Counting

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 13
- Counting sequences.
- Build-up counting.
- Counting one set by counting another: bijection.
- Permutations and combinations.

Discrete Math is About Objects We Can Count

- Three colors of candy: red, blue, green
- A goody-bag has 3 candies. How many distinct goody-bags?
- (Only the number of each color matters: bags with different orderings are the "same" goody-bag.)
$\{000\}\{000\}\{000\}\{000\}\{000\}\{000\}\{000\}\{000\}\{000\}\{000\}$
- Challenge Problems.
- What if there are 5 candies per goody-bag and 10 colors of candy?
- Goody-bags come in bulk packs of 5 . How many different bulk packs are there?
- There are too many to list out. We need tools!

Sum Rule

- How many binary sequences of length 3

$$
\{000,001,010,011,100,101,110,111\}
$$

- There are two types: those ending in 0 and those ending in 1 ,

$$
\left\{b_{1} b_{2} b_{3}\right\}=\left\{b_{1} b_{2} \bullet 0\right\} \cup\left\{b_{1} b_{2} \bullet 1\right\}
$$

- Sum Rule. N objects of two types: N_{1} of type-1 and N_{2} of type-2. Then,

$$
N=N_{1}+N_{2}
$$

- Going back to the binary example:

$$
\begin{array}{rlr}
\left|\left\{b_{1} b_{2} b_{3}\right\}\right| & =\left|\left\{b_{1} b_{2} \cdot 0\right\}\right|+\left|\left\{b_{1} b_{2} \cdot 1\right\}\right| & \text { [sum rule] } \\
& =\left|\left\{b_{1} b_{2}\right\}\right| \times 2 & \\
& =\left(\left|\left\{b_{1} \cdot 0\right\}\right|+\left|\left\{b_{1} \cdot 1\right\}\right|\right) \times 2 & \text { [sum rule] } \\
& =\left|\left\{b_{1}\right\}\right| \times 2 \times 2 & \\
& =2 \times 2 \times 2 &
\end{array}
$$

Product Rule

- Number of choices rule

$$
\left|\left\{b_{1} b_{2} b_{3}\right\}\right|=2 \times 2 \times 2
$$

- Product Rule. Let N be the number of choices for a sequence

$$
x_{1} x_{2} x_{3} \cdots x_{r-1} x_{r}
$$

- Let N_{1} be the number of choices for x_{1};
- Let N_{2} be the number of choices for x_{2} after you choose x_{1};
- Let N_{3} be the number of choices for x_{3} after you choose $x_{1} x_{2}$;
- Let N_{4} be the number of choices for x_{4} after you choose $x_{1} x_{2} x_{3}$;
- ...
- Let N_{r} be the number of choices for x_{r} after you choose $x_{1} x_{2} x_{3} \ldots x_{r-1}$

$$
N=N_{1} \times N_{2} \times N_{3} \times N_{4} \times \cdots \times N_{r}
$$

- Example. There are 2^{n} binary sequences of length n :

$$
N_{1}=N_{2}=\cdots=N_{n}=2
$$

- The sum and product rules are the only basic tools we need . . . plus TINKERING.

Examples

- Menus.
- breakfast $\in\{$ pancake,waffle,coffee $\}$
- lunch $\in\{$ burger,coffee $\}$
- dinner $\in\{$ salad, steak, coffee $\}$

$$
|\{B L D\}|=3 \times 2 \times 3=18
$$

- (every menu is a sequence BLD and every sequence BLD is a unique menu.)
- NY Plates.
- A NY plate has the form $\{A B C-1234\}$

$$
|\{A B C-1234\}|=26 \times 26 \times 26 \times 10 \times 10 \times 10 \times 10 \approx 176 M
$$

- Races.
- With 10 runners, how many top-3 finishes?

$$
|\{F S T\}|=10 \times 9 \times 8=720
$$

- Passwords.
- Use: $\{a, \ldots, z\},\{A, \ldots, Z\},\{0, \ldots, 9\}$, special: $\{!, @, \#, \$, \%, \wedge, \&, *,()$,
- Rules: Length is 8 . Must have at least one special.
- Total number is the sum of valid and invalid (no special symbol) passwords

$$
\begin{array}{rlr}
\mid\{\text { passwords }\} \mid & =72 \times 72 \times \cdots \times 72=72^{8} & \text { [product rule] } \\
& =\mid\{\text { valid }\}|+|\{\text { invalid }\} \mid & {[\text { sum rule }]} \\
& =\mid\{\text { valid }\} \mid+62^{8} &
\end{array}
$$

$$
\mid\{\text { valid }\} \mid=72^{8}-62^{8} \approx 5 \times 10^{14}
$$

- (1 millisecond to test \rightarrow about 6 months on 32 K cores.)
- Committees.
- We have 10 students. How many ways to form a party planning committee?
- Each student can be in or out of the committee:
- e.g. $\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}, s_{9}, s_{10}\right\}$
- Then $1101000010 \leftrightarrow\left\{s_{1}, s_{2}, s_{4}, s_{9}\right\}, 0000000000 \leftrightarrow \emptyset$
- Aha: $\mid\{$ committees $\}|=|\{10-$ bit binary strings $\} \mid$

$$
2 \times 2 \times \cdots \times 2=2^{10}=1024
$$

Build-up Counting

- Already saw that the total number of binary sequences of length n is 2^{n}
- How about the number binary sequences of length n with exactly k 1's, $0 \leq k \leq n$?
- Denote this number by $\binom{n}{k}$
- First, tinker!
- Length-3 sequences:

000,001,010,011,100,101,110,111

	$\binom{n}{k}$	0	1	2	3	4	5	6

Build-up Counting

- Already saw that the total number of binary sequences of length n is 2^{n}
- How about the number binary sequences of length n with exactly $k 1$'s, $0 \leq k \leq n$?
- Denote this number by $\binom{n}{k}$
- First, tinker!
- Length-3 sequences:

000,001,010,011,100,101,110,111

- Legnth-4 sequences:

0000,0001,0010,0011,0100,0101,0110,0111, 1000,1001,1010,1011,1100,1101,1110,1111

$\binom{n}{k}$	k								
	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1	2	1						
3	1	3	3	1					
n 4	1	4	6	4	1				
5									
6									
7									
8									

Build-up Counting

- Already saw that the total number of binary sequences of length n is 2^{n}
- How about the number binary sequences of length n with exactly $k 1$'s, $0 \leq k \leq n$?
- Denote this number by $\binom{n}{k}$
- First, tinker!
- Length-3 sequences: 000,001,010,011,100,101,110,111
- Legnth-4 sequences: 0000,0001,0010,0011,0100,0101,0110,0111, 1000,1001,1010,1011,1100,1101,1110,1111
- Legnth-5 sequences: 00000,00001,00010,00011, 00100,00101,00110,00111, 01000,01001,01010,01011, 01100,01101,01110,01111, 10000,10001,10010,10011, 10100,10101,10110,10111, 11000,11001,11010,11011, 11100,11101,11110,11111

Build-up Counting

- Already saw that the total number of binary sequences of length n is 2^{n}
- How about the number binary sequences of length n with exactly $k 1$'s, $0 \leq k \leq n$?
- Denote this number by $\binom{n}{k}$
- First, tinker!
- Length-3 sequences: 000,001,010,011,100,101,110,111
- Legnth-4 sequences: 0000,0001,0010,0011,0100,0101,0110,0111, 1000,1001,1010,1011,1100,1101,1110,1111
- Legnth-5 sequences: 00000,00001,00010,00011, 00100,00101,00110,00111, 01000,01001,01010,01011, 01100,01101,01110,01111, 10000,10001,10010,10011, 10100,10101,10110,10111, 11000,11001,11010,11011, 11100,11101,11110,11111

Build-up Counting, cont'd

- Let's try to come up with a formula:

$$
\{n-\text { sequence with } k 1 \text { 's }\}=
$$

$$
\begin{gathered}
=0 \bullet\{(n-1) \text {-sequence with } k 1 \text { 's }\} \cup 1 \bullet\{(n-1) \text {-sequence with }(k-1) 1 \text { 's }\} \\
=\binom{n-1}{k}+\binom{n-1}{k-1}
\end{gathered}
$$

- Hm, looks like induction!
- Sum rule:

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

- Base cases:

$$
\binom{1}{0}=1,\binom{1}{1}=1
$$

- More generally, for any n :

$$
\binom{n}{0}=1,\binom{n}{n}=1
$$

$\binom{n}{k}$	0	1	2	3	k 4	5	6	7	8
0	1								
1	1	1				Pascal's			
2	1	2	1			Triangles!			
3	1	(3)	(3)	1					
$n 4$	1	4	(6)	(4)	(1)				
5	1	5	10	10	(5)	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1

Build-up Counting for Goody Bags

- Let $Q(n, k)=$ number of goody-bags of n candies with k colors
- First, tinker!
- Suppose we have n candies but only 1 color (red)

$$
Q(n, 1)=1
$$

- Suppose we have zero candies and k colors

$$
Q(0, k)=1
$$

- Suppose we have 1 candy and k colors

$$
Q(1, k)=k
$$

- Build-up counting: there are $(n+1)$ types of goody-bag:
- Goody-bags that contain 0 red candies (and $k-1$ other colors):

$$
Q(n, k-1)
$$

- Goody-bags that contain exactly 1 red candy (so if I remove it, I have none):

$$
Q(n-1, k-1)
$$

- Goody-bags that contain exactly 2 red candies:

$$
\begin{gathered}
Q(n-2, k-1) \\
\ldots \\
Q(0, k-1)
\end{gathered}
$$

Build-up Counting for Goody Bags, cont'd

- I can express $Q(n, k)$ recursively as follows:

$$
Q(n, k)=Q(n, k-1)+Q(n-1, k-1)+\cdots+Q(0, k-1)
$$

- Let's look at the recursive table

Build-up Counting for Goody Bags, cont'd

- I can express $Q(n, k)$ recursively as follows:

$$
Q(n, k)=Q(n, k-1)+Q(n-1, k-1)+\cdots+Q(0, k-1)
$$

- Let's look at the recursive table

Build-up Counting for Goody Bags, cont'd

- I can express $Q(n, k)$ recursively as follows:

$$
Q(n, k)=Q(n, k-1)+Q(n-1, k-1)+\cdots+Q(0, k-1)
$$

- Let's look at the recursive table

- What's another way to group $Q(n, k)$?
- All goody-bags that contain at least 1 red candy (already have a k colors) :

$$
Q(n-1, k)
$$

- Plus all bags that have no red candies (have at most $k-1$ colors):

$$
Q(n, k-1)
$$

Build-up Counting for Goody Bags, cont'd

- I can express $Q(n, k)$ recursively as follows:

$$
Q(n, k)=Q(n, k-1)+Q(n-1, k-1)+\cdots+Q(0, k-1)
$$

- Let's look at the recursive table

- Challenge problems we had earlier.
- (5 candies, 10 colors) $\rightarrow 2002$ goody-bags.
- How many 5 goody-bag bulk packs (goody-bags have 3 candies of 3 colors)?
- There are 10 types of goody-bag; 5 in a bulk pack. So we need

$$
Q(5,10)=2002
$$

Counting One Set By Counting Another: Bijection

- We saw that there are 10 goody-bags with 3 candies of 3 colors
- Can label those goody bags using $\{1,2, \ldots, 10\}$

\{○○○\}	$\{\bullet \bullet \bullet\}$	$\{\bullet 00\}$	\{ $0 \bullet$ ¢	\{000\}	\{000\}	$\{\bullet \bullet \bullet\}$	$\{\bullet \bullet 0\}$	$\{\bullet 00\}$	$\{000\}$
\uparrow	\downarrow								
1	2	3	4	5	6	7	8	9	10

- There is a 1-1 correspondence between goody-bags and the set $\{1,2, \ldots, 10\}$
- We call this a bijection!
- Some examples of bijections and other relations

1-1, but not onto.
(injection, $A \xrightarrow{I N J} B$)
$|A| \leq|B|$

onto; not 1-1
(surjection, $A \xrightarrow{S U R} B$)
$|A| \geq|B|$

onto and 1-1
(bijection, $A \xrightarrow{B I J} B$)
$|A|=|B|$

$$
|A|=|B|
$$

Counting One Set By Counting Another: Bijection, cont'd

- $A \xrightarrow{B I J} B$ implies $|A|=|B|$. Can count A by counting B
- Count menus by counting sequences $\{B L D\}$. Works because
- Every sequence specifies a distinct menu (1-to-1 mapping).
- Every menu corresponds to a sequence (the mapping is onto).

Goody Bags Using Bijection to Binary Sequences

- Suppose we have 3 candy colors: red, green, blue
- Consider the 7-candy goody-bag: \{red, red, blue, blue, blue, green, green\}

- Order all candies according to color: red first, then blue, then green
- Color doesn't matter anymore
- Hm, this looks like a binary sequence:

$$
001000100
$$

- What is the binary sequence for bag \{red, red, red, green, green, green, green\}?

- Can represent all goody bags with 9 bits

Goody Bags Using Bijection to Binary Sequences, cont'd

- More examples.

$$
\begin{aligned}
& 00100010101000 \rightarrow \circ \bigcirc|\circ \circ \circ| \circ|\circ| \bigcirc \circ \circ \leftrightarrow\{2 \bullet, 3 \bullet, 1 \bullet, 1 \bullet, 3 \bullet\} \\
& 1000011010000 \rightarrow|\circ \circ \circ \circ||\circ| \circ \circ \circ \circ \leftrightarrow\{0 \bullet, 4 \bullet, 0 \bullet, 1 \bullet, 4 \odot\}
\end{aligned}
$$

- In general, if we have n candies and k colors, how many delimiters do we have?

$$
(k-1)
$$

- i.e., number of goody-bags with n candies of k colors $=$

$$
\text { number of }(n+k-1) \text {-bit sequences with }(k-1) 1 \text { 's }
$$

$$
Q(n, k)=\binom{n+k-1}{k-1}
$$

- This is called sampling with replacement
- Hm, $\binom{n}{k}$ keeps popping up but we don't have a formula for it.
- Consider the set $S=\{1,2,3,4\}$
- All 2-orderings of S are: $\{12,13,14,21,23,24,31,32,34,41,42,43\}$
- Permutations: order matters
- All 2-subsets of S are: $\{12,13,14,23,24,34\}$
- Combinations: order doesn't matter
- With n elements, by the product rule, the number of k-orderings is

$$
\begin{aligned}
n \times(n-1) \times(n-2) \times \cdots \times(n-(k-1)) & = \\
& =\frac{n!}{(n-k)!}
\end{aligned}
$$

- e.g. number of top-3 finishes in 10-person race is

$$
10 \times 9 \times 8=\frac{10!}{7!}
$$

Permutations and Combinations, cont'd

- Consider the set $S=\{1,2,3,4\}$
- All 2-orderings of S are: $\{12,13,14,21,23,24,31,32,34,41,42,43\}$
- Permutations: order matters
- All 2-subsets of S are: $\{12,13,14,23,24,34\}$
- Combinations: order doesn't matter
- Here's another way to count all k-orderings
- First, pick a k-subset, then re-order it in all possible ways
- How many k-subsets are there?

$$
\binom{n}{k}
$$

- How many ways can we re-order a set?

$$
k \times(k-1) \times \cdots \times 1=k!
$$

$$
\text { number of } k \text {-orderings }=\text { number of } k \text {-subsets } \times k!
$$

$$
=\binom{n}{k} \times k!\quad[\mathbf{b i j e c t i o n} \text { to sequences with } \boldsymbol{k} \mathbf{1} \mathbf{\prime} \mathbf{s}]
$$

Permutations and Combinations, cont'd

- First method

$$
\begin{aligned}
n \times(n-1) \times(n-2) \times \cdots \times(n-(k-1)) & = \\
& =\frac{n!}{(n-k)!}
\end{aligned}
$$

- Second method
number of k-orderings $=$ number of k-subsets $\times k$!

$$
\frac{n!}{(n-k)!}=\binom{n}{k} \times k!\quad[\text { bijection to sequences with } \boldsymbol{k} \mathbf{1} \mathbf{\prime} \mathbf{s}]
$$

- Finally,

$$
\text { number of } k \text {-subsets }=\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

- Exercise. How many 10-bit binary sequences are there with four 1's?

Binomial Theorem: $(x+y)^{n}=\sum_{i=1}^{n}\binom{n}{i} x^{i} y^{n-1}$

- We learn the formulas for small n in high school, e.g.,:

$$
\begin{aligned}
(x+y)^{3} & =x x x+x x y+x y x+x y y+y x x+y x y+y y x+y y y \\
& =x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{aligned}
$$

- (All length-3 binary sequences $b_{1} b_{2} b_{3}$ where each $b_{i} \in\{x, y\}$)
- Of course, as we increase n the number of terms grows quickly, so we want a nice clean formula
- The Binomial Theorem!
- In general, each term has combined power n :

$$
(x+y)^{n}=x^{n}+(?) x^{n-1} y+(?) x^{n-2} y^{2}+\cdots+(?) x y^{n-1}+y^{n}
$$

- How many strings with $(n-1) x^{\prime}$ (first coefficient)?

$$
\binom{n}{n-1}
$$

- How many strings with $(n-2) x$'s (second coefficient)?

$$
\binom{n}{n-2}
$$

- Finally,

$$
(x+y)^{n}=x^{n}+\binom{n}{n-1} x^{n-1} y+\binom{n}{n-2} x^{n-2} y^{2}+\cdots+\binom{n}{1} x y^{n-1}+y^{n}
$$

Binomial Theorem Example

- What is the coefficient of x^{7} in the expansion of $(\sqrt{x}+2 x)^{10}$
- Need $(\sqrt{x})^{i}(2 x)^{10-i} \sim x^{7}$, which implies $i=6$
- The x^{7} term is $\binom{10}{6}(\sqrt{x})^{6}(2 x)^{4}$
- Coefficient of x^{7} is $\binom{10}{6} \times 2^{4}=3360$

General Approach to Counting Complex Objects Rensselaer

- To count complex objects, give a sequence of "instructions" that can be used to construct a complex object.
- Every sequence of instructions gives a unique complex object.
- There is a sequence of instructions for every complex object.
- Count the number of possible sequences of instructions, which equals the number of complex objects.

