
Graphs II: Matching and Coloring
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Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 12

• Office hours:

– M 1-2pm, W 4-5pm, F 9-10am (Lally 309)
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Overview

• Matching

– Bipartite graphs

– Stable matching

• Coloring.

– Conflict graphs

• Other graph problems

– Connected components, spanning tree, Euler cycle, network flow (easy)

– Hamiltonian cycle, facility location, vertex cover, dominating set (hard)
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Bipartite graphs

• A bipartite graph consists of two sets of vertices

– Edges exist only across the two sets

• Bipartite graphs appear everywhere in life

– Suppose you have a number of resources that are responsible for completing 
some tasks

• E.g., each one of you wants to train your favorite ChatGPT model on CCI, 
but CCI only has so many GPUs

– Suppose there is a node for each CS class and a node for each CS student

• An edge exists if a student 𝑠 is in class 𝑐

– Sports teams/players can be divided similarly

– Etc.
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Bipartite Matching

• A bipartite graph can be left-matched if there exists a set of edges such that each 
left-vertex is covered by exactly one edge

– E.g., there are enough resources for all tasks

• Can this graph be left-matched?
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Bipartite Matching, cont’d

• A bipartite graph can be left-matched if there exists a set of edges such that each 
left-vertex is covered by exactly one edge

– E.g., there are enough resources for all tasks

• Can this graph be left-matched?
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Hall’s Theorem

• Turns out the condition on the previous slide is true for all graphs and is a sufficient 
condition for matching in any graph

• For a given left subset 𝑋, let 𝑁(𝑋) be the set of “neighbors” of 𝑋, i.e., 
corresponding nodes on the right with edges to 𝑋

– Let 𝑋 = 𝑇2, 𝑇3, 𝑇4 . What is 𝑁(𝑋)?
𝑁 𝑋 = 𝑅3, 𝑅4

• Theorem [Hall’s Theorem]. Suppose that for all left-subsets 𝑋, 𝑋 ≤ |𝑁(𝑋)| (Hall’s 
“matching condition”). Then, there is a matching which covers every left-vertex.

– Hall’s Theorem says that the necessary condition is also sufficient.
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Proof of Hall’s Theorem

• Theorem [Hall’s Theorem]. Suppose that for all left-subsets 𝑋, 𝑋 ≤ |𝑁(𝑋)| (Hall’s 
“matching condition”). Then, there is a matching which covers every left-vertex.

• Proof. By strong induction on the number of left-vertices.

– [Base Case] Suppose the number of left-vertices is 𝑛 = 1. As long as the left-
vertex has at least one outgoing edge, then it can be covered. Check.
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Proof of Hall’s Theorem

• Theorem [Hall’s Theorem]. Suppose that for all left-subsets 𝑋, 𝑋 ≤ |𝑁(𝑋)| (Hall’s 
“matching condition”). Then, there is a matching which covers every left-vertex.

• Proof. By strong induction on the number of left-vertices.

– [Induction Step] Suppose we have 𝑛 left-vertices and suppose 𝑃(𝑛) is T, i.e., 
𝑋 ≤ |𝑁(𝑋)| for all subsets 𝑋. Need to prove that 𝑃 𝑛 → 𝑃(𝑛 + 1).

• Case 1. There is a proper left-subset 𝑋, with 1 ≤ 𝑋 ≤ 𝑛, for which |𝑋| =
|𝑁(𝑋)|.

– 𝑋 has a matching into 𝑁(𝑋) (using strong induction)

– Let 𝑌 be any left-subset 𝑌 ⊆ ത𝑋

– The neighbors of 𝑌, 𝑁(𝑌), could overlap with 𝑁(𝑋)

» Let ഥ𝑁 𝑌 = 𝑁(𝑌)\𝑁 𝑋

– by the matching condition,

𝑁 𝑋 + ഥ𝑁 𝑌 = 𝑁 𝑋 ∪ 𝑌 ≥

≥ 𝑋 ∪ 𝑌 = 𝑋 + 𝑌

– Since 𝑋 = |𝑁 𝑋 |, it follows that ഥ𝑁 𝑌 ≥ 𝑌

– Since this is true for any subset 𝑌 ⊆ ത𝑋, then ത𝑋 has a separate 
matching into ഥ𝑁(𝑋) 10



Proof of Hall’s Theorem, cont’d

• Theorem [Hall’s Theorem]. Suppose that for all left-subsets 𝑋, 𝑋 ≤ |𝑁(𝑋)| (Hall’s 
“matching condition”). Then, there is a matching which covers every left-vertex.

• Proof. By strong induction on the number of left-vertices.

– [Induction Step] Suppose we have 𝑛 left-vertices and suppose 𝑃(𝑛) is T, i.e., 
𝑋 ≤ |𝑁(𝑋)| for all subsets 𝑋. Need to prove that 𝑃 𝑛 → 𝑃(𝑛 + 1).

• Case 2. For every proper left-subset 𝑋 (with 1 ≤ 𝑋 ≤ 𝑛), 𝑋 < |𝑁(𝑋)|.

– Match the first left-vertex, 𝑋1, along any edge to a neighbor, 𝑛1
– Take any left-subset 𝑌 of the remaining graph of 𝑛 left vertices

– What do we know about 𝑁(𝑌)?

» Either 𝑛1 ∉ 𝑁(𝑌), i.e., 𝑁 𝑌 = ഥ𝑁(𝑌)

» or 𝑛1 ∈ 𝑁(𝑌), i.e., 𝑁 𝑌 = ഥ𝑁 𝑌 + 1

» So finally, ഥ𝑁(𝑌) ≥ 𝑁 𝑌 − 1
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Proof of Hall’s Theorem, cont’d

• Theorem [Hall’s Theorem]. Suppose that for all left-subsets 𝑋, 𝑋 ≤ |𝑁(𝑋)| (Hall’s 
“matching condition”). Then, there is a matching which covers every left-vertex.

• Proof. By strong induction on the number of left-vertices.

– [Induction Step] Suppose we have 𝑛 left-vertices and suppose 𝑃(𝑛) is T, i.e., 
𝑋 ≤ |𝑁(𝑋)| for all subsets 𝑋. Need to prove that 𝑃 𝑛 → 𝑃(𝑛 + 1).

• Case 2. For every proper left-subset 𝑋 (with 1 ≤ 𝑋 ≤ 𝑛), 𝑋 < |𝑁(𝑋)|.

– Match the first left-vertex, 𝑋1, along any edge to a neighbor, 𝑛1
– Take any left-subset 𝑌 of the remaining graph of 𝑛 left vertices

ഥ𝑁 𝑌 ≥ 𝑁 𝑌 − 1

≥ |𝑌| + 1 − 1 = |𝑌|

– The remaining left-vertices have a matching to the remaining right-
vertices (induction hypothesis).

• In both cases, there is a left-matching which covers the 𝑛 + 1 left-vertices.
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Hall’s Theorem Practice.

• Exercise. If (min left-degree) ≥ (max right-degree) then Hall’s condition holds.

– Why is this a better idea than actually verifying Hall’s condition?

• Much easier to check

• Enumerating all subsets takes a loooong time

• Example 12.3. Building Latin Squares.

13



Stable Matching

• Also known as stable marriage

• Suppose that we add preferences to the matching problem

– Each left-vertex has preferences for all right vertices and vice-versa

– E.g., suppose left vertices are 𝐴, 𝐵, 𝐶 and right-vertices are 𝑋, 𝑌, 𝑍

• Stable matching is used for matching medical schools with students applying for 
residency

– E.g., student 𝐴 prefers school 𝑍 to 𝑌 to 𝑋

– E.g., school 𝑋 prefers student 𝐴 to 𝐵 to 𝐶

• The point is to avoid a volatile matchup 

– Why is this volatile?

– 𝐴 prefers 𝑌 to 𝑋 and 𝑌 prefers 𝐴 to 𝐵
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Stable Matching Algorithm Overview

• Round 1. Interviews

– All schools interview their top candidates

– Everyone creates their ranking

– Student 𝐴 rejects school 𝑋 as lowest ranked

– 𝑋 will not interview 𝐴 again

• Round 2. More Interviewing

– (In practice, this is done algorithmically,
after everyone submits their ranking)

– 𝑌 and 𝑍 invite 𝐴 and 𝐵 respectively

– 𝑋 invites 𝐵

– 𝐵 rejects 𝑍; 𝑍 erases 𝐵; 𝑋 and 𝑌 will return

• Round 3. More interviewing

– 𝑍 invites 𝐴

– 𝐴 rejects 𝑌 for their top-choice 𝑍.

• Round 4. Final round

– All parties are paired in a non-volatile manner
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Stable Matching Properties

• Theorem. [Gale-Shapely, 1962]

– For 𝑛 students and schools, the algorithm ends after at most 𝑛2 rounds

– Every student and school will be matched at the end

– The resulting set of matchings is stable (no volatile pairs).

• In practice, there’s a game theoretic aspect as well, which we won’t talk about

– Suppose a student has a 1/100 chance of getting into their top choice but a 1/10 
chance of getting into their 2nd choice

• The student should probably rank their 2nd choice higher

– Schools and students collude during interviews

• They agree to match each other in order to avoid unexpected outcomes 
through the algorithm

• Stable matching is a weird system but the residency problem was getting out of 
hand in the mid 20th century

– Students were getting offers early in their junior years

– Stable matching provides a fair mechanism that is guaranteed to be stable
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Conflict Graphs and Coloring

• Task 1: Assigning radio frequencies

– Suppose we have 6 radio stations arranged as follows

– Stations broadcasting to the same listener (red areas) need different frequencies 
(conflict).

– How do we build a conflict graph based on the above placement?

– How many frequencies do you need?
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Conflict Graphs and Coloring, cont’d

• Task 2: Scheduling Course Exams

– Courses with the same student need different exam-time (conflict) – 𝐴 causes 
CS I and Calc I to conflict.

– All students need to take all their exams. How many exam slots do you need?
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Sequential Greedy Coloring

1. Colors {1, 2, 3, . . . }

2. Let 𝑐𝑜𝑙𝑜𝑟(𝑣1) = 1.

3. Assume that vertices 𝑣1, … , 𝑣𝑖 have been colored. Color 𝑣𝑖+1 with the smallest 
color so that it does not conflict with any previously colored vertex.

• For visual effect, pick colors 1,2,3,4 as 𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛, 𝑝𝑢𝑝𝑟𝑝𝑙𝑒
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Sequential Greedy Coloring, cont’d

• Chromatic Number 𝜒(𝐺). The minimum number of colors needed.

• Lemma. Using Sequential Greedy, 𝑐𝑜𝑙𝑜𝑟 𝑣𝑖 ≤ 𝛿𝑖 + 1.

• Theorem. Chromatic number is bounded by maximum degree.

– i.e., 𝜒 𝐺 ≤ Δ(𝐺) + 1, where Δ(𝐺) is the max degree in 𝐺, Δ(𝐺) = max
𝑖

𝛿𝑖 .
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Trees are 2-Colorable

• Let us prove this for RBT’s. We show that the constructor rule preserves 2-
colorability.

• How do we know 𝑇1’s root is colored red?

– If not red, swap all colors – tree is still 2-colored

• A graph is bipartite if and only if its chromatic number is 2. Trees are bipartite.
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Other Graph Problems

• Connected Components. For “viral” marketing,
pick one vertex in each connected component  (e.g. 
target the “central (red)” vertices). [easy]

• Spanning Tree. In a road grid (gray), to maintain a 
minimal “highway system” that offers high-speed
travel we can use a spanning tree (red). [easy]

• Euler Cycle. Every winter, Troy typically has a 1-foot 
snowfall. The snowplow should start at the depot, 
traverse every road exactly once and return to the 
depot, traversing an Euler Cycle (red). [easy]

• Hamiltonian Cycle. A traveling sales man starts at 
work and visits every house (vertex) exactly once, 
returning to work. The salesperson follows a 
Hamiltonian Cycle. [hard]
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Other Graph Problems, cont’d

• Facility Location (𝐾-center). McDonalds wants to place 𝐾 = 2
restaurants (red) in a road network so that no customer has too 
drive far to reach their closest McDonalds. [hard]

• Vertex Cover. Place the minimum number of police at 
intersections so that all roads can be surveilled or “covered”. The 
officers form a vertex cover. Can you do it with fewer than 6? 
[hard]

• Dominating Set. Place the fewest hospitals at intersections 
(vertices) so that every intersection is either at a hospital or one 
block away from one. The red hospitals are a dominating set. 
[hard]

• Network Flow. A source-ISP (blue) sends packets to a sink-ISP 
(red). What is the maximum transmission rate achievable without 
exceeding the link capacities? We achieved flow rate 10. [easy]
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