Conditional Probability

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 16

Overview

- New information changes a probability
- Definition of conditional probability from regular probability
- Conditional probability traps
- Sampling bias
- Transposed conditional
- Law of total probability
- Probabilistic case-by-case analysis
- Suppose I told you that, in general, chances a random person has the flu is about 0.01 (or 1\%) (prior probability).
- Probability of flu:

$$
\mathbb{P}[f l u] \approx 0.01
$$

- Suppose now that you also have a slight fever
- This is new information. Chances of flu "increase".
- Suppose I know that the probability of flu given fever:

$$
\mathbb{P}[\text { flu } \mid \text { fever }] \approx 0.4
$$

- New information changes the prior probability to the posterior probability.
- Translate posterior as "After you get the new information."
- $\mathbb{P}[A \mid B]$ is the (updated) conditional probability of A, given the new information B
- Suppose also your roommate has flu (more new information).
- Flu almost surely!
- Probability of flu given fever and roommate flu:

$$
\mathbb{P}[f l u \mid \text { fever and rommate } f l u] \approx 1
$$

CS, MATH and Dual CS-MATH Majors

- Suppose RPI has 5000 students total, with 1000 in CS (vast underestimate!), 100 in MATH, 80 dual CS-MATH
- If you pick a random student from RPI, what's the chance the student is in CS

$$
\begin{gathered}
\mathbb{P}[C S]=\frac{1000}{5000}=0.2 \\
\mathbb{P}[M A T H]=\frac{100}{5000}=0.02 \\
\mathbb{P}[C S \text { and } M A T H]=\frac{80}{5000}=0.016
\end{gathered}
$$

- Suppose (after you picked the student), I told you the student is a MATH major
- New information. What is $\mathbb{P}[C S \mid M A T H]$?
- Effectively picking a random student from MATH
- New probability of CS ~ striped area $|C S \cap M A T H|$

$$
\mathbb{P}[C S \mid M A T H]=\frac{\mathbb{P}[C S \cap M A T H]}{\mathbb{P}[M A T H]}=\frac{80}{100}=0.8
$$

- MATH majors 4 times more likely to be CS majors than a random student.

Conditional Probability $\mathbb{P}[A \mid B]$

- Conditional probability is interpreted as follows:

$$
\mathbb{P}[A \mid B]=\text { frequency of outcomes known to be in } B \text { that are also in } A
$$

- Suppose event B contains n_{B} outcomes when you repeat an experiment n times:

$$
\mathbb{P}[B]=\frac{n_{B}}{n}
$$

- Of the n_{B} outcomes in B, the number also in A is $n_{A \cap B}$

$$
\mathbb{P}[A \cap B]=\frac{n_{A \cap B}}{n}
$$

- The frequency of outcomes in A among those outcomes in B is $n_{A \cap B} / n_{B}$

$$
\mathbb{P}[A \mid B]=\frac{n_{A \cap B}}{n_{B}}=\frac{n_{A \cap B}}{n} \times \frac{n}{n_{B}}=\frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}
$$

- The definition of conditional probability is then:

$$
\mathbb{P}[A \mid B]=\frac{n_{A \cap B}}{n_{B}}=\frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}=\frac{\mathbb{P}[A \text { and } B]}{\mathbb{P}[B]}
$$

Chance of Rain Given Clouds

- It is cloudy one in five days, $\mathbb{P}[$ Clouds $]=\frac{1}{5}$
- It rains one in seven days, $\mathbb{P}[$ Rain $]=\frac{1}{7}$
- What are the chances of rain on a cloudy day?
- Trick question!

$$
\mathbb{P}[\text { Rain } \mid \text { Clouds }]=\frac{\mathbb{P}[\text { Rain } \cap \text { Clouds }]}{\mathbb{P}[\text { Clouds }]}
$$

- We need to know $\mathbb{P}[$ Rain \cap Clouds $]$
- It is mostly safe to assume that $\{$ Rainy Days $\} \subseteq\{$ Cloudy Days $\}$
- This means that $\mathbb{P}[$ Rain \cap Clouds $]=\mathbb{P}[$ Rain $]$

$$
\mathbb{P}[\text { Rain } \mid \text { Clouds }]=\frac{\mathbb{P}[\text { Rain } \cap \text { Clouds }]}{\mathbb{P}[\text { Clouds }]}=\frac{\frac{1}{7}}{\frac{1}{5}}=\frac{5}{7}
$$

- 5-times more likely to rain on a cloudy day than on a random day.
- Crucial first step: identify the conditional probability. What is the "new information"?

Dicey Conditions

- Here's an odd question:
$\mathbb{P}[$ Sum of 2 dice is $10 \mid$ Both are Odd $]$
- Two dice have both rolled odd. What are the chances the sum is 10 ?
- First, write the definition of conditional probability

$$
\mathbb{P}[\text { Sum is } 10 \mid \text { Both are Odd }]=\frac{\mathbb{P}[(\text { Sum is } 10) \text { AND }(\text { Both are Odd })]}{\mathbb{P}[\text { Both are Odd }]}
$$

- What is the probability space?
- Let's get counting!
$\mathbb{P}[$ Sum is 10$]=\frac{3}{36}=\frac{1}{12}$
$\mathbb{P}[$ Both are $O d d]=\frac{9}{36}=\frac{1}{4}$

Dicey Conditions

- Here's an odd question:
$\mathbb{P}[$ Sum of 2 dice is $10 \mid$ Both are Odd $]$
- Two dice have both rolled odd. What are the chances the sum is 10 ?
- First, write the definition of conditional probability

$$
\mathbb{P}[\text { Sum is } 10 \mid \text { Both are Odd }]=\frac{\mathbb{P}[(\text { Sum is } 10) \text { AND }(\text { Both are Odd })]}{\mathbb{P}[\text { Both are Odd }]}
$$

- What is the probability space?
- Let's get counting!
$\mathbb{P}[$ Sum is 10$]=\frac{3}{36}=\frac{1}{12}$
$\mathbb{P}[$ Both are Odd $]=\frac{9}{36}=\frac{1}{4}$
$\mathbb{P}[($ Sum is 10) AND (Both are Odd $)]=\frac{1}{36}$
$\mathbb{P}[$ Sum is $10 \mid$ Both are Odd $]=\frac{1}{36} \div \frac{1}{4}=\frac{1}{9}$

Computing a Conditional Probability

1. Identify that you need a conditional probability $\mathbb{P}[A \mid B]$
2. Determine the probability space (Ω, \mathbb{P}) using the outcome-tree method
3. Identify the events A and B appearing in $\mathbb{P}[A \mid B]$ as subsets of Ω
4. Compute $\mathbb{P}[A \cap B]$ and $\mathbb{P}[B]$
5. Compute $\mathbb{P}[A \mid B]=\frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$

Monty Prefers Door 3

- Recall the Monty Hall outcome tree
- Suppose Monty prefers door 3
- What is the best strategy now?
- You should still switch
- Winning outcomes are the same! $\mathbb{P}[$ WinBySwitching $]=\frac{2}{3}$

$(1,2)$
$(3,2)$

$$
\begin{aligned}
& \mathbb{P}[(1,2)]=\frac{1}{9} \\
& \mathbb{P}[(1,3)]=\frac{2}{9} \\
& \mathbb{P}[(2,3)]=\frac{1}{3} \\
& \mathbb{P}[(3,2)]=\frac{1}{3}
\end{aligned}
$$

- Interestingly, you should feel better if you see Monty opening door 2!
- Intuitively, why is this true?
- Monty prefers door 3 , so if he opened 2 , then 3 very likely contains the prize!
$\mathbb{P}[$ Win \mid Monty Opens Door 2$]=\frac{\mathbb{P}[\text { Win AND Monty Opens Door } 2]}{\mathbb{P}[\text { Monty Opens Door } 2]}$

$$
=\frac{\frac{1}{3}}{\frac{1}{9}+\frac{1}{3}}=\frac{3}{4}
$$

- Your chances improved from $\frac{2}{3}$ to $\frac{3}{4}$!

A Pair of Slides

- Suppose I have to make 2 lecture slides in 2 minutes
- The probability of having a typo on a slide is 0.5
- What is the probability that both slides have typos?
- Answer: $\frac{1}{4}$
- What is the probability that both slides have typos given the additional information in each of the cases below?
- At least one slide contains a typo
- Answer: 1/3
$\mathbb{P}[2$ typos \mid at least 1 typo $]=\frac{\mathbb{P}[2 \text { typos AND at least } 1 \text { typo }]}{\mathbb{P}[\text { at least } 1 \text { typo }]}=\frac{\frac{1}{4}}{\frac{3}{4}}$
- The second slide has a typo
- Answer: 1/2 $\mathbb{P}[2$ typos \mid second slide has a typo $]=\frac{\mathbb{P}[2 \text { typos AND second slide has a typo }]}{\mathbb{P}[\text { second slide has a typo }]}=\frac{\frac{1}{4}}{\frac{1}{2}}$
- I made one of the slides during office hours and made a typo
- Answer: 1/2
$\mathbb{P}[2$ typos $\mid 1$ typo during OH$]=\frac{\mathbb{P}[2 \text { typos AND } 1 \text { typo during } \mathrm{OH}]}{\mathbb{P}[1 \text { typo during } \mathrm{OH}]}=\frac{\frac{1}{4}}{\frac{1}{2}}$
- I wanted to illustrate my typo-making process, so I showed one slide with a typo
- Answer: 1/3
$\mathbb{P}[2$ typos \mid at least 1 typo $]=\frac{\mathbb{P}[2 \text { typos AND at least } 1 \text { typo }]}{\mathbb{P} \text { [at least } 1 \text { typo }]}=\frac{\frac{1}{4}}{\frac{3}{4}}$
- Same question in each case, but with slightly different additional information. ${ }^{\overline{4}}$

Conditional Probability Traps

- These four probabilities are all different
$\mathbb{P}[A]$
$\mathbb{P}[A \mid B]$
$\mathbb{P}[B \mid A]$
$\mathbb{P}[A \cap B]$
- Be careful which one you use!!
- Sampling bias: Using $\mathbb{P}[A]$ instead of $\mathbb{P}[A \mid B]$
- Pollsters have a very tricky job when conducting surveys of public opinion
- How do they contact people (landline, cell phone, social media, snail mail?)
- Suppose you ask people "What is the probability that AI goes rogue?" and the only responses you get are through mail
- What value are you surveying?

$$
\mathbb{P}[\text { rogue } A I \mid \text { responder uses mail }]
$$

- This number is likely very different from $\mathbb{P}[$ rogue $A I]$
- Transposed conditional: using $\mathbb{P}[B \mid A]$ instead of $\mathbb{P}[A \mid B]$
- See book for the famous Lombard study

The Covid Test and Transposed Conditionals

- At-home antigen covid tests have different accuracy depending on the case
- If you have covid, the test will make a mistake ${ }^{\sim} 20 \%$ of the time
- If you don't have covid, the test will make a mistake ${ }^{\sim} 1 \%$ of the time
- Source: https://www.cochrane.org/CD013705/INFECTN_how-accurate-are-rapid-antigen-tests-diagnosing-covid-19
- Suppose you tested positive. What are the chances you actually have covid?
- If you don't have covid, the test is unlikely to be wrong, so you are likely sick
- It is wrong to look at $\mathbb{P}[$ positive \mid not Covid $]$. We already have this probability!
- We need $\mathbb{P}[$ not Covid|positive]

Covid Covid test Probability

The Covid Test and Transposed Conditionals

- It is wrong to look at $\mathbb{P}[$ positive|not Covid]. We already have this probability!
- We need $\mathbb{P}[$ not Covid|positive]

$$
\begin{aligned}
\mathbb{P}[\text { not Covid } \mid \text { positive }] & =\frac{\mathbb{P}[\text { not Covid AND YES }]}{\mathbb{P}[Y E S]} \\
& =\frac{0.9 \times 0.01}{0.1 \times 0.8+0.9 \times 0.01} \\
& \approx 10 \%
\end{aligned}
$$

- The less accurate test says YES but the chances are 90% that you have covid
- Two possibilities:
- You don't have covid (likely) and test made a mistake (very rare)
- You have covid (rare) and test was correct (likely). Wins!

Total Probability: Case by Case Probability

- Two types of outcomes in any event A :
- The outcomes in B (green)
- The outcomes not in B (red)

$$
\mathbb{P}[A]=\mathbb{P}[A \cap B]+\mathbb{P}[A \cap \bar{B}]
$$

- (Similar to sum rule from counting)
- (Also known as marginalization)
- From the definition of conditional probability:

$$
\begin{aligned}
& \mathbb{P}[A \cap B]=\mathbb{P}[A \text { AND } B]=\mathbb{P}[A \mid B] \times \mathbb{P}[B] \\
& \mathbb{P}[A \cap \bar{B}]=\mathbb{P}[A \text { AND } \bar{B}]=\mathbb{P}[A \mid \bar{B}] \times \mathbb{P}[\bar{B}]
\end{aligned}
$$

- Plugging these in (*), we get a FUNDAMENTAL result for case-by-case analysis
- LAW OF TOTAL PROBABILITY:

$$
\mathbb{P}[A]=\mathbb{P}[A \mid B] \times \mathbb{P}[B]+\mathbb{P}[A \mid \bar{B}] \times \mathbb{P}[\bar{B}]
$$

- (Weight conditional probabilities for each case by probabilities of each case and add.)

Three Coins: Two Are Fair, One is 2-Headed

- Pick a random coin and flip. What is the probability of H ?
- First, let's use the outcome-tree method as before

- What is the probability of H ?

$$
\mathbb{P}[H]=\frac{1}{3}+\frac{1}{6}+\frac{1}{6}=\frac{2}{3}
$$

Three Coins: Two Are Fair, One is 2-Headed, cont'd

- Pick a random coin and flip. What is the probability of H ?
- Now, let's use the law of total probability:
- Case 1. B: You picked one of the fair coins
- Case 2. \bar{B} : You picked the two-headed coin

$$
\begin{gathered}
\mathbb{P}[H]=\mathbb{P}[H \mid B] \times \mathbb{P}[B]+\mathbb{P}[H \mid \bar{B}] \times \mathbb{P}[\bar{B}] \\
=\frac{1}{2} \times \frac{2}{3}+1 \times \frac{1}{3}=\frac{2}{3}
\end{gathered}
$$

- Note that we don't have to draw the (potentially exponentially growing) outcome tree anymore
- Exercise. A box has 10 coins: 6 fair and 4 biased (probability of heads $\frac{2}{3}$). What is $\mathbb{P}[2$ heads $]$ in each case?
- Pick a single random coin and flip it 3 times.
- Flip 3 times. For each flip, pick a random coin, flip it and then put the coin back.

Fair Toss from Biased Coin (unknown probability p of heads)?

- Suppose I would like to use a biased coin in order to obtain a fair outcome
- The challenge is that I don't even know the probability of H or T for this coin
- How do I do it?
- One option would be to toss 10^{1000} times and estimate p
- A more pragmatic method is to notice that $\mathbb{P}\left[{ }^{\prime} h t^{\prime}\right]=\mathbb{P}\left[{ }^{\prime} t h^{\prime}\right]=p(1-p)$
- (Lower case ' h ' and ' t ' denote the outcomes of a toss.)
- This suggests that an H is as likely as a T .
- I can now design the following algorithm:

1. Make two tosses of the biased coin
2. If you get 'ht' output H ; 'th' output T ; otherwise RESTART.

Fair Toss from Biased Coin (unknown probability p of heads)?, cont'd

- Let's use the law of total probability to estimate the value of H output by our algorithm

$$
\begin{aligned}
\mathbb{P}[H] & =\mathbb{P}[H \mid \text { RESTART }] \cdot \mathbb{P}[\text { RESTART }]+\mathbb{P}\left[\left.H\right|^{\prime} h t^{\prime}\right] \cdot \mathbb{P}\left[\left[^{\prime} h t^{\prime}\right]+\mathbb{P}\left[\left.H\right|^{\prime} t h^{\prime}\right] \cdot \mathbb{P}\left[{ }^{\prime} t h^{\prime}\right]\right. \\
& =\mathbb{P}[H] \cdot\left(p^{2}+(1-p)^{2}\right)+1 \cdot p(1-p)+0 \cdot p(1-p) \\
& =\mathbb{P}[H] \cdot\left(p^{2}+(1-p)^{2}\right)+p(1-p)
\end{aligned}
$$

- Solve for $\mathbb{P}[H]$:

$$
\mathbb{P}[H]=\frac{p(1-p)}{1-\left(p^{2}+(1-p)^{2}\right)}=\frac{p(1-p)}{2 p-2 p^{2}}=\frac{p(1-p)}{2 p(1-p)}=\frac{1}{2}
$$

- (You can also solve this problem using an infinite outcome tree and computing an infinite sum.)

