i.e., a random walk with left/lose probability q and right/win probability p
- What do you think will happen?
- Let P_{i} be the probability to win in the game if you have $\$ i$ (and TINKER!!)

$$
\begin{aligned}
P_{1} & =q P_{0}+p P_{2}=p P_{2} \\
P_{2} & =q P_{1}+p P_{3}=q p P_{2}+p P_{3} \\
\text { i.e., } P_{2} & =\frac{p P_{3}}{1-q p} \\
P_{3} & =q P_{2}+p P_{4}=\frac{q p P_{3}}{1-q p}+p \\
P_{3} & =\frac{p(1-p q)}{1-2 p q}
\end{aligned} \quad\left[\boldsymbol{P}_{4}=\mathbf{1} \text { because we win }\right]
$$

A Random Walk at the Casino, cont'd

- Let P_{i} be the probability to win in the game if you have $\$ i$ (and TINKER!!)

$$
\begin{array}{rlr}
P_{1} & =q P_{0}+p P_{2}=p P_{2} & \quad \text { [total expectation }] \\
P_{2} & =q P_{1}+p P_{3}=q p P_{2}+p P_{3} & \\
\text { i.e., } P_{2} & =\frac{p P_{3}}{1-q p} & \\
P_{3} & =q P_{2}+p P_{4}=\frac{q p P_{3}}{1-q p P_{2}}+p & {\left[\boldsymbol{P}_{4}=\mathbf{1} \text { because we win }\right]} \\
P_{3} & =\frac{p(1-p q)}{1-2 p q} &
\end{array}
$$

- This means that

$$
P_{2}=\frac{p P_{3}}{1-q p}=\frac{p^{2}}{1-2 p q}
$$

- When $q=0.6, p=0.4, P_{2} \approx 0.31$ (i.e., 69% chance of losing your money!)

A Random Walk at the Casino, cont'd

- Exercises.
- What if you are trying to double up from $\$ 3$?
- (Answer: 77\% chance of RUIN)
- What if you are trying to double up from $\$ 10$?
- (Answer: 98\% chance of RUIN)
- Suppose you have infinite money, and your goal is to win any positive amount or at least break even. You start by betting $\$ 2$ and keep doubling your bet every time you lose (or leave if you win). What happens then?

