
Independence
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Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 17
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Overview

• Independence is an assumption

– Fermi method

– Multiway independence

• Coincidence and the birthday paradox

– Application to hashing

• Random walk and gambler’s ruin
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Independence is a Simplifying Assumption

• Tosses of different coins have nothing to do with each other

– independent

• What about two siblings’ eye color?

– (Depends on genes of parent)

– not independent

• Making lecture slides mistakes

– independent (assuming I am equally tired every time I work on slides)

• Cloudy and rainy days. 

– When it rains, there must be clouds.

– not independent
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Independence is a Simplifying Assumption, 

cont’d

• Toss two coins:

ℙ 𝐶𝑜𝑖𝑛 1 = 𝐻 =
1

2
, ℙ 𝐶𝑜𝑖𝑛 2 = 𝐻 =

1

2
, ℙ 𝐶𝑜𝑖𝑛 1 = 𝐻 𝐴𝑁𝐷 𝐶𝑜𝑖𝑛 2 = 𝐻 =

1

4

• Toss both coins 100 times:

– Coin 1 ≈ 50H

• (of these) Coin 2 ≈ 25H

• since they are independent tosses

• Independence allows us to conclude the following:

ℙ 𝐶𝑜𝑖𝑛 1 = 𝐻 𝐴𝑁𝐷 𝐶𝑜𝑖𝑛 2 = 𝐻 =
1

4
=

1

2
×

1

2
= ℙ 𝐶𝑜𝑖𝑛 1 = 𝐻 × ℙ 𝐶𝑜𝑖𝑛 2 = 𝐻

• If the variables are not independent, we can’t split the probability, e.g.,

ℙ 𝑟𝑎𝑖𝑛 𝐴𝑁𝐷 𝑐𝑙𝑜𝑢𝑑𝑠 = ℙ 𝑟𝑎𝑖𝑛 =
1

7
≫

1

35
= ℙ 𝑟𝑎𝑖𝑛 × ℙ[𝑐𝑙𝑜𝑢𝑑𝑠]
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Definition of Independence

• Events 𝐴 and 𝐵 are independent if “They have nothing to do with each other.”

• Knowing the outcome is in 𝐵 does not change the probability that the outcome is in 
𝐴

• Formally, events 𝐴 and 𝐵 are independent if
ℙ 𝐴 𝐴𝑁𝐷 𝐵 = ℙ 𝐴 ∩ 𝐵 = ℙ 𝐴 × ℙ[𝐵]

• Keep in mind that in general (regardless of independence):
ℙ 𝐴 ∩ 𝐵 = ℙ 𝐴|𝐵 × ℙ[𝐵]

• So independence means that 
ℙ 𝐴|𝐵 = ℙ 𝐴

• Independence is a non-trivial assumption, and you can’t always assume it.

• When you can assume independence

PROBABILITIES MULTIPLY
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Fermi-Method: Chance of Reaching Troy from 

Albany

• In order to reach Troy from Albany, one needs to overcome many potential 
obstacles:

𝐴1 = 𝑛𝑜 𝑓𝑙𝑎𝑡 𝑡𝑖𝑟𝑒𝑠 
𝐴2 = 𝑎𝑣𝑜𝑖𝑑 𝑝𝑟𝑜𝑡𝑟𝑢𝑑𝑖𝑛𝑔 𝑚𝑎𝑛ℎ𝑜𝑙𝑒𝑠

 𝐴3 = 𝑎𝑣𝑜𝑖𝑑 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑎𝑙𝑙𝑦 𝑔𝑜𝑖𝑛𝑔 𝑡ℎ𝑒 𝑤𝑟𝑜𝑛𝑔 𝑤𝑎𝑦
𝐴4 = 𝑎𝑣𝑜𝑖𝑑 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑢𝑡 𝑜𝑓 𝑔𝑎𝑠 

 𝐴5 = 𝑎𝑣𝑜𝑖𝑑 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑠𝑡𝑢𝑐𝑘 𝑖𝑛 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑜𝑎𝑑 𝑤𝑜𝑟𝑘

• So 𝐴 = 𝑟𝑒𝑎𝑐ℎ 𝑇𝑟𝑜𝑦 = 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4 ∩ 𝐴5

– All criteria must be met

• These are more or less independent events, so:
ℙ 𝐴 = ℙ 𝐴1 × ℙ 𝐴2 × ℙ 𝐴3 × ℙ 𝐴4 × ℙ 𝐴5

– All events magically happen with the same probability of 
364

365

• So finally,

ℙ 𝑟𝑒𝑎𝑐ℎ 𝑇𝑟𝑜𝑦 =
364

365

5

= 0.986

– i.e., you should expect to not make it to Troy on 5 days/year
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Multiway Independence

• When you have multiple events, independence can be tricky

• Suppose I have 3 fair coins. Here are all the outcomes:

• Suppose we have the following events:
𝐴1 = {𝑐𝑜𝑖𝑛𝑠 1 𝑎𝑛𝑑 2 𝑚𝑎𝑡𝑐ℎ}
𝐴2 = {𝑐𝑜𝑖𝑛𝑠 2 𝑎𝑛𝑑 3 𝑚𝑎𝑡𝑐ℎ}
𝐴3 = {𝑐𝑜𝑖𝑛𝑠 1 𝑎𝑛𝑑 3 𝑚𝑎𝑡𝑐ℎ}

• What are their probabilities:

ℙ 𝐴1 = ℙ 𝐴2 = ℙ 𝐴3 =
1

2

• How about the pairwise conjunctions (“AND”s)?

ℙ 𝐴1 ∩ 𝐴2 = ℙ 𝐴2 ∩ 𝐴3 = ℙ 𝐴1 ∩ 𝐴3 =
1

4
– So they are independent (e.g., ℙ 𝐴1 ∩ 𝐴2 = ℙ 𝐴1 × ℙ 𝐴2 )
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Multiway Independence, cont’d

• When you have multiple events, independence can be tricky

• Suppose I have 3 fair coins. Here are all the outcomes:

• Suppose have the following events:
𝐴1 = {𝑐𝑜𝑖𝑛𝑠 1 𝑎𝑛𝑑 2 𝑚𝑎𝑡𝑐ℎ}
𝐴2 = {𝑐𝑜𝑖𝑛𝑠 2 𝑎𝑛𝑑 3 𝑚𝑎𝑡𝑐ℎ}
𝐴3 = {𝑐𝑜𝑖𝑛𝑠 1 𝑎𝑛𝑑 3 𝑚𝑎𝑡𝑐ℎ}

• What are their probabilities: ℙ 𝐴1 = ℙ 𝐴2 = ℙ 𝐴3 =
1

2

• How about the AND of all 3 events:

ℙ 𝐴1 ∩ 𝐴2 ∩ 𝐴3 =
1

4
– not independent (why?)

– (1,2) match and (2,3) match → (1,3) match.
9

Ω HHH HHT HTH HTT THH THT TTH TTT

ℙ 𝜔
1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8



Multiway Independence, cont’d

• Mutual independence for more than 2 events is stronger than just 2-way 
independence between all events!

• Formally, events 𝐴1, … , 𝐴𝑛 are independent if the probability of any intersection of 
distinct events is the product of the event-probabilities of those events,

ℙ 𝐴𝑖1
∩ 𝐴𝑖2

∩ ⋯ ∩ 𝐴𝑖𝑘
= ℙ 𝐴𝑖1

× ℙ 𝐴𝑖2
× ⋯ × ℙ 𝐴𝑖𝑘

– Distinct events don’t have any outcomes in common
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Coincidence: Let’s Try to Find a FOCS-Twin

• Assume we have 200 students: 𝑆 = 𝑠1, 𝑠2, … , 𝑠200

• Suppose I go in order. How many students do I need to ask until I find a FOCS-twin?

– Assume birthdays are independent (no twins, triplets, etc.) and all birthdays are 
equally likely

• How do we go about computing the probability that at least two people were born 
on the same day?

– We want the probability ℙ 𝑠1, … , 𝑠200 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛  (why?)
ℙ 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 = 1 − ℙ 𝑠1, … , 𝑠200 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛

– I can start with 𝑠1. What is ℙ[𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛]?

– Suppose 𝑠1 was born on Jan. 1 (the actual date doesn’t matter).

– What is the probability that 𝑠2 was not born on Jan. 1?

ℙ 𝑠2 𝑛𝑜𝑡 𝑏𝑜𝑟𝑛 𝑜𝑛 𝐽𝑎𝑛. 1 =
365

366
– In general, what is the probability that all students weren’t born on Jan. 1?

ℙ 𝑠2, … , 𝑠200 𝑛𝑜𝑡 𝑏𝑜𝑟𝑛 𝑜𝑛 𝐽𝑎𝑛. 1 = 
 = ℙ 𝑠2 𝑛𝑜𝑡 𝑏𝑜𝑟𝑛 𝑜𝑛 𝐽𝑎𝑛. 1 × ⋯ × ℙ 𝑠200 𝑛𝑜𝑡 𝑏𝑜𝑟𝑛 𝑜𝑛 𝐽𝑎𝑛. 1
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Coincidence: Let’s Try to Find a FOCS-Twin, 

cont’d

• Assume we have 200 students: 𝑆 = 𝑠1, 𝑠2, … , 𝑠200

• Suppose I go in order. How many students do I need to ask until I find a FOCS-twin?

– Assume birthdays are independent (no twins, triplets, etc.) and all birthdays are 
equally likely

• How do we go about computing the probability that at least two people were born 
on the same day?

– Probability that student 𝑠1 has no FOCS twin

ℙ 𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 =
𝐵 − 1

𝐵

𝑁−1

=
365

366

199

• Now what about the next student? What is ℙ 𝑠1, 𝑠2 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 ?

– Let’s use the definition of conditional probability
ℙ 𝑠1, 𝑠2 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 = 

= ℙ 𝑠2 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 ×
 × ℙ 𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛
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Coincidence: Let’s Try to Find a FOCS-Twin, 

cont’d

• Assume we have 200 students: 𝑆 = 𝑠1, 𝑠2, … , 𝑠200

• Suppose I go in order. How many students do I need to ask until I find a FOCS-twin?

– Assume birthdays are independent (no twins, triplets, etc.) and all birthdays are 
equally likely

• How do we go about computing the probability that at least two people were born 
on the same day?

– Probability that student 𝑠1 has no FOCS twin

ℙ 𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 =
𝐵 − 1

𝐵

𝑁−1

=
365

366

199

• Now what about the next student?
ℙ 𝑠2 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 = 

 =
𝐵 − 2

𝐵 − 1

𝑁−2

=
364

365

198

– The two birthdays are independent, but the events 𝐴1 = {
}

𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 −
𝑡𝑤𝑖𝑛  and 𝐴2 = 𝑠2 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛  are dependent!

• 𝑠1 constrains the values 𝑠2 can take (can’t equal 𝑠1)
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Coincidence: Let’s Try to Find a FOCS-Twin, 

cont’d

• How do we go about computing the probability that at least two people were born on 
the same day?

ℙ 𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 =
𝐵 − 1

𝐵

𝑁−1

=
365

366

199

 

ℙ 𝑠2 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 =
𝐵 − 2

𝐵 − 1

𝑁−2

=
364

365

198

ℙ 𝑠3 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1, 𝑠2 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 =
363

364

197

 

⋮

ℙ 𝑠𝑘 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1, … , 𝑠𝑘−1 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 =
366 − 𝑘

366 − 𝑘 + 1

200−𝑘

• Let’s see what we can do with this information. We want
ℙ[𝑠1, … , 𝑠𝑘  ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛]

• How do we proceed?
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Coincidence: Let’s Try to Find a FOCS-Twin, 

cont’d

• Let’s see what we can do with this information. We want
ℙ[𝑠1, … , 𝑠𝑘  ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛]

– Use the definition of conditional probability
ℙ 𝑠1, … , 𝑠𝑘 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 = ℙ 𝑠𝑘 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1, … , 𝑠𝑘−1 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 × 

 × ℙ 𝑠1, … , 𝑠𝑘−1 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛
 = ℙ 𝑠𝑘 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1, … , 𝑠𝑘−1 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 × 

 × ℙ 𝑠𝑘−1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1, … , 𝑠𝑘−2 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 ×
 × ℙ 𝑠1, … , 𝑠𝑘−2 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛

 = ℙ 𝑠𝑘 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1, … , 𝑠𝑘−1 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 ×
 … × ℙ 𝑠2 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛|𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛

 × ℙ 𝑠1 ℎ𝑎𝑠 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛

• So,

ℙ 𝑠1, … , 𝑠𝑘 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛 =
365

366

199

×
364

365

198

× ⋯ ×
366 − 𝑘

366 − 𝑘 + 1

200−𝑘

• Probability goes up very quickly
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The Birthday Paradox

• In a party of 50 people, what are the chances that two have the same birthday?

• Same as asking for
ℙ[𝑠1, … , 𝑠50 ℎ𝑎𝑣𝑒 𝑛𝑜 𝐹𝑂𝐶𝑆 − 𝑡𝑤𝑖𝑛]

• Answer:

ℙ 𝑛𝑜 𝑠𝑜𝑐𝑖𝑎𝑙 𝑡𝑤𝑖𝑛𝑠 =
365

366

49

×
364

365

48

× ⋯ ×
315

316

0

≈ 0.03

• Chances are about 97% that two people share a birthday!

• Moral: when searching for something among many options (1225 pairs of people), 
do not be surprised when you find it

– Why 1225 pairs?

# pairs = 
50!

2! 48!

• Also known as the infinite monkey problem:

– Given enough time “typing”, a monkey will eventually type any given text, 
including the complete works of Shakespeare
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Search and Hashing

• Search is a fundamental part of the modern internet

• It still the main part of Google’s business

• To search fast, we need hashing

– Comparing strings is waaay too slow

• Consider the 3 pages on the right

• Google could just build a sorted list of each word, and the pages it appears in

– How long would search take?

• With binary search, 𝑂(log 𝑛)

– Too slow for large 𝑛, want 𝑂(1)
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https://page.1

It snows too much in Troy

https://page.2

It snows more in Hamilton

https://page.3

It’s always sunny in Philadelphia

always {page.3}

Hamilton {page.2}

in {page.1, page.2,page.3}

is {page.3}

it {page.1, page.2,page.3}

more {page.2}

much {page.1}

Philadelphia {page.3}

snows {page.1, page.2}

too {page.1}

Troy {page.1}



Search and Hashing, cont’d

• Instead of sorting, hash words into a table

– For example, take a word, raise each letter to a large 
prime power, e.g., 17, and take the remainder w.r.t. 
another large prime, e.g., 11

• E.g., 
𝐻𝐴𝑆𝐻 ′𝑇𝑟𝑜𝑦′ = 2017 + 1817 + 1517 + 2517 ≡ 2 (𝑚𝑜𝑑 11)

• Then, when someone searches for Troy, hash and look up
page number

• But 
𝐻𝐴𝑆𝐻 ′𝑖𝑡′ = 917 + 2017 ≡ 2 (𝑚𝑜𝑑 11)

• This is called a collision

– Needs to be resolved, o.w. search fails

• Good hash function maps words independently 
and randomly.

• No collisions → 𝑂(1) search 

– (constant time, not log 𝑛)
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https://page.1

It snows too much in Troy

https://page.2

It snows more in Hamilton

https://page.3

It’s always sunny in Philadelphia

0 Hamilton → {page.2}

1

2 it → {page.1,page.2,page.3}, Troy → {page.1}

3 too → {page.1}

4 always → {page.3}

5

6 much → {page.1}, sunny → {page.3}

7

8 in → {page.1, page.2, page.3}, snows → {page.1, 
page.2}, Philadelphia → {page.3}

9

10 more → {page.2}



Search and Hashing, cont’d

• There are many ways to resolve collisions

– E.g., linear search

– Won’t discuss them in detail in this class

• We assume we’re given a good hashing function

– Talk to a number theory expert about various options
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Hashing and FOCS-Twins

• The two problems are surprisingly similar

     Words 𝑤1, 𝑤2, … , 𝑤𝑁 and Hashing  Students 𝑠1, 𝑠2, … , 𝑠𝑁 and Birthdays

𝑤1, … , 𝑤𝑁 hashed to rows 0,1, … , 𝐵 − 1  𝑠1, … , 𝑠𝑁 born on days 0,1, … , 𝐵 − 1 

No collisions, or hash-twins  No FOCS-twins  

• Example: Suppose you have 𝑁 = 10 words 𝑤1, 𝑤2, … , 𝑤10

– Suppose 𝐵 = 10 (hash table has as many rows as words)

ℙ 𝑛𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 =
9

10

9

×
8

9

8

× ⋯ ×
1

2

1

×
0

1

0

≈ 0.0004

– Suppose 𝐵 = 20 (hash table has twice as many rows as words)

ℙ 𝑛𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 =
19

20

9

×
18

19

8

× ⋯ ×
11

12

1

×
10

11

0

≈ 0.07

• 𝐵 large enough → chances of no collisions are high. How large should 𝐵 be?

• Theorem. If 𝐵 ∈ 𝜔(𝑛2), then ℙ[𝑛𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠] → 1
20



Random Walk: What Are the Chances I Return 

Home?

• When I was in college (at Colgate), there were many foggy days

– On one Thanksgiving, I was the only person on campus

– I walked outside and immediately got lost (couldn’t see anything)

– If I randomly go left or right, what are the chances I get back home?

• First, construct the infinite outcome tree

• Sequences leading to home

– L, RLL, RLRLL, RLRLRLL, RLRLRLRLL

– Corresponding probabilities are 
1

2
,

1

2

3
,

1

2

5
,

1

2

7

• So, the sequences look like: ℙ 𝑅𝐿 •𝑖𝐿 =
1

2

2𝑖+1

ℙ ℎ𝑜𝑚𝑒 =
1

2
+

1

2

3

+
1

2

5

+ ⋯ =

1
2

1 −
1
4

=
2

3
21
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Random Walk: What Are the Chances I Return 

Home?

• A slick approach is to use the Law of Total Probability
ℙ ℎ𝑜𝑚𝑒 = ℙ 𝐿 ⋅ ℙ ℎ𝑜𝑚𝑒 𝐿 + ℙ 𝑅𝑅 ⋅ ℙ ℎ𝑜𝑚𝑒 𝑅𝑅 + ℙ 𝑅𝐿 ⋅ ℙ ℎ𝑜𝑚𝑒 𝑅𝐿

=
1

2
× 1 +

1

4
× 0 +

1

4
ℙ ℎ𝑜𝑚𝑒  

• Solving for ℙ ℎ𝑜𝑚𝑒 , we get:

1 −
1

4
ℙ ℎ𝑜𝑚𝑒 =

1

2

 ℙ ℎ𝑜𝑚𝑒 =

1
2

1 −
1
4

=
2

3
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A Random Walk at the Casino

• Suppose you go to the casino to play roulette

– You start with $2 and say you will quit if you make it $4

– You bet $1 on red every time

• i.e., a random walk with left/lose probability 𝑞 and right/win probability 𝑝

• What do you think will happen?

• Let 𝑃𝑖 be the probability to win in the game if you have $𝑖 (and TINKER!!)

 𝑃1 = 𝑞𝑃0 + 𝑝𝑃2 = 𝑝𝑃2                                        [total probability] 
𝑃2 = 𝑞𝑃1 + 𝑝𝑃3 = 𝑞𝑝𝑃2 + 𝑝𝑃3 

i.e., 𝑃2 =
𝑝𝑃3

1−𝑞𝑝
 

 𝑃3 = 𝑞𝑃2 + 𝑝𝑃4 =
𝑞𝑝𝑃3

1−𝑞𝑝
+ 𝑝                   [𝑷𝟒 = 𝟏 because we win]

𝑃3 =
𝑝(1 − 𝑝𝑞)

1 − 2𝑝𝑞
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A Random Walk at the Casino, cont’d

• Let 𝑃𝑖 be the probability to win in the game if you have $𝑖 (and TINKER!!)

 𝑃1 = 𝑞𝑃0 + 𝑝𝑃2 = 𝑝𝑃2                                       [total expectation]
𝑃2 = 𝑞𝑃1 + 𝑝𝑃3 = 𝑞𝑝𝑃2 + 𝑝𝑃3 

i.e., 𝑃2 =
𝑝𝑃3

1−𝑞𝑝
 

 𝑃3 = 𝑞𝑃2 + 𝑝𝑃4 =
𝑞𝑝𝑃3

1−𝑞𝑝𝑃2
+ 𝑝                [𝑷𝟒 = 𝟏 because we win]

𝑃3 =
𝑝(1 − 𝑝𝑞)

1 − 2𝑝𝑞
 

• This means that 

𝑃2 =
𝑝𝑃3

1 − 𝑞𝑝
=

𝑝2

1 − 2𝑝𝑞

– When 𝑞 = 0.6, 𝑝 = 0.4, 𝑃2 ≈ 0.31 (i.e., 69% chance of losing your money!)
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A Random Walk at the Casino, cont’d

• Exercises.

– What if you are trying to double up from $3? 

• (Answer: 77% chance of RUIN)

– What if you are trying to double up from $10? 

• (Answer: 98% chance of RUIN)

– Suppose you have infinite money, and your goal is to win any positive amount or 
at least break even. You start by betting $2 and keep doubling your bet every 
time you lose (or leave if you win). What happens then?
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