Independence

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 17

Overview

- Independence is an assumption
 - Fermi method
 - Multiway independence
- Coincidence and the birthday paradox
 - Application to hashing
- Random walk and gambler's ruin

Independence is a Simplifying Assumption

- Tosses of different coins have nothing to do with each other
 - independent
- What about two siblings' eye color?
 - (Depends on genes of parent)
 - not independent
- Making lecture slides mistakes
 - independent (assuming I am equally tired every time I work on slides)
- Cloudy and rainy days.
 - When it rains, there must be clouds.
 - not independent

Independence is a Simplifying Assumption, cont'd

• Toss two coins:

 $\mathbb{P}[Coin \ 1 = H] = \frac{1}{2}, \mathbb{P}[Coin \ 2 = H] = \frac{1}{2}, \mathbb{P}[Coin \ 1 = H \text{ AND } Coin \ 2 = H] = \frac{1}{4}$

- Toss both coins 100 times:
 - Coin $1 \approx 50$ H
 - (of these) Coin 2 \approx 25H
 - since they are independent tosses
- Independence allows us to conclude the following:

 $\mathbb{P}[Coin \ 1 = H \ AND \ Coin \ 2 = H] = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = \mathbb{P}[Coin \ 1 = H] \times \mathbb{P}[Coin \ 2 = H]$

• If the variables are not independent, we can't split the probability, e.g., $\mathbb{P}[rain AND \ clouds] = \mathbb{P}[rain] = \frac{1}{7} \gg \frac{1}{35} = \mathbb{P}[rain] \times \mathbb{P}[clouds]$

Rensselaer

Definition of Independence

- Events A and B are independent if "They have nothing to do with each other."
- Knowing the outcome is in B does not change the probability that the outcome is in A
- Formally, events A and B are *independent* if $\mathbb{P}[A \ AND \ B] = \mathbb{P}[A \cap B] = \mathbb{P}[A] \times \mathbb{P}[B]$
- Keep in mind that in general (regardless of independence): $\mathbb{P}[A \cap B] = \mathbb{P}[A|B] \times \mathbb{P}[B]$
- So independence means that

$$\mathbb{P}[A|B] = \mathbb{P}[A]$$

- Independence is a non-trivial assumption, and you can't always assume it.
- When you can assume independence

PROBABILITIES MULTIPLY

Fermi-Method: Chance of Reaching Troy from Albany

- In order to reach Troy from Albany, one needs to overcome many potential obstacles:
 - $A_1 = no \ flat \ tires$ $A_2 = avoid \ protruding \ manholes$ $A_3 = avoid \ accidentally \ going \ the \ wrong \ way$ $A_4 = avoid \ running \ out \ of \ gas$ $A_5 = avoid \ getting \ stuck \ in \ traffic \ due \ to \ road \ work$
- So $A = reach Troy = A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5$

All criteria must be met

• These are more or less independent events, so: $\mathbb{P}[A] = \mathbb{P}[A_1] \times \mathbb{P}[A_2] \times \mathbb{P}[A_3] \times \mathbb{P}[A_4] \times \mathbb{P}[A_5]$

- All events magically happen with the same probability of $\frac{364}{365}$

• So finally,

$$\mathbb{P}[reach \, Troy] = \left(\frac{364}{365}\right)^5 = 0.986$$

i.e., you should expect to not make it to Troy on 5 days/year

Multiway Independence

- When you have multiple events, independence can be tricky
- Suppose I have 3 fair coins. Here are all the outcomes:

Ω	ннн	ННТ	HTH	HTT	THH	THT	TTH	ТТТ
$\mathbb{P}[\omega]$	$\frac{1}{8}$							

• Suppose we have the following events:

 $A_1 = \{coins \ 1 \ and \ 2 \ match\} \\ A_2 = \{coins \ 2 \ and \ 3 \ match\} \\ A_3 = \{coins \ 1 \ and \ 3 \ match\}$

• What are their probabilities:

$$\mathbb{P}[A_1] = \mathbb{P}[A_2] = \mathbb{P}[A_3] = \frac{1}{2}$$

How about the pairwise conjunctions ("AND"s)?

$$\mathbb{P}[A_1 \cap A_2] = \mathbb{P}[A_2 \cap A_3] = \mathbb{P}[A_1 \cap A_3] = \frac{1}{4}$$

1

- So they are independent (e.g., $\mathbb{P}[A_1 \cap A_2] = \mathbb{P}[A_1] \times \mathbb{P}[A_2]$)

Multiway Independence, cont'd

- When you have multiple events, independence can be tricky
- Suppose I have 3 fair coins. Here are all the outcomes:

Ω	ННН	HHT	HTH	HTT	THH	THT	TTH	TTT
$\mathbb{P}[\omega]$	$\frac{1}{8}$							

• Suppose have the following events:

 $A_1 = \{coins \ 1 \ and \ 2 \ match\} \\ A_2 = \{coins \ 2 \ and \ 3 \ match\} \\ A_3 = \{coins \ 1 \ and \ 3 \ match\}$

- What are their probabilities: $\mathbb{P}[A_1] = \mathbb{P}[A_2] = \mathbb{P}[A_3] = \frac{1}{2}$
- How about the AND of all 3 events:

$$\mathbb{P}[A_1 \cap A_2 \cap A_3] = \frac{1}{4}$$

- not independent (why?)
- (1,2) match and (2,3) match \rightarrow (1,3) match.

Multiway Independence, cont'd

- Mutual independence for more than 2 events is stronger than just 2-way independence between all events!
- Formally, events $A_1, ..., A_n$ are **independent** if the probability of *any intersection* of distinct events is the *product* of the event-probabilities of those events, $\mathbb{P}[A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}] = \mathbb{P}[A_{i_1}] \times \mathbb{P}[A_{i_2}] \times \cdots \times \mathbb{P}[A_{i_k}]$
 - Distinct events don't have any outcomes in common

- Assume we have 200 students: $S = \{s_1, s_2, ..., s_{200}\}$
- Suppose I go in order. How many students do I need to ask until I find a FOCS-twin?
 - Assume birthdays are *independent* (no twins, triplets, etc.) and all birthdays are equally likely
- How do we go about computing the probability that at least two people were born on the same day?
 - We want the probability $\mathbb{P}[s_1, \dots, s_{200} \text{ have no } FOCS twin]$ (why?) $\mathbb{P}[at \text{ least one } FOCS - twin] = 1 - \mathbb{P}[s_1, \dots, s_{200} \text{ have no } FOCS - twin]$
 - I can start with s_1 . What is $\mathbb{P}[s_1 \text{ has no } FOCS twin]$?
 - Suppose s_1 was born on Jan. 1 (the actual date doesn't matter).
 - What is the probability that s_2 was not born on Jan. 1?

$$\mathbb{P}[s_2 \text{ not born on Jan. 1}] = \frac{365}{366}$$

- In general, what is the probability that all students weren't born on Jan. 1? $\mathbb{P}[s_2, ..., s_{200} \text{ not born on Jan. 1}] =$

 $= \mathbb{P}[s_2 \text{ not born on Jan. 1}] \times \cdots \times \mathbb{P}[s_{200} \text{ not born on Jan. 1}]$

- Assume we have 200 students: $S = \{s_1, s_2, ..., s_{200}\}$
- Suppose I go in order. How many students do I need to ask until I find a FOCS-twin?
 - Assume birthdays are *independent* (no twins, triplets, etc.) and all birthdays are equally likely
- How do we go about computing the probability that at least two people were born on the same day?
 - Probability that student s_1 has no FOCS twin

$$\mathbb{P}[s_1 \text{ has no FOCS} - twin] = \left(\frac{B-1}{B}\right)^{N-1} = \left(\frac{365}{366}\right)^{199}$$

• Now what about the next student? What is $\mathbb{P}[s_1, s_2 \text{ have no FOCS} - twin]$? - Let's use the definition of conditional probability $\mathbb{P}[s_1, s_2 \text{ have no FOCS} - twin] =$ $= \mathbb{P}[s_2 \text{ has no FOCS} - twin|s_1 \text{ has no FOCS} - twin] \times$ $\times \mathbb{P}[s_1 \text{ has no FOCS} - twin]$

- Assume we have 200 students: $S = \{s_1, s_2, ..., s_{200}\}$
- Suppose I go in order. How many students do I need to ask until I find a FOCS-twin?
 - Assume birthdays are *independent* (no twins, triplets, etc.) and all birthdays are equally likely
- How do we go about computing the probability that at least two people were born on the same day?
 - Probability that student s_1 has no FOCS twin

$$\mathbb{P}[s_1 \text{ has no FOCS} - twin] = \left(\frac{B-1}{B}\right)^{N-1} = \left(\frac{365}{366}\right)^{199}$$

• Now what about the next student? $\mathbb{P}[s_2 \text{ has no } FOCS - twin|s_1 \text{ has no } FOCS - twin] =$

$$= \left(\frac{B-2}{B-1}\right)^{N-2} = \left(\frac{364}{365}\right)^{198}$$

- The two birthdays are independent, but the events $A_1 = \{s_1 \text{ has no } FOCS twin\}$ and $A_2 = \{s_2 \text{ has no } FOCS twin\}$ are dependent!
 - s_1 constrains the values s_2 can take (can't equal s_1)

How do we go about computing the probability that at least two people were born on the same day?

$$\mathbb{P}[s_{1} \text{ has no FOCS} - twin] = \left(\frac{B-1}{B}\right)^{N-1} = \left(\frac{365}{366}\right)^{199}$$

$$\mathbb{P}[s_{2} \text{ has no FOCS} - twin|s_{1} \text{ has no FOCS} - twin] = \left(\frac{B-2}{B-1}\right)^{N-2} = \left(\frac{364}{365}\right)^{198}$$

$$\mathbb{P}[s_{3} \text{ has no FOCS} - twin|s_{1}, s_{2} \text{ have no FOCS} - twin] = \left(\frac{363}{364}\right)^{197}$$

$$\vdots$$

$$\mathbb{P}[s_{k} \text{ has no FOCS} - twin|s_{1}, \dots, s_{k-1} \text{ have no FOCS} - twin] = \left(\frac{366-k}{366-k+1}\right)^{200-k}$$

- Let's see what we can do with this information. We want $\mathbb{P}[s_1, \dots, s_k \text{ have no } FOCS twin]$
- How do we proceed?

٠

Rensselaer

• Let's see what we can do with this information. We want $\mathbb{P}[s_1, \dots, s_k \text{ have no } FOCS - twin]$ - Use the definition of conditional probability $\mathbb{P}[s_1, \dots, s_k \text{ have no } FOCS - twin] = \mathbb{P}[s_k \text{ has no } FOCS - twin|s_1, \dots, s_{k-1} \text{ have no } FOCS - twin] \times \\ \times \mathbb{P}[s_1, \dots, s_{k-1} \text{ have no } FOCS - twin] \times \\ \times \mathbb{P}[s_k \text{ has no } FOCS - twin|s_1, \dots, s_{k-1} \text{ have no } FOCS - twin] \times \\ \times \mathbb{P}[s_{k-1} \text{ has no } FOCS - twin|s_1, \dots, s_{k-2} \text{ have no } FOCS - twin] \times \\ \times \mathbb{P}[s_1, \dots, s_{k-2} \text{ have no } FOCS - twin] \times \\ \times \mathbb{P}[s_1, \dots, s_{k-2} \text{ have no } FOCS - twin] \times \\ \times \mathbb{P}[s_1, \dots, s_{k-2} \text{ have no } FOCS - twin] \times \\ \times \mathbb{P}[s_1, \dots, s_{k-2} \text{ have no } FOCS - twin] \times \\ \mathbb{P}[s_1 \text{ has no } FOCS - twin|s_1, \dots, s_{k-1} \text{ have no } FOCS - twin] \times \\ \mathbb{P}[s_1 \text{ has no } FOCS - twin|s_1 \text{ has no } FOCS - twin] \times \\ \mathbb{P}[s_1 \text{ has no } FOCS - twin|s_1 \text{ has no } FOCS - twin] \times \\ \mathbb{P}[s_1 \text{ has no } FOCS - twin] \times \\ \mathbb{P}[s_1 \text{ has no } FOCS - twin]$

• So,

$$\mathbb{P}[s_1, \dots, s_k \text{ have no FOCS} - twin] = \left(\frac{365}{366}\right)^{199} \times \left(\frac{364}{365}\right)^{198} \times \dots \times \left(\frac{366 - k}{366 - k + 1}\right)^{200 - k}$$

Probability goes up very quickly

Finding a FOCS-twin by the k th student with class size 200												
k	1	2	3	4	5	6	7	8	9	10	23	25
chances $(\%)$	42.0	66.3	80.4	88.6	93.3	96.1	97.7	98.7	99.2	99.5	99.999	100

The Birthday Paradox

- In a party of 50 people, what are the chances that two have the same birthday?
- Same as asking for

$$\mathbb{P}[s_1, \dots, s_{50} \text{ have no } FOCS - twin]$$

• Answer:

$$\mathbb{P}[no \ social \ twins] = \left(\frac{365}{366}\right)^{49} \times \left(\frac{364}{365}\right)^{48} \times \dots \times \left(\frac{315}{316}\right)^0 \approx 0.03$$

- Chances are about 97% that two people share a birthday!
- Moral: when *searching* for something among many options (1225 pairs of people), *do not be surprised* when you find it
 - Why 1225 pairs?

pairs =
$$\frac{50!}{2! \, 48!}$$

- Also known as the infinite monkey problem:
 - Given enough time "typing", a monkey will eventually type any given text, including the complete works of Shakespeare

Search and Hashing

- Search is a fundamental part of the modern internet
- It still the main part of Google's business
- To search fast, we need hashing
 - Comparing strings is waaay too slow
- Consider the 3 pages on the right

https://page.1

It snows too much in Troy

https://page.2

It snows more in Hamilton

https://page.3

It's always sunny in Philadelphia

- Google could just build a sorted list of each word, and the pages it appears in
 - How long would search take?
 - With binary search, $O(\log n)$
 - Too slow for large n, want O(1)

always	{page.3}
Hamilton	{page.2}
in	{page.1, page.2,page.3}
is	{page.3}
it	{page.1, page.2,page.3}
more	{page.2}
much	{page.1}
Philadelphia	{page.3}
snows	{page.1, page.2}
too	{page.1}
Тгоу	{page.1}

17

Search and Hashing, cont'd

- Instead of sorting, hash words into a table
 - For example, take a word, raise each letter to a large prime power, e.g., 17, and take the remainder w.r.t. another large prime, e.g., 11
- E.g., $HASH('Troy') = 20^{17} + 18^{17} + 15^{17} + 25^{17} \equiv 2 \pmod{11}$
- Then, when someone searches for Troy, hash and look up page number
- But

$$HASH('it') = 9^{17} + 20^{17} \equiv 2 \pmod{11}$$

- This is called a collision
 - Needs to be resolved, o.w. search fails
- Good hash function maps words independently and randomly.
- No collisions $\rightarrow O(1)$ search
 - (constant time, not log n)

https://page.2

It snows too much in Troy

https://page.1

It snows more in Hamilton

https://page.3

It's always sunny in Philadelphia

0	Hamilton \rightarrow {page.2}
1	
2	it \rightarrow {page.1,page.2,page.3}, Troy \rightarrow {page.1}
3	too \rightarrow {page.1}
4	always → {page.3}
5	
6	much \rightarrow {page.1}, sunny \rightarrow {page.3}
7	
8	in → {page.1, page.2, page.3}, snows → {page.1, page.2}, Philadelphia → {page.3}
9	
10	more \rightarrow {page.2}

Search and Hashing, cont'd

- There are many ways to resolve collisions
 - E.g., linear search
 - Won't discuss them in detail in this class
- We assume we're given a good hashing function
 - Talk to a number theory expert about various options

🕲 Rensselaer

• The two problems are surprisingly similar

Words $w_1, w_2, ..., w_N$ and Hashing \leftrightarrow Students $s_1, s_2, ..., s_N$ and Birthdays $w_1, ..., w_N$ hashed to rows $0, 1, ..., B - 1 \leftrightarrow s_1, ..., s_N$ born on days 0, 1, ..., B - 1No collisions, or hash-twins \leftrightarrow No FOCS-twins

- Example: Suppose you have N = 10 words w_1, w_2, \dots, w_{10}
 - Suppose B = 10 (hash table has as many rows as words)

$$\mathbb{P}[no \ collisions] = \left(\frac{9}{10}\right)^9 \times \left(\frac{8}{9}\right)^8 \times \dots \times \left(\frac{1}{2}\right)^1 \times \left(\frac{0}{1}\right)^0 \approx 0.0004$$

- Suppose B = 20 (hash table has twice as many rows as words)

$$\mathbb{P}[no\ collisions] = \left(\frac{19}{20}\right)^9 \times \left(\frac{18}{19}\right)^8 \times \dots \times \left(\frac{11}{12}\right)^1 \times \left(\frac{10}{11}\right)^0 \approx 0.07$$

В	10	20	30	40	50	60	70	80	90	100	500	1000
$\mathbb{P}[\text{no collisions}]$	0.0004	0.07	0.18	0.29	0.38	0.45	0.51	0.56	0.60	0.63	0.91	0.96

- B large enough \rightarrow chances of no collisions are high. How large should B be?
- **Theorem.** If $B \in \omega(n^2)$, then $\mathbb{P}[no \ collisions] \to 1$

Random Walk: What Are the Chances I Return Home?

- When I was in college (at Colgate), there were many foggy days
 - On one Thanksgiving, I was the only person on campus
 - I walked outside and immediately got lost (couldn't see anything)
 - If I randomly go left or right, what are the chances I get back home?

• First, construct the infinite outcome tree

- Sequences leading to home
 - L, RLL, RLRLL, RLRLRLL, RLRLRLL
 - Corresponding probabilities are $\frac{1}{2}$, $\left(\frac{1}{2}\right)^3$, $\left(\frac{1}{2}\right)^5$, $\left(\frac{1}{2}\right)^7$
- So, the sequences look like: $\mathbb{P}[(RL)^{\bullet i}L] = \left(\frac{1}{2}\right)^{2i+1}$

$$\mathbb{P}[home] = \frac{1}{2} + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^5 + \dots = \frac{\frac{1}{2}}{1 - \frac{1}{4}} = \frac{2}{3}$$

Random Walk: What Are the Chances I Return Home?

- A slick approach is to use the Law of Total Probability $\mathbb{P}[home] = \mathbb{P}[L] \cdot \mathbb{P}[home|L] + \mathbb{P}[RR] \cdot \mathbb{P}[home|RR] + \mathbb{P}[RL] \cdot \mathbb{P}[home|RL]$ $= \frac{1}{2} \times 1 + \frac{1}{4} \times 0 + \frac{1}{4} \mathbb{P}[home]$
- Solving for $\mathbb{P}[home]$, we get:

$$\left(1 - \frac{1}{4}\right) \mathbb{P}[home] = \frac{1}{2}$$
$$\mathbb{P}[home] = \frac{\frac{1}{2}}{1 - \frac{1}{4}} = \frac{2}{3}$$

A Random Walk at the Casino

- Suppose you go to the casino to play roulette
 - You start with \$2 and say you will quit if you make it \$4
 - You bet \$1 on red every time
 - i.e., a random walk with left/lose probability q and right/win probability p
 - What do you think will happen?
- Let P_i be the probability to win in the game if you have i (and TINKER!!)

$$P_{1} = qP_{0} + pP_{2} = pP_{2}$$
 [total probability]

$$P_{2} = qP_{1} + pP_{3} = qpP_{2} + pP_{3}$$

i.e., $P_{2} = \frac{pP_{3}}{1-qp}$

$$P_{3} = qP_{2} + pP_{4} = \frac{qpP_{3}}{1-qp} + p$$
 [$P_{4} = 1$ because we win]

$$P_{3} = \frac{p(1-pq)}{1-2pq}$$

A Random Walk at the Casino, cont'd

• Exercises.

- What if you are trying to double up from \$3?
 - (Answer: 77% chance of RUIN)
- What if you are trying to double up from \$10?
 - (Answer: 98% chance of RUIN)
- Suppose you have infinite money, and your goal is to win any positive amount or at least break even. You start by betting \$2 and keep doubling your bet every time you lose (or leave if you win). What happens then?

