Probability

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 15
- Computing probabilities
- Outcome tree
- Event of interest
- Examples with dice
- Probability and sets
- The probability space
- Uniform probability spaces
- Infinite probability spaces

Probability

The Chance of Rain Tomorrow is 40%

- What does the title mean? Either it will rain tomorrow or it won't.
- The chances are 50% that a fair coin-flip will be H .
- Flip 100 times. Approximately 50 will be H
- This is known as the frequentist view.
- As opposed to the Bayesian view, which comes with a prior assumption about the world
- e.g., coins are assumed fair unless we have sufficient evidence that they're not
- Consider the following scenarios
- You toss a fair coin 3 times. How many heads will you get?
- You keep tossing a fair coin until you get a head. How many tosses will you make?
- There's no answer. The outcome is uncertain. Probability handles such settings.

Birth of Mathematical Probability

- Antoine Gombaud, Chevalier de Méré: Should I bet even money on at least one 'double- 6 ' in 24 rolls of two dice? What about at least one 6 in 4 rolls of one die?
- Blaise Pascal: Interesting question. Let's bring Pierre de Fermat into the conversation.
- . . . a correspondence is ignited between these two mathematical giants

Toss Two Coins: You Win if the Coins Match (HH or TT)

- You are analyzing an "experiment" whose outcome is uncertain.
- Outcomes. Identify all possible outcomes using a tree of outcome sequences

- Edge probabilities. If one of k edges (options) from a vertex is chosen randomly then what edge-probability does each edge have?
$\frac{1}{k}$
- Outcome-probability. Multiply edge-probabilities to get outcome-probabilities.

Event of Interest

- Toss two coins: you win if the coins match (HH or TT)
- Question: When do you win?
- Event: Subset of outcomes where you win.
- Event-probability. Sum of its outcome-probabilities.

Coin 1

Coin 2
Outcome
Probability

$$
\text { event-probability }=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

- Probability that you win is $\frac{1}{2}$
- Written $\mathbb{P}\left[\right.$ "You Win"] $=\frac{1}{2}$
- Go and do this experiment at home. Toss two coins 1000 times and see how often you win.
- What do you think is the likelihood of winning 1000 times?
- Seems very unlikely
- Become familiar with this 6-step process for analyzing a probabilistic experiment.

1. You are analyzing an experiment whose outcome is uncertain.
2. Outcomes. Identify all possible outcomes, the tree of outcome sequences.
3. Edge-Probability. Each edge in the outcome-tree gets a probability.
4. Outcome-Probability. Multiply edge-probabilities to get outcome-probabilities.
5. Event of Interest \mathcal{E}. Determine the subset of the outcomes you care about.
6. Event-Probability. The sum of outcome-probabilities in the subset you care about.

$$
\mathbb{P}[\mathcal{E}]=\sum_{\text {outcomes } \omega \in \mathcal{E}} \mathbb{P}[\omega]
$$

$-\mathbb{P}[\mathcal{E}]$ frequency an outcome you want occurs over many repeated experiments.

- New notation: $\sum_{\text {outcomes } \omega \in \mathcal{E}} \mathbb{P}[\omega]$
- Suppose $\mathcal{E}=\{1,2,3\}$. Then

$$
\sum_{\text {comes }} \mathbb{P}[\omega]=\mathbb{P}[1]+\mathbb{P}[2]+\mathbb{P}[3]
$$

Let's Make a Deal: The Monty Hall Problem

1. Contestant at door 1.
2. Prize placed behind random door.
3. Monty opens empty door (randomly if there's an option).

- Outcome-tree and edge-probabilities

- Outcome-probabilities
- Event of interest: "WinBySwitching"
- Event probability

Outcome	Probability
$(1,2)$	$\mathbb{P}[(1,2)]=\frac{1}{6}$
$(1,3)$	$\mathbb{P}[(1,3)]=\frac{1}{6}$
$(2,3)$	$\mathbb{P}[(2,3)]=\frac{1}{3}$
$(3,2)$	$\mathbb{P}[(3,2)]=\frac{1}{3}$

Monty Hall, cont'd

- You might be thinking "This is a hoax! Doors are chosen randomly, what is this weird math we're learning?"
- But opened doors actually reveal a lot of information!
- Let's make the probabilities radically obvious
- Suppose there are 1000 doors (still 1 prize)
- You pick door 1, and Monty opens 998 wrong doors!
- Let's look the outcome tree

You win by switching $\frac{999}{1000}$ times!

Non-Transitive 3-Sided Dice

- Consider the following 3 dice

$A:\{\oplus:$:

- Notice that A rolls higher than B more than half the time and B rolls higher than C more than half the time
- But C rolls higher than A more than half the time! (weird probabilities...)
- Called non-transitive dice (why?)
- (transitive means $A \geq B \cap B \geq C \rightarrow A \geq C$)
- Dice from course 6.042J, ocw.mit.edu. See also Wikipedia, non-transitive dice
- Let's investigate this in detail!
- Your friend picks a die and then you pick a die.
- E.g. friend picks B and then you pick A
- What is the probability that A beats B ?

Non-Transitive 3-Sided Dice, cont'd

- Consider the following 3 dice

$$
A:\{\because: B\}, B:\{\bullet \because: \because: B, C:\{\therefore: B: B\}
$$

- What is the probability that A beats B ?
- Outcome-tree and outcome-probabilities.
- Uniform probabilities.
- Event of interest: outcomes where A wins
- Number of outcomes where A wins: 5
- $\mathbb{P}[A$ beats $B]=\frac{5}{9}$
- Conclusion: Die A beats Die B

Probability and Sets：The Probability Space

－Sample Space $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ ，set of possible outcomes
－Probability Function \mathbb{P} ．Non－negative function $\mathbb{P}[\omega]$ ，normalized to 1 ：

$$
0 \leq \mathbb{P}[\omega] \leq 1 \quad \text { AND } \quad \sum_{\omega \in \Omega} \mathbb{P}[\omega]=1
$$

（Die A versus B ）	Ω	－\cdot	［日	－$\square^{\text {P }}$	里	田	田禺	…0．	洄：	…0％
$\mathbb{P}(\omega)$		$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	1	$\frac{1}{9}$	1	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
		9	9	$\overline{9}$						

－Events $\mathcal{E} \subseteq \Omega$ are subsets．Event probability $\mathbb{P}[\mathcal{E}]$ is the sum of outcome－probabilities
－Combining events using logical connectors corresponds to set operations：

$$
\begin{aligned}
& \text { " } A>B \text { " } \rightarrow \text { " } B<9 \text { " } \quad \mathcal{E}_{1} \subseteq \mathcal{E}_{3}
\end{aligned}
$$

Important Probability Exercise

- Exercise 15.10. Sum rule, complement, inclusion-exclusion, union, implication and intersection bounds.

Uniform Probability Space: Probability ~ Size

- So far, we've mostly looked at uniform probability spaces
- Each individual outcome has the same probability
- Fair coin, fair dice, uniform price placement in the Monty Hall Problem
- Formally, each outcome ω has probability

$$
\mathbb{P}[\omega]=\frac{1}{|\Omega|}
$$

- Each event \mathcal{E} has probability

$$
\mathbb{P}[\mathcal{E}]=\frac{|\mathcal{E}|}{|\Omega|}=\frac{\text { number of outcomes in } \mathcal{E}}{\text { number of possible outcomes } \text { in } \Omega}
$$

Uniform Probability Space Example

- Toss a coin 3 times

- What is $\mathbb{P}[" 2$ heads"]?

$$
\mathbb{P}[2 \text { heads }]=\frac{\text { number of sequences with } 2 \text { heads }}{\text { number of possible sequences in } \Omega}=\binom{3}{2} \times \frac{1}{8}=\frac{3}{8}
$$

- Practice: Exercise 15.11.
- You roll a pair of regular dice. What is the probability that the sum is 9 ?
- You toss a fair coin ten times. What is the probability that you obtain 4 heads?
- You roll die A ten times. Compute probabilities for: 4 sevens? 4 sevens and 3 sixes? 4 sevens or 3 sixes?

Poker: Probabilities of Full House and Flush

- 52-card deck has 4 suits (H,C,S,D) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2)
- I often wonder: why does full house beat flush?
- Randomly deal 5 cards: each set is equally likely \rightarrow uniform probability space

$$
\text { number of possible outcomes }=\binom{52}{5} \text { possible hands }
$$

- Full house: 3 cards of one rank and 2 of another.
- How many full-houses are there?
- To construct a full house, specify $\left(\right.$ rank $_{3}$, suit $_{3}$, rank $_{2}$, suit $\left.{ }_{2}\right)$.
- Count all combinations using the product rule:

$$
\# \text { full houses }=13 \times\binom{ 4}{3} \times 12 \times\binom{ 4}{2}
$$

- The probability of getting a full house is then:

$$
\frac{13 \times\binom{ 4}{3} \times 12 \times\binom{ 4}{2}}{\binom{52}{5}} \approx 0.00144
$$

Poker: Probabilities of Full House and Flush

- 52 card deck has 4 suits (H,C,S,D) and 13 ranks in a suit (A,K, $\mathrm{Q}, \mathrm{J}, \mathrm{T}, 9,8,7,6,5,4,3,2$)
- I often wonder: why does full house beat flush?
- Randomly deal 5 cards: each set is equally likely \rightarrow uniform probability space

$$
\text { number of possible outcomes }=\binom{52}{5} \text { possible hands }
$$

- Full house: 3 cards of one rank and 2 of another.
- The probability of getting a full house is: 0.00144
- Flush: 5 cards of same suit.
- How many flushes are there?
- To construct a flush, specify (suit, ranks). Using the product rule:

$$
\# \text { flushes }=4 \times\binom{ 13}{5}
$$

- The probability of getting a flush is then:

$$
\frac{4 \times\binom{ 13}{5}}{\binom{52}{5}} \approx 0.00198
$$

Full house is rarer!
That's why full house beats flush!

Toss a Coin Until Heads: Infinite Probability Space

- Suppose you would like to know how many tosses it will take until you get a H

Toss 1
Toss 2
Toss 3
Toss 4
Toss 5
Toss 6

H
$\frac{1}{2}$

TH
$\frac{1}{4}$

TTH $\frac{1}{8}$

TTTH $\frac{1}{16}$

TTTTH
$\frac{1}{32}$

TTTTTH
$\frac{1}{64}$

- Hm, seems like the probabilities are halved after each additional T

Ω	H	$T H$	$T^{\bullet 2} H$	$T^{\bullet 3} H$	$T^{\bullet 4} H$	\ldots	$T^{\bullet i} H$
$P(\omega)$	$\frac{1}{2}$	$\left(\frac{1}{2}\right)^{2}$	$\left(\frac{1}{2}\right)^{3}$	$\left(\frac{1}{2}\right)^{4}$	$\left(\frac{1}{2}\right)^{5}$	\ldots	$\left(\frac{1}{2}\right)^{i+1}$
\# Tosses	1	2	3	4	5	\ldots	

Toss a Coin Until Heads: Infinite Probability Space

- Hm, seems like the probabilities are halved after each additional T

Ω	H	$T H$	$T^{\bullet 2} H$	$T^{\bullet 3} H$	$T^{\bullet 4} H$	\ldots	$T^{\bullet i} H$
$P(\omega)$	$\frac{1}{2}$	$\left(\frac{1}{2}\right)^{2}$	$\left(\frac{1}{2}\right)^{3}$	$\left(\frac{1}{2}\right)^{4}$	$\left(\frac{1}{2}\right)^{5}$	\ldots	$\left(\frac{1}{2}\right)^{i+1}$
\# Tosses	1	2	3	4	5	\ldots	

- Sum of outcome probabilities (for sanity checking purposes):

$$
\begin{aligned}
\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots & = \\
& =\frac{1}{2} \sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i} \\
& =\frac{1}{2} \frac{1}{1-\frac{1}{2}}=1
\end{aligned}
$$

Game: First Person to Toss H Wins. Always Go First!

- Look at the relevant outcomes in the table if you go first:

Ω	\boldsymbol{H}	$T H$	$T^{2} H$	$T^{\cdot 3} H$	$T^{4} H$	\ldots	$T^{4} H$
$P(\omega)$	$\frac{1}{2}$	$\left(\frac{1}{2}\right)^{2}$	$\left(\frac{1}{2}\right)^{3}$	$\left(\frac{1}{2}\right)^{4}$	$\left(\frac{1}{2}\right)^{5}$	\ldots	$\left(\frac{1}{2}\right)^{i+1}$

- The event "YouWin" is $\mathcal{E}=\left\{H, T^{\bullet 2} H, T^{\bullet 4} H, \ldots\right\}$

$$
\begin{aligned}
\mathbb{P}[\text { YouWin }]=\frac{1}{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{5}+\cdots=\frac{1}{2} \sum_{i=0}^{\infty}\left(\frac{1}{4}\right)^{i} & = \\
& =\frac{1}{2} \frac{1}{1-\frac{1}{4}}=\frac{2}{3}
\end{aligned}
$$

- Your odds improve by a factor of 2 if you go first (vs. second).

