Graphs II: Matching and Coloring

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 12
- Office hours:
- M 1-2pm, W 4-5pm, F 9-10am (Lally 309)

Overview

- Matching
- Bipartite graphs
- Stable matching
- Coloring.
- Conflict graphs
- Other graph problems
- Connected components, spanning tree, Euler cycle, network flow (easy)
- Hamiltonian cycle, facility location, vertex cover, dominating set (hard)

Bipartite graphs

- A bipartite graph consists of two sets of vertices
- Edges exist only across the two sets

- Bipartite graphs appear everywhere in life
- Suppose you have a number of resources that are responsible for completing some tasks
- E.g., each one of you wants to train your favorite ChatGPT model on CCI, but CCI only has so many GPUs
- Suppose there is a node for each CS class and a node for each CS student
- An edge exists if a student s is in class c
- Sports teams/players can be divided similarly
- Etc.

Bipartite Matching

- A bipartite graph can be left-matched if there exists a set of edges such that each left-vertex is covered by exactly one edge
- E.g., there are enough resources for all tasks
- Can this graph be left-matched?

Bipartite Matching, cont'd

- A bipartite graph can be left-matched if there exists a set of edges such that each left-vertex is covered by exactly one edge
- E.g., there are enough resources for all tasks
- Can this graph be left-matched?

Don't have enough resources for tasks T_{2}, T_{3}, T_{4}

Hall's Theorem

- Turns out the condition on the previous slide is true for all graphs and is a sufficient condition for matching in any graph
- For a given left subset X, let $N(X)$ be the set of "neighbors" of X, i.e., corresponding nodes on the right with edges to X
- Let $X=\left\{T_{2}, T_{3}, T_{4}\right\}$. What is $N(X)$?

$$
N(X)=\left\{R_{3}, R_{4}\right\}
$$

- Theorem [Hall's Theorem]. Suppose that for all left-subsets $X,|X| \leq|N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
- Hall's Theorem says that the necessary condition is also sufficient.

Proof of Hall's Theorem

- Theorem [Hall's Theorem]. Suppose that for all left-subsets $X,|X| \leq|N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
- Proof. By strong induction on the number of left-vertices.
- [Base Case] Suppose the number of left-vertices is $n=1$. As long as the leftvertex has at least one outgoing edge, then it can be covered. Check.

Proof of Hall's Theorem

- Theorem [Hall's Theorem]. Suppose that for all left-subsets $X,|X| \leq|N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
- Proof. By strong induction on the number of left-vertices.
- [Induction Step] Suppose we have n left-vertices and suppose $P(n)$ is T, i.e., $|X| \leq|N(X)|$ for all subsets X. Need to prove that $P(n) \rightarrow P(n+1)$.
- Case 1. There is a proper left-subset X, with $1 \leq|X| \leq n$, for which $|X|=$ $|N(X)|$.
- X has a matching into $N(X)$ (using strong induction)
- Let Y be any left-subset $Y \subseteq \bar{X}$
- The neighbors of $Y, N(Y)$, could overlap with $N(X)$
" Let $\bar{N}(Y)=N(Y) \backslash N(X)$
- by the matching condition,

$$
\begin{aligned}
|N(X)|+|\bar{N}(Y)| & =|N(X \cup Y)| \geq \\
& \geq|X \cup Y|=|X|+|Y|
\end{aligned}
$$

- Since $|X|=|N(X)|$, it follows that $|\bar{N}(Y)| \geq|Y|$
- Since this is true for any subset $Y \subseteq \bar{X}$, then \bar{X} has a separate matching into $\bar{N}(X)$

Proof of Hall's Theorem, cont'd

- Theorem [Hall's Theorem]. Suppose that for all left-subsets $X,|X| \leq|N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
- Proof. By strong induction on the number of left-vertices.
- [Induction Step] Suppose we have n left-vertices and suppose $P(n)$ is T, i.e., $|X| \leq|N(X)|$ for all subsets X. Need to prove that $P(n) \rightarrow P(n+1)$.
- Case 2. For every proper left-subset X (with $1 \leq|X| \leq n),|X|<|N(X)|$.
- Match the first left-vertex, X_{1}, along any edge to a neighbor, n_{1}
- Take any left-subset Y of the remaining graph of n left vertices
- What do we know about $N(Y)$?
" Either $n_{1} \notin N(Y)$, i.e., $N(Y)=\bar{N}(Y)$
» or $n_{1} \in N(Y)$, i.e., $|N(Y)|=|\bar{N}(Y)|+1$
" So finally, $|\bar{N}(Y)| \geq|N(Y)|-1$

Proof of Hall's Theorem, cont'd

- Theorem [Hall's Theorem]. Suppose that for all left-subsets $X,|X| \leq|N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
- Proof. By strong induction on the number of left-vertices.
- [Induction Step] Suppose we have n left-vertices and suppose $P(n)$ is T, i.e., $|X| \leq|N(X)|$ for all subsets X. Need to prove that $P(n) \rightarrow P(n+1)$.
- Case 2. For every proper left-subset X (with $1 \leq|X| \leq n$), $|X|<|N(X)|$.
- Match the first left-vertex, X_{1}, along any edge to a neighbor, n_{1}
- Take any left-subset Y of the remaining graph of n left vertices

$$
\begin{aligned}
|\bar{N}(Y)| & \geq|N(Y)|-1 \\
& \geq|Y|+1-1=|Y|
\end{aligned}
$$

- The remaining left-vertices have a matching to the remaining rightvertices (induction hypothesis).
- In both cases, there is a left-matching which covers the $n+1$ left-vertices.

- Exercise. If (min left-degree) \geq (max right-degree) then Hall's condition holds.
- Why is this a better idea than actually verifying Hall's condition?
- Much easier to check
- Enumerating all subsets takes a loooong time
- Example 12.3. Building Latin Squares.

Stable Matching

- Also known as stable marriage
- Suppose that we add preferences to the matching problem
- Each left-vertex has preferences for all right vertices and vice-versa
- E.g., suppose left vertices are A, B, C and right-vertices are X, Y, Z

	X	Y	Z
1.	A	A	B
2.	B	C	A
3.	C	B	C

	A	B	C
1.	Z	Y	Z
2.	Y	X	X
3.	X	Z	Y

- Stable matching is used for matching medical schools with students applying for residency
- E.g., student A prefers school Z to Y to X
- E.g., school X prefers student A to B to C
- The point is to avoid a volatile matchup
- Why is this volatile?
- A prefers Y to X and Y prefers A to B

Stable Matching Algorithm Overview

- Round 1. Interviews
- All schools interview their top candidates

- Everyone creates their ranking
- Student A rejects school X as lowest ranked
- X will not interview A again
- Round 2. More Interviewing
- (In practice, this is done algorithmically, after everyone submits their ranking)
- Y and Z invite A and B respectively
- X invites B
- B rejects Z; Z erases $B ; X$ and Y will return
- Round 3. More interviewing
- Z invites A
- A rejects Y for their top-choice Z.

- Round 4. Final round
- All parties are paired in a non-volatile manner

Stable Matching Properties

- Theorem. [Gale-Shapely, 1962]
- For n students and schools, the algorithm ends after at most n^{2} rounds
- Every student and school will be matched at the end
- The resulting set of matchings is stable (no volatile pairs).
- In practice, there's a game theoretic aspect as well, which we won't talk about
- Suppose a student has a $1 / 100$ chance of getting into their top choice but a 1/10 chance of getting into their $2^{\text {nd }}$ choice
- The student should probably rank their $2^{\text {nd }}$ choice higher
- Schools and students collude during interviews
- They agree to match each other in order to avoid unexpected outcomes through the algorithm
- Stable matching is a weird system but the residency problem was getting out of hand in the mid $20^{\text {th }}$ century
- Students were getting offers early in their junior years
- Stable matching provides a fair mechanism that is guaranteed to be stable

Conflict Graphs and Coloring

- Task 1: Assigning radio frequencies
- Suppose we have 6 radio stations arranged as follows

- Stations broadcasting to the same listener (red areas) need different frequencies (conflict).
- How do we build a conflict graph based on the above placement?

- How many frequencies do you need?

Conflict Graphs and Coloring, cont'd

- Task 2: Scheduling Course Exams

- Courses with the same student need different exam-time (conflict) - A causes CS I and Calc I to conflict.

- All students need to take all their exams. How many exam slots do you need?

Sequential Greedy Coloring

1. Colors $\{1,2,3, \ldots\}$
2. Let $\operatorname{color}\left(v_{1}\right)=1$.
3. Assume that vertices v_{1}, \ldots, v_{i} have been colored. Color v_{i+1} with the smallest color so that it does not conflict with any previously colored vertex.

- For visual effect, pick colors $\{1,2,3,4\}$ as $\{$ red, blue, green, puprple $\}$

(2 colors suffice)

Sequential Greedy Coloring, cont'd

- Chromatic Number $\chi(G)$. The minimum number of colors needed.
- Lemma. Using Sequential Greedy, $\operatorname{color}\left(v_{i}\right) \leq \delta_{i}+1$.
- Theorem. Chromatic number is bounded by maximum degree.
- i.e., $\chi(G) \leq \Delta(G)+1$, where $\Delta(G)$ is the max degree in $G, \Delta(G)=\max _{i} \delta_{i}$.
- Let us prove this for RBT's. We show that the constructor rule preserves 2colorability.

- How do we know T_{1} 's root is colored red?
- If not red, swap all colors - tree is still 2-colored
- A graph is bipartite if and only if its chromatic number is 2 . Trees are bipartite.

Other Graph Problems

- Connected Components. For "viral" marketing, pick one vertex in each connected component (e.g. target the "central (red)" vertices). [easy]
- Spanning Tree. In a road grid (gray), to maintain a minimal "highway system" that offers high-speed travel we can use a spanning tree (red). [easy]
- Euler Cycle. Every winter, Troy typically has a 1-foot snowfall. The snowplow should start at the depot, traverse every road exactly once and return to the depot, traversing an Euler Cycle (red). [easy]
- Hamiltonian Cycle. A traveling sales man starts at work and visits every house (vertex) exactly once, returning to work. The salesperson follows a Hamiltonian Cycle. [hard]

Other Graph Problems, cont'd

- Facility Location (K-center). McDonalds wants to place $K=2$ restaurants (red) in a road network so that no customer has too drive far to reach their closest McDonalds. [hard]

- Vertex Cover. Place the minimum number of police at intersections so that all roads can be surveilled or "covered". The officers form a vertex cover. Can you do it with fewer than 6? [hard]

- Dominating Set. Place the fewest hospitals at intersections (vertices) so that every intersection is either at a hospital or one block away from one. The red hospitals are a dominating set. [hard]
- Network Flow. A source-ISP (blue) sends packets to a sink-ISP (red). What is the maximum transmission rate achievable without exceeding the link capacities? We achieved flow rate 10. [easy]

