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Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 15
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Overview

• Computing probabilities

– Outcome tree

– Event of interest

– Examples with dice

• Probability and sets

– The probability space

• Uniform probability spaces

• Infinite probability spaces
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Probability
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The Chance of Rain Tomorrow is 40%

• What does the title mean? Either it will rain tomorrow or it won’t.

– The chances are 50% that a fair coin-flip will be H.

– Flip 100 times. Approximately 50 will be H 

• This is known as the frequentist view.

• As opposed to the Bayesian view, which comes with a prior assumption 
about the world

– e.g., coins are assumed fair unless we have sufficient evidence that 
they’re not

• Consider the following scenarios

– You toss a fair coin 3 times. How many heads will you get?

– You keep tossing a fair coin until you get a head. How many tosses will you 
make?

• There’s no answer. The outcome is uncertain. Probability handles such settings.
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Birth of Mathematical Probability

• Antoine Gombaud, Chevalier de Méré: Should I bet even money on at least one 
‘double-6’ in 24 rolls of two dice? What about at least one 6 in 4 rolls of one die?

• Blaise Pascal: Interesting question. Let’s bring Pierre de Fermat into the 
conversation.

– . . . a correspondence is ignited between these two mathematical giants
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Toss Two Coins: You Win if the Coins Match 

(HH or TT)

• You are analyzing an “experiment” whose outcome is uncertain.

• Outcomes. Identify all possible outcomes using a tree of outcome sequences

• Edge probabilities. If one of 𝑘 edges (options) from a vertex is chosen randomly 
then what edge-probability does each edge have?

1

𝑘

• Outcome-probability. Multiply edge-probabilities to get outcome-probabilities.
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Event of Interest

• Toss two coins: you win if the coins match (HH or TT)

• Question: When do you win? 

• Event: Subset of outcomes where you win.

• Event-probability. Sum of its outcome-probabilities.

event-probability = 
1

4
+

1

4
=

1

2

• Probability that you win is 
1

2

– Written ℙ "𝑌𝑜𝑢 𝑊𝑖𝑛" =
1

2

• Go and do this experiment at home. Toss two coins 1000 times and see how often 
you win.

– What do you think is the likelihood of winning 1000 times?

– Seems very unlikely
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The Outcome-Tree Method

• Become familiar with this 6-step process for analyzing a probabilistic experiment.

1. You are analyzing an experiment whose outcome is uncertain.

2. Outcomes. Identify all possible outcomes, the tree of outcome sequences.

3. Edge-Probability. Each edge in the outcome-tree gets a probability.

4. Outcome-Probability. Multiply edge-probabilities to get outcome-probabilities.

5. Event of Interest ℰ. Determine the subset of the outcomes you care about.

6. Event-Probability. The sum of outcome-probabilities in the subset you care about.

ℙ[ℰ] = 

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝜔∈ℰ

ℙ[𝜔]

– ℙ[ℰ] frequency an outcome you want occurs over many repeated experiments.

– New notation: σ𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝜔∈ℰ ℙ[𝜔]

• Suppose ℰ = {1,2,3}. Then



𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝜔∈ℰ

ℙ[𝜔] = ℙ 1 + ℙ 2 + ℙ 3
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Let’s Make a Deal: The Monty Hall Problem

1. Contestant at door 1.

2. Prize placed behind random door.

3. Monty opens empty door (randomly if there’s an option).

• Outcome-tree and edge-probabilities

• Outcome-probabilities

• Event of interest: “WinBySwitching”

• Event probability
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Monty Hall, cont’d

• You might be thinking “This is a hoax! Doors are chosen randomly, what is this weird 
math we’re learning?” 

• But opened doors actually reveal a lot of information!

• Let’s make the probabilities radically obvious

– Suppose there are 1000 doors (still 1 prize)

• You pick door 1, and Monty opens 998 wrong doors!

– Let’s look the outcome tree
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Non-Transitive 3-Sided Dice

• Consider the following 3 dice

𝐴:  , 𝐵:  , 𝐶: { }

• Notice that 𝐴 rolls higher than 𝐵 more than half the time and 𝐵 rolls higher than 𝐶 
more than half the time

– But 𝐶 rolls higher than 𝐴 more than half the time ! (weird probabilities…)

– Called non-transitive dice (why?)

• (transitive means 𝐴 ≥ 𝐵 ∩ 𝐵 ≥ 𝐶 → 𝐴 ≥ 𝐶)

– Dice from course 6.042J, ocw.mit.edu. See also Wikipedia, non-transitive dice

• Let’s investigate this in detail!

– Your friend picks a die and then you pick a die.

– E.g. friend picks 𝐵 and then you pick 𝐴

• What is the probability that 𝐴 beats 𝐵?
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Non-Transitive 3-Sided Dice, cont’d

• Consider the following 3 dice

𝐴:  , 𝐵:  , 𝐶: { }

• What is the probability that 𝐴 beats 𝐵?

• Outcome-tree and outcome-probabilities.

• Uniform probabilities.

• Event of interest: outcomes where 𝐴 wins

• Number of outcomes where 𝐴 wins: 5

• ℙ 𝐴 𝑏𝑒𝑎𝑡𝑠 𝐵 =
5

9

• Conclusion: Die 𝐴 beats Die 𝐵
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(Die 𝐴 versus 𝐵)           Ω
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Probability and Sets: The Probability Space

• Sample Space Ω = {𝜔1, 𝜔2, … }, set of possible outcomes

• Probability Function ℙ. Non-negative function ℙ[𝜔], normalized to 1:

0 ≤ ℙ 𝜔 ≤ 1    AND    σ𝜔∈Ω ℙ 𝜔 = 1

• Events ℰ ⊆ Ω are subsets. Event probability ℙ ℰ  is the sum of outcome-probabilities

“𝐴 > 𝐵”     ℰ1 = { ,  ,  ,  ,  }

“Sum > 8”   ℰ2 =  ,  ,  ,  , 

      “𝐵 < 9”     ℰ3 =  ,  ,  ,  ,  , 

• Combining events using logical connectors corresponds to set operations:

                      “𝐴 > 𝐵 ∨ Sum > 8”     ℰ1 ∪ ℰ2 =  ,  ,  ,  ,  ,  ,  , 

“𝐴 > 𝐵 ∧ Sum > 8”     ℰ1 ∩ ℰ2 =  , 

   ¬(“𝐴 > 𝐵”) ℰ1 =  ,  ,  , 

“𝐴 > 𝐵” → “𝐵 < 9” ℰ1 ⊆ ℰ3 
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Important Probability Exercise

• Exercise 15.10. Sum rule, complement, inclusion-exclusion, union, implication and 
intersection bounds.
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Uniform Probability Space: Probability ~ Size

• So far, we’ve mostly looked at uniform probability spaces

– Each individual outcome has the same probability

– Fair coin, fair dice, uniform price placement in the Monty Hall Problem

• Formally, each outcome 𝜔 has probability

ℙ 𝜔 =
1

|Ω|

• Each event ℰ has probability 

ℙ ℰ =
|ℰ|

|Ω|
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑖𝑛 ℰ

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑖𝑛 Ω
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Uniform Probability Space Example

• Toss a coin 3 times

• What is ℙ["2 ℎ𝑒𝑎𝑑𝑠"]?

ℙ 2 ℎ𝑒𝑎𝑑𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 2 ℎ𝑒𝑎𝑑𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 Ω
=

3
2

×
1

8
=

3

8

• Practice: Exercise 15.11.

– You roll a pair of regular dice. What is the probability that the sum is 9?

– You toss a fair coin ten times. What is the probability that you obtain 4 heads?

– You roll die 𝐴 ten times. Compute probabilities for: 4 sevens? 4 sevens and 3 
sixes? 4 sevens or 3 sixes?
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Poker: Probabilities of Full House and Flush

• 52-card deck has 4 suits (H,C,S,D) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2)

– I often wonder: why does full house beat flush?

• Randomly deal 5 cards: each set is equally likely → uniform probability space

number of possible outcomes =
52
5

 possible hands

• Full house: 3 cards of one rank and 2 of another. 

– How many full-houses are there?

– To construct a full house, specify (𝑟𝑎𝑛𝑘3, 𝑠𝑢𝑖𝑡3, 𝑟𝑎𝑛𝑘2, 𝑠𝑢𝑖𝑡2). 

– Count all combinations using the product rule:

# 𝑓𝑢𝑙𝑙 ℎ𝑜𝑢𝑠𝑒𝑠 = 13 ×
4
3

× 12 ×
4
2

– The probability of getting a full house is then:

13 ×
4
3

× 12 ×
4
2

52
5

≈ 0.00144
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Poker: Probabilities of Full House and Flush

• 52 card deck has 4 suits (H,C,S,D) and 13 ranks in a suit (A,K,Q,J,T,9,8,7,6,5,4,3,2)

– I often wonder: why does full house beat flush?

• Randomly deal 5 cards: each set is equally likely → uniform probability space

number of possible outcomes =
52
5

 possible hands

• Full house: 3 cards of one rank and 2 of another. 

– The probability of getting a full house is: 0.00144

• Flush: 5 cards of same suit. 

– How many flushes are there?

– To construct a flush, specify (𝑠𝑢𝑖𝑡, 𝑟𝑎𝑛𝑘𝑠). Using the product rule:

# 𝑓𝑙𝑢𝑠ℎ𝑒𝑠 = 4 ×
13
5

– The probability of getting a flush is then:

4 ×
13
5

52
5

≈ 0.00198
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Full house is rarer! 
That’s why full house 
beats flush!



Toss a Coin Until Heads: Infinite Probability 

Space

• Suppose you would like to know how many tosses it will take until you get a H

• Hm, seems like the probabilities are halved after each additional T
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Toss a Coin Until Heads: Infinite Probability 

Space

• Hm, seems like the probabilities are halved after each additional T

• Sum of outcome probabilities (for sanity checking purposes):

1

2
+

1

2

2

+
1

2

3

+ ⋯ = 

=
1

2


𝑖=0

∞
1

2

𝑖

 

=
1

2

1

1 −
1
2

= 1 
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Game: First Person to Toss H Wins. 

Always Go First!

• Look at the relevant outcomes in the table if you go first:

• The event “YouWin” is ℰ = 𝐻, 𝑇•2𝐻, 𝑇•4𝐻, …

ℙ 𝑌𝑜𝑢𝑊𝑖𝑛 =
1

2
+

1

2

3

+
1

2

5

+ ⋯ =
1

2


𝑖=0

∞
1

4

𝑖

= 

 =
1

2

1

1 −
1
4

=
2

3

– Your odds improve by a factor of 2 if you go first (vs. second).
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