Graphs II: Matching and Coloring

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 Chapter 12
- Office hours:
 - M 1-2pm, W 4-5pm, F 9-10am (Lally 309)

Overview

- Matching
 - Bipartite graphs
 - Stable matching
- Coloring.
 - Conflict graphs
- Other graph problems
 - Connected components, spanning tree, Euler cycle, network flow (easy)
 - Hamiltonian cycle, facility location, vertex cover, dominating set (hard)

Bipartite graphs

- A bipartite graph consists of two sets of vertices
 - Edges exist only across the two sets

- Bipartite graphs appear everywhere in life
 - Suppose you have a number of resources that are responsible for completing some tasks
 - E.g., each one of you wants to train your favorite ChatGPT model on CCI, but CCI only has so many GPUs
 - Suppose there is a node for each CS class and a node for each CS student
 - An edge exists if a student *s* is in class *c*
 - Sports teams/players can be divided similarly
 - Etc.

Bipartite Matching

- A bipartite graph can be left-matched if there exists a set of edges such that each left-vertex is covered by exactly one edge
 - E.g., there are enough resources for all tasks
- Can this graph be left-matched?

Bipartite Matching, cont'd

- A bipartite graph can be left-matched if there exists a set of edges such that each left-vertex is covered by exactly one edge
 - E.g., there are enough resources for all tasks
- Can this graph be left-matched?

Don't have enough resources for tasks T_2 , T_3 , T_4

Rensselaer

Hall's Theorem

- Turns out the condition on the previous slide is true for all graphs and is a sufficient condition for matching in any graph
- For a given left subset X, let N(X) be the set of "neighbors" of X, i.e., corresponding nodes on the right with edges to X
 - Let $X = \{T_2, T_3, T_4\}$. What is N(X)? $N(X) = \{R_3, R_4\}$

- Theorem [Hall's Theorem]. Suppose that for all left-subsets X, $|X| \le |N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
 - Hall's Theorem says that the necessary condition is also sufficient.

Proof of Hall's Theorem

- Theorem [Hall's Theorem]. Suppose that for all left-subsets X, $|X| \le |N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
- *Proof.* By strong induction on the number of left-vertices.
 - [Base Case] Suppose the number of left-vertices is n = 1. As long as the left-vertex has at least one outgoing edge, then it can be covered. Check.

Proof of Hall's Theorem

- Theorem [Hall's Theorem]. Suppose that for all left-subsets X, $|X| \le |N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
- *Proof.* By strong induction on the number of left-vertices.
 - [Induction Step] Suppose we have *n* left-vertices and suppose P(n) is T, i.e., $|X| \le |N(X)|$ for all subsets *X*. Need to prove that $P(n) \to P(n+1)$.
 - <u>Case 1</u>. There is a proper left-subset X, with $1 \le |X| \le n$, for which |X| = |N(X)|.
 - -X has a matching into N(X) (using strong induction)
 - − Let *Y* be any left-subset *Y* ⊆ \overline{X}
 - The neighbors of Y, N(Y), could overlap with N(X)

» Let $\overline{N}(Y) = N(Y) \setminus N(X)$

– by the matching condition,

 $|N(X)| + |\overline{N}(Y)| = |N(X \cup Y)| \ge$ $\ge |X \cup Y| = |X| + |Y|$

- Since |X| = |N(X)|, it follows that $|\overline{N}(Y)| \ge |Y|$
- Since this is true for any subset $Y \subseteq \overline{X}$, then \overline{X} has a separate matching into $\overline{N}(X)$

Proof of Hall's Theorem, cont'd

- Theorem [Hall's Theorem]. Suppose that for all left-subsets X, $|X| \le |N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
- *Proof.* By strong induction on the number of left-vertices.
 - [Induction Step] Suppose we have *n* left-vertices and suppose P(n) is T, i.e., $|X| \le |N(X)|$ for all subsets *X*. Need to prove that $P(n) \rightarrow P(n+1)$.
 - <u>Case 2</u>. For *every* proper left-subset X (with $1 \le |X| \le n$), |X| < |N(X)|.
 - Match the first left-vertex, X_1 , along any edge to a neighbor, n_1
 - Take any left-subset Y of the remaining graph of n left vertices
 - What do we know about N(Y)?
 - » Either $n_1 \notin N(Y)$, i.e., $N(Y) = \overline{N}(Y)$
 - » or $n_1 \in N(Y)$, i.e., $|N(Y)| = \left|\overline{N}(Y)\right| + 1$
 - » So finally, $\left|\overline{N}(Y)\right| \ge \left|N(Y)\right| 1$

Proof of Hall's Theorem, cont'd

- Theorem [Hall's Theorem]. Suppose that for all left-subsets X, $|X| \le |N(X)|$ (Hall's "matching condition"). Then, there is a matching which covers every left-vertex.
- Proof. By strong induction on the number of left-vertices.
 - [Induction Step] Suppose we have *n* left-vertices and suppose P(n) is T, i.e., $|X| \le |N(X)|$ for all subsets *X*. Need to prove that $P(n) \rightarrow P(n+1)$.
 - <u>Case 2</u>. For *every* proper left-subset X (with $1 \le |X| \le n$), |X| < |N(X)|.
 - Match the first left-vertex, X_1 , along any edge to a neighbor, n_1
 - Take any left-subset Y of the remaining graph of n left vertices $\left|\overline{N}(Y)\right| \ge |N(Y)| - 1$ $\ge |Y| + 1 - 1 = |Y|$
 - The remaining left-vertices have a matching to the remaining rightvertices (induction hypothesis).
 - In both cases, there is a left-matching which covers the n + 1 left-vertices.

Hall's Theorem Practice.

- **Exercise.** If (min left-degree) \geq (max right-degree) then Hall's condition holds.
 - Why is this a better idea than actually verifying Hall's condition?
 - Much easier to check
 - Enumerating all subsets takes a loooong time
- Example 12.3. Building Latin Squares.

Stable Matching

Rensselaer

- Also known as stable marriage
- Suppose that we add preferences to the matching problem
 - Each left-vertex has preferences for all right vertices and vice-versa
 - E.g., suppose left vertices are A, B, C and right-vertices are X, Y, Z

	X	Y	Ζ
1.	A	A	В
2.	В	С	A
3.	С	В	С

	A	В	С
1.	Ζ	Y	Ζ
2.	Y	X	X
3.	X	Ζ	Y

- Stable matching is used for matching medical schools with students applying for residency
 - E.g., student A prefers school Z to Y to X
 - E.g., school X prefers student A to B to C
- The point is to avoid a volatile matchup
 - Why is this volatile?
 - A prefers Y to X and Y prefers A to B

Stable Matching Algorithm Overview

- <u>Round 1</u>. Interviews
 - All schools interview their top candidates
 - Everyone creates their ranking
 - Student A rejects school X as lowest ranked
 - -X will not interview A again
- <u>Round 2</u>. More Interviewing
 - (In practice, this is done algorithmically, after everyone submits their ranking)
 - Y and Z invite A and B respectively
 - -X invites B
 - B rejects Z; Z erases B; X and Y will return
- <u>Round 3</u>. More interviewing
 - -Z invites A
 - -A rejects Y for their top-choice Z.
- Round 4. Final round
 - All parties are paired in a non-volatile manner

Х

Ζ

X

Y

- Theorem. [Gale-Shapely, 1962]
 - For n students and schools, the algorithm ends after at most n^2 rounds
 - Every student and school will be matched at the end
 - The resulting set of matchings is stable (no volatile pairs).
- In practice, there's a game theoretic aspect as well, which we won't talk about
 - Suppose a student has a 1/100 chance of getting into their top choice but a 1/10 chance of getting into their 2nd choice
 - The student should probably rank their 2nd choice higher
 - Schools and students collude during interviews
 - They agree to match each other in order to avoid unexpected outcomes through the algorithm
- Stable matching is a weird system but the residency problem was getting out of hand in the mid 20th century
 - Students were getting offers early in their junior years
 - Stable matching provides a fair mechanism that is guaranteed to be stable

Conflict Graphs and Coloring

- Task 1: Assigning radio frequencies
 - Suppose we have 6 radio stations arranged as follows

- Stations broadcasting to the same listener (red areas) need different frequencies (conflict).
- How do we build a conflict graph based on the above placement?

– How many frequencies do you need?

Conflict Graphs and Coloring, cont'd

• Task 2: Scheduling Course Exams

Courses with the same student need different exam-time (conflict) – A causes
CS I and Calc I to conflict.

- All students need to take all their exams. How many exam slots do you need?

Sequential Greedy Coloring

- 1. Colors {1, 2, 3, ...}
- 2. Let $color(v_1) = 1$.
- 3. Assume that vertices $v_1, ..., v_i$ have been colored. Color v_{i+1} with the *smallest* color so that it does not conflict with any previously colored vertex.
- For visual effect, pick colors {1,2,3,4} as {*red*, *blue*, *green*, *puprple*}

Sequential Greedy Coloring, cont'd

- **Chromatic Number** $\chi(G)$. The minimum number of colors needed.
- Lemma. Using Sequential Greedy, $color(v_i) \leq \delta_i + 1$.
- *Theorem*. Chromatic number is bounded by maximum degree.

- i.e., $\chi(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the max degree in G, $\Delta(G) = \max_{i} \delta_i$.

Trees are 2-Colorable

• Let us prove this for RBT's. We show that the constructor rule preserves 2-colorability.

- How do we know T_1 's root is colored red?
 - If not red, swap all colors tree is still 2-colored
- A graph is bipartite if and only if its chromatic number is 2. Trees are bipartite.

Other Graph Problems

- **Connected Components.** For "viral" marketing, pick one vertex in each *connected component* (e.g. target the "central (red)" vertices). [easy]
- **Spanning Tree.** In a road grid (gray), to maintain a *minimal* "highway system" that offers high-speed travel we can use a *spanning tree* (red). [easy]
- Euler Cycle. Every winter, Troy typically has a 1-foot snowfall. The snowplow should start at the depot, traverse every road *exactly once* and return to the depot, traversing an *Euler Cycle* (red). [easy]
- Hamiltonian Cycle. A traveling sales man starts at work and visits every house (vertex) *exactly once*, returning to work. The salesperson follows a *Hamiltonian Cycle*. [hard]

Other Graph Problems, cont'd

- Facility Location (*K*-center). McDonalds wants to place K = 2 restaurants (red) in a road network so that no customer has too drive far to reach their closest McDonalds. [hard]
- Vertex Cover. Place the minimum number of police at intersections so that all roads can be surveilled or "covered". The officers form a vertex cover. Can you do it with fewer than 6? [hard]
- Dominating Set. Place the fewest hospitals at intersections (vertices) so that every intersection is either at a hospital or one block away from one. The red hospitals are a *dominating set*. [hard]
- Network Flow. A *source*-ISP (blue) sends packets to a *sink*-ISP (red). What is the maximum transmission rate achievable without exceeding the link capacities? We achieved flow rate 10. [easy]

