Advanced Counting

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 14
- Sequences with repetition
- Anagrams
- Inclusion-exclusion: extending the sum-rule to overlapping sets
- Derangements
- Pigeonhole principle
- Social twins
- Subset sums

Selecting \boldsymbol{k} from \boldsymbol{n} Distinguishable Objects

- Last time we saw the number of ways to select k from n objects in the following settings:

1. k-sequence with repetition:

$$
n^{k}
$$

2. k-sequence without repetition (permutations):

$$
\frac{n!}{(n-k)!}
$$

3. k-subset with repetition (candy selection problem):

$$
\binom{n+k-1}{k-1}
$$

4. k-subset without repetition (combinations):

$$
\frac{n!}{(n-k)!k!}
$$

- How about a sequences that contain a specific number per object type?
- E.g., 5 red candies, 4 blue candies, 3 green candies
- Known as $\left(k_{1}, k_{2}, \ldots, k_{r}\right)$-sequences

Selecting \boldsymbol{k} from \boldsymbol{n} Distinguishable Objects, cont'd

- How about sequences that contain a specific number per object type?
- E.g., 5 red candies, 4 blue candies, 3 green candies
- Known as $\left(k_{1}, k_{2}, \ldots, k_{r}\right)$-sequences
- How do we count this weird set?
- Look at all possible positions for each candy type
- First, count all possible ways to place red candies. How many is that?

- How many ways can we place the remaining blue candies?
- We have 7 remaining slots and 4 candies, so $\binom{7}{4}$

- Finally, we have 3 remaining slots and 3 green candies: $\binom{3}{3}$

Selecting \boldsymbol{k} from \boldsymbol{n} Distinguishable Objects, cont'd

- How about a sequences that contain a specific number per object type?
- E.g., 5 red candies, 4 blue candies, 3 green candies
- Known as ($k_{1}, k_{2}, \ldots, k_{r}$)-sequences
- The final number of ways we can order the candies is:

$$
\begin{aligned}
\binom{12}{5,4,3} & =\binom{12}{5} \times\binom{ 7}{4} \times\binom{ 3}{3} \\
& =\frac{12!}{5!7!} \times \frac{7!}{3!4!} \times \frac{3!}{0!3!}=\frac{12!}{5!4!3!}
\end{aligned}
$$

Anagrams: All "Words" Using the Letters AARDVARK

- A sequence of 8 letters: 3 A's, 2 R's, 1 D, 1 V, 1 K
- How many sequences is that?
- Number of such sequences is

Source: wikipedia

$$
\binom{8}{3,2,1,1,1}=\frac{8!}{3!2!1!1!1!}=3360
$$

- Exercise. What is the coefficient of $x^{2} y^{3} z^{4}$ in the expansion of $(x+y+z)^{9}$?
- [Hint: Sequences of length 9 (why?) with $2 x$'s, $3 y^{\prime}$ s and $4 z$'s.]

Extending the Sum Rule to Overlapping Sets

- What is the size of $|A \cup B|$?

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

- Breaks $A \cup B$ into smaller subsets
- Example. How many numbers in $1, \ldots, 10$ are divisible by 2 or 5 ?

$A=$ \{numbers divisible by 2$\} . \quad|A|=5$.
- If the sequence contains n numbers, what is the general formula for $|A|$?
- TINKER! Suppose n is even (as above):

$$
|A|=\frac{n}{2}
$$

- TINKER! Suppose n is odd:

$$
|A|=\frac{n-1}{2}
$$

- We can write this using the short-hand notation $|A|=\left\lfloor\frac{10}{2}\right\rfloor$
- The floor $\lfloor x\rfloor$ function returns the largest integer $n \leq x$

Extending the Sum Rule to Overlapping Sets

- What is the size of $|A \cup B|$?

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

- Breaks $A \cup B$ into smaller subsets
- Example. How many numbers in $1, \ldots, 10$ are divisible by 2 or 5 ?

$A=$ \{numbers divisible by 2$\} . \quad|A|=5 . \quad\left(|A|=\left\lfloor\frac{10}{2}\right\rfloor\right)$
$B=$ \{numbers divisible by 5$\} . \quad|B|=2$.
- If the sequence contains n numbers, what is the general formula for $|B|$?
- TINKER! Suppose n is divisible by 5 (as above):

$$
|B|=\frac{n}{5}
$$

- TINKER! Suppose n is not divisible by 5 :

$$
|B|=\frac{n_{5^{-}}}{5}
$$

- Inventing notation: $n_{5^{-}}$is the largest integer s.t. $5 \mid n_{5^{-}}$AND $n_{5^{-}}<n$
- Notice that once again $|B|=\left\lfloor\frac{10}{5}\right\rfloor$
- when n not divisible by $5, \frac{n_{5}-}{5}<\frac{n}{5}<\frac{n_{5^{+}}}{5}$

Extending the Sum Rule to Overlapping Sets

- What is the size of $|A \cup B|$?

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

- Breaks $A \cup B$ into smaller subsets
- Example. How many numbers in $1, \ldots, 10$ are divisible by 2 or 5 ?
$A=$ \{numbers divisible by 2$\} . \quad|A|=5 . \quad\left(|A|=\left\lfloor\frac{10}{2}\right\rfloor\right)$
$B=$ \{numbers divisible by 5$\} . \quad|B|=2 . \quad\left(|B|=\left\lfloor\frac{10}{5}\right\rfloor\right)$
$A \cap B=\{$ numbers divisible by 2 AND 5$\} . \quad|A \cap B|=1 . \quad\left(|A \cap B|=\left\lfloor\frac{10}{\operatorname{lcm(2,5)}\rfloor)}\right.\right.$
- (verify that the lcm is indeed the number we want above!)
$A \cup B=$ \{numbers divisible by 2 OR 5\}

$$
|A \cup B|=|A|+|B|-|A \cap B|=5+2-1=6
$$

Inclusion-Exclusion

- What about a union of three sets:

$$
\left|A_{1} \cup A_{2} \cup A_{3}\right|
$$

- Looking at the disjoint sets in the picture, I claim that the formula is: $\left|A_{1} \cup A_{2} \cup A_{3}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right|-\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right|$
- Why?
- Avoid double-counting: start from largest set, then subtract overlap, then add back the overlap of the subtracted, etc.
- Proof sketch. Consider $x \in A_{2} \cap A_{3}$. How many times is x counted?

$$
\begin{gathered}
\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right|-\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right| \\
0+1+1-0-0-1+0
\end{gathered}
$$

- Contribution of x to sum is +1 . Repeat for each region.
- Should be true for each region. Means there's no double-counting.

Inclusion-Exclusion, cont'd

- Example. Give 3 coats to 3 people so that no one gets their coat. How many ways?
- How do we split the sets?

$$
A_{i}=\{\text { person } i \text { gets their coat }\},\left|A_{i}\right|=2!
$$

- Why? (position i is fixed)

$$
A_{i j}=\{\text { people } i \text { and } j \text { get their coats }\},\left|A_{i j}\right|=1 \text { ! }
$$

- Why? (positions i and j are fixed)

$$
A_{123}=\{\text { people } 1,2 \text { and } 3 \text { get their coats }\},\left|A_{123}\right|=1
$$

- All positions are fixed

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup A_{3}\right| & =\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{12}\right|-\left|A_{13}\right|-\left|A_{23}\right|+\left|A_{123}\right| \\
& =2+2+2-1-1-1+1=4
\end{aligned}
$$

- The answer we seek is 3 ! $-4=2$
- Why?
- How big is the set of all possible coat assignments?

$$
3 \times 2 \times 1=3!
$$

- Subtract from those the set $A=$ \{at least one person has their coat on $\}$

$$
A=A_{1} \cup A_{2} \cup A_{3}
$$

- Exercise. How many numbers in $1, \ldots, 100$ are divisible by 2,3 or 5 ?

Inclusion-Exclusion, cont'd

- What about the general formula:

$$
\left|A_{1}+A_{2}+\cdots+A_{n}\right|
$$

- It seems that
$\left|A_{1}+A_{2}+\cdots+A_{n}\right|=$

$$
\begin{aligned}
& =\left(\left|A_{1}\right|+\cdots+\left|A_{n}\right|\right) \\
& -\left(\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|+\cdots+\left|A_{n-1} \cap A_{n}\right|\right) \\
& +\left(\left|A_{1} \cap A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{3} \cap A_{4}\right|+\cdots+\left|A_{n-2} \cap A_{n-1} \cap A_{n}\right|\right)
\end{aligned}
$$

- Claim:

$$
\left|A_{1}+A_{2}+\cdots+A_{n}\right|=\sum_{k=1}^{n}(-1)^{k+1} \times[\text { sum of all } k \text {-way intersection sizes }]
$$

- Proof sketch. Suppose x lies in r sets.
- How many 1-way intersections contain x ?
- How many 2-way intersections contain x ?
- Verify that x contributes only 1 to the full sum.

Pigeonhole Principle

- If you have more guests than spare rooms, then some guests will have to share

- More pigeons than pigeonholes
- Theorem. A pigeonhole has two or more pigeons (if there are more pigeons than pigeonholes).
- Proof. (By contraposition). Suppose no pigeonhole has 2 or more pigeons.
- Let x_{i} be the number of pigeons in hole $i, x_{i} \leq 1$.

$$
\text { number of pigeons }=\sum_{i} x_{i} \leq \sum_{i} 1=\text { number of pigeonholes }
$$

Every Graph Has at Least One Pair of Social Twins

- Two nodes are social twins if they have the same degree.
- Consider a connected graph
- What are the nodes' degrees?

- What if we had a graph with 0-degree nodes?
- Exclude that node and only consider the connected sub-graph
- Degrees $1,2, \ldots,(n-1)$, are the pigeonholes
- Vertices $v_{1}, v_{2}, \ldots, v_{n}$, are the pigeons
- There are n pigeons and $(n-1)$ pigeonholes, so at least two vertices are in the same degree-bin
- This proof is not very satisfactory (why?)
- Who are those social twins? What are their degrees?
- Known as a non-constructive proof

Non-Constructive Proof and the Eye-Spy Dilemma

- Non-constructive proofs are not always desirable
- A non-constructive proof that $\mathrm{P}=\mathrm{NP}$ is almost useless
- Sure, we know that they are equal, but that still doesn't tell us how to factor numbers
- Sometimes non-constructive proofs can be valuable
- Password checking is a type of non-constructive proof
- You enter your password and you get a "yes/no" answer
- A "no" answer doesn't leave you any the wiser as to the true password

Non-Constructive Proof and the Eye-Spy Dilemma, cont'd

- Can you find the cat in this image?

Non-Constructive Proof and the Eye-Spy Dilemma, cont'd

- How do I convince you that the cat is in the image without pointing to the cat?
- I want you to know the problem is fair without revealing the solution
- If only we had an infinite black cloth that has a cat-shaped hole
- I could slide the image under the cloth until the cat shows up
- Suppose my cloth is not perfect and it reveals a bit more than necessary

Non-Constructive Proof and the Eye-Spy Dilemma, cont'd

- Can you now find the cat in this image?

Zero-Knowledge Proof and the Ali Baba cave

- Suppose that Peggy found a secret word used to open a door in a cave
- Victor wants to know if Peggy really knows the secret word
- (Peggy won't actually say the word because it's secret)

- So Victor designs an experiment
- Peggy goes in the cave
- Victor can't see which path she takes
- Victor flips a coin
- If coin comes up heads, Victors asks Peggy to come back using path A (o.w. using B)
- If Peggy knows the word, she can use any path
- If Peggy doesn't know the word, she has to go back the way she entered
- She has a 50% chance of taking the right path
- If they repeat this many times, her chance of guessing right goes down to 0

Subset Sums

- Suppose I pick 10 numbers between 1 and 100
- Call my set S
- e.g., $S=\{1,2,3,4,5,6,7,8,9,99\}$
- I claim that at least two distinct subsets of S have the same subset-sum.
- In my case, this is obvious: $\{1,2\}$ and $\{3\}$
- This is a constructive proof, but let's look at a zero-knowledge one also
- A subset's sum is $x_{1}+x_{2}+\cdots+x_{10} \leq 10 \times 100=1000$

- Pigeonholes: bins corresponding to each possible subset-sum, 1, 2, ... , 1000
- Pigeons: the non-empty subsets of a 10 -element set:

$$
2^{10}-1=1023
$$

- At least two subsets must be in the same subset-sum-bin.
- Practice. Exercise 14.6.
- Practice. Exercise 14.7.

