Graphs Il: Matching and Coloring




Reading

@ Rensselaer

e Malik Magdon-Ismail. Discrete Mathematics and Computing.
— Chapter 12

» Office hours:
— M 1-2pm, W 4-5pm, F 9-10am (Lally 309)




Overview ©® Rensselaer

* Matching
— Bipartite graphs
— Stable matching
e Coloring.
— Conflict graphs
e Other graph problems

— Connected components, spanning tree, Euler cycle, network flow (easy)
— Hamiltonian cycle, facility location, vertex cover, dominating set (hard)




Bipartite graphs ®) Rensselaer

* A bipartite graph consists of two sets of vertices
— Edges exist only across the two sets

* Bipartite graphs appear everywhere in life

— Suppose you have a number of resources that are responsible for completing
some tasks

e E.g., each one of you wants to train your favorite ChatGPT model on CCl,
but CCl only has so many GPUs

— Suppose there is a node for each CS class and a node for each CS student
* An edge exists if a student s is in class ¢

— Sports teams/players can be divided similarly

— Etc.




Bipartite Matching

@ Rensselaer

* A bipartite graph can be left-matched if there exists a set of edges such that each
left-vertex is covered by exactly one edge

— E.g., there are enough resources for all tasks

e Can this graph be left-matched?
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Bipartite Matching, cont’d @) Rensselaer

* A bipartite graph can be left-matched if there exists a set of edges such that each
left-vertex is covered by exactly one edge

— E.g., there are enough resources for all tasks

e Can this graph be left-matched?

Don’t have enough resources for tasks T,, T3, T,




Hall’s Theorem

@ Rensselaer

e Turns out the condition on the previous slide is true for all graphs and is a sufficient
condition for matching in any graph

* For a given left subset X, let N(X) be the set of “neighbors” of X, i.e.,
corresponding nodes on the right with edges to X
— Let X = {T,, T3, T,}. What is N(X)?
N(X) = {R3; R4}

» Theorem [Hall’s Theorem]. Suppose that for all left-subsets X, | X| < |N(X)]| (Hall’s
“matching condition”). Then, there is a matching which covers every left-vertex.

— Hall’'s Theorem says that the necessary condition is also sufficient.




Proof of Hall’s Theorem ©® Rensselaer

» Theorem [Hall’s Theorem]. Suppose that for all left-subsets X, | X| < |N(X)]| (Hall’s
“matching condition”). Then, there is a matching which covers every left-vertex.
* Proof. By strong induction on the number of left-vertices.

— [Base Case] Suppose the number of left-vertices isn = 1. As long as the left-
vertex has at least one outgoing edge, then it can be covered. Check.




Proof of Hall’s Theorem ©® Rensselaer

» Theorem [Hall’s Theorem]. Suppose that for all left-subsets X, | X| < |N(X)]| (Hall’s
“matching condition”). Then, there is a matching which covers every left-vertex.
* Proof. By strong induction on the number of left-vertices.

— [Induction Step] Suppose we have n left-vertices and suppose P(n) is T, i.e.,
|X| < |N(X)| for all subsets X. Need to prove that P(n) - P(n + 1).

* Case 1. There is a proper left-subset X, with 1 < |X| < n, for which |X| =
IN(X).
— X has a matching into N(X) (using strong induction)
— Let Y be any left-subsetY € X

— The neighbors of Y, N(Y), could overlap with N(X) y
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» Let N(Y) = N(Y)\N(X) -
— by the matching condition, y & o
INO|+|NY)|=INXUY)| = T )

> X UY|=|X]+]Y]
— Since |X| = [N(X)], it follows that |1V(Y)| > |Y]

— Since this is true for any subset Y € X, then X has a separate
matching into N (X)
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Proof of Hall’s Theorem, cont’d @2 Rensselaer

» Theorem [Hall’s Theorem]. Suppose that for all left-subsets X, | X| < |N(X)]| (Hall’s
“matching condition”). Then, there is a matching which covers every left-vertex.
* Proof. By strong induction on the number of left-vertices.

— [Induction Step] Suppose we have n left-vertices and suppose P(n) is T, i.e.,
|X| < |N(X)| for all subsets X. Need to prove that P(n) - P(n + 1).

* Case 2. For every proper left-subset X (with 1 < |X| < n), |X| < |[N(X)|.
— Match the first left-vertex, X4, along any edge to a neighbor, n4
— Take any left-subset Y of the remaining graph of n left vertices
— What do we know about N(Y)?
» Eitherny & N(Y), i.e., N(Y) = N(Y)
» orn; € N(Y),ie, INW)| = [N(V)| + 1

» So finally, |[N(Y)| = IN(Y)| — 1
.-FJ
° 0
o 0 N(Y)
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Proof of Hall’'s Theorem, cont’d

» Theorem [Hall’s Theorem]. Suppose that for all left-subsets X, | X| < |N(X)]| (Hall’s
“matching condition”). Then, there is a matching which covers every left-vertex.
* Proof. By strong induction on the number of left-vertices.

— [Induction Step] Suppose we have n left-vertices and suppose P(n) is T, i.e.,
|X| < |N(X)| for all subsets X. Need to prove that P(n) - P(n + 1).

* Case 2. For every proper left-subset X (with 1 < |X| < n), |X| < |[N(X)|.
— Match the first left-vertex, X4, along any edge to a neighbor, n4

— Take any left-subset Y of the remaining graph of n left vertices
INY)| = IN(Y)| -1
>|Y|+1—-1=]Y]|
— The remaining left-vertices have a matching to the remaining right-
vertices (induction hypothesis).

* In both cases, there is a left-matching which covers the n + 1 left-vertices.
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Hall’s Theorem Practice. ©® Rensselaer

* Exercise. If (min left-degree) = (max right-degree) then Hall’s condition holds.
— Why is this a better idea than actually verifying Hall’s condition?
* Much easier to check
* Enumerating all subsets takes a loooong time

 Example 12.3. Building Latin Squares.
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Stable Matching @ Rensselaer

* Also known as stable marriage

* Suppose that we add preferences to the matching problem
— Each left-vertex has preferences for all right vertices and vice-versa
— E.g., suppose left vertices are A, B, C and right-vertices are X, Y, 7

X Y | Z A | B C
1. | A | A | B 1 Z Y | Z
2. | B c | A 2 Y [ X | X
3. | C | B C 3.1 X | Z Y

e Stable matching is used for matching medical schools with students applying for
residency

— E.g., student A prefers school ZtoY to X
— E.g., school X prefers student Ato BtoC

* The point is to avoid a volatile matchup
— Why is this volatile?
— A prefersY to X and Y prefers Ato B
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Stable Matching Algorithm Overview ® Rensselaer

X Y Z A B C
* Round 1. Interviews - s o I
B|cC|A XY Z - Yy [ x [ x
— All schools interview their top candidates c 8¢ x|z |v
— Everyone creates their ranking
— Student A rejects school X as lowest ranked
— X will not interview A again

+
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Round 2. More Interviewing

H
e
s
X
|

— (In practice, this is done algorithmically, B
after everyone submits their ranking)

| O

— Y and Z invite A and B respectively
— X invites B
— B rejects Z; Z erases B; X and Y will return

Round 3. More interviewing (4 4 B | X7 X -
— Z invites A A I
C B C

— A rejects Y for their top-choice Z.

Round 4. Final round L e
— All parties are paired in a non-volatile manner Z_ X Y .




Stable Matching Properties ® Rensselaer

* Theorem. [Gale-Shapely, 1962]
— For n students and schools, the algorithm ends after at most n? rounds
— Every student and school will be matched at the end
— The resulting set of matchings is stable (no volatile pairs).

* In practice, there’s a game theoretic aspect as well, which we won’t talk about

— Suppose a student has a 1/100 chance of getting into their top choice but a 1/10
chance of getting into their 2" choice

* The student should probably rank their 2" choice higher

— Schools and students collude during interviews
* They agree to match each other in order to avoid unexpected outcomes

through the algorithm
» Stable matching is a weird system but the residency problem was getting out of
hand in the mid 20t century
— Students were getting offers early in their junior years
— Stable matching provides a fair mechanism that is guaranteed to be stable




Conflict Graphs and Coloring ®) Rensselaer

* Task 1: Assigning radio frequencies
— Suppose we have 6 radio stations arranged as follows

'/,.- \ .

| ®

— Stations broadcasting to the same listener (red areas) need different frequencies
(conflict).

— How do we build a conflict graph based on the above placement?

@‘Z’Z@

— How many frequencies do you need?

L@
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Conflict Graphs and Coloring, cont’d @) Rensselaer

* Task 2: Scheduling Course Exams Cy:CS|

C,: Calcl

C3: Intro Psych

C4CS“

Cs: Calcll

Cs: FOCS

Q= =S OS] >

— Courses with the same student need different exam-time (conflict) — A causes

CS I and Calc | to conflict.
C—C)
I ">
H—©)

— All students need to take all their exams. How many exam slots do you need?

@
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Sequential Greedy Coloring @) Rensselaer

1. Colors{1,2,3,...}
2. Letcolor(vy) = 1.

3. Assume that vertices v, ..., v; have been colored. Color v;, 1 with the smallest
color so that it does not conflict with any previously colored vertex.

* For visual effect, pick colors {1,2,3,4} as {red, blue, green, puprple}

19




Sequential Greedy Coloring, cont’d ®) Rensselaer

* Chromatic Number y(G). The minimum number of colors needed.
* Lemma. Using Sequential Greedy, color(v;) < 6; + 1.

e Theorem. Chromatic number is bounded by maximum degree.
— i.e., x(G) < A(G) + 1, where A(G) is the max degree in G, A(G) = max 6; .
l
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Trees are 2-Colorable ©® Rensselaer

e Let us prove this for RBT’s. We show that the constructor rule preserves 2-
colorability.

T

* How do we know T;’s root is colored red?
— If not red, swap all colors — tree is still 2-colored

* A graph is bipartite if and only if its chromatic number is 2. Trees are bipartite.
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Other Graph Problems

@ Rensselaer

I”

e Connected Components. For “viral” marketing,
pick one vertex in each connected component (e.g.
target the “central (red)” vertices). [easy]

* Spanning Tree. In a road grid (gray), to maintain a
minimal “highway system” that offers high-speed
travel we can use a spanning tree (red). [easy]

e Euler Cycle. Every winter, Troy typically has a 1-foot
snowfall. The snowplow should start at the depot,
traverse every road exactly once and return to the
depot, traversing an Euler Cycle (red). [easy]

* Hamiltonian Cycle. A traveling sales man starts at
work and visits every house (vertex) exactly once,
returning to work. The salesperson follows a
Hamiltonian Cycle. [hard]
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Other Graph Problems, cont’d @) Rensselaer

* Facility Location (K -center). McDonalds wants to place K = 2
restaurants (red) in a road network so that no customer has too
drive far to reach their closest McDonalds. [hard]

e Vertex Cover. Place the minimum number of police at
intersections so that all roads can be surveilled or “covered”. The

officers form a vertex cover. Can you do it with fewer than 6?
[hard]

* Dominating Set. Place the fewest hospitals at intersections
(vertices) so that every intersection is either at a hospital or one

block away from one. The red hospitals are a dominating set.
[hard]

* Network Flow. A source-ISP (blue) sends packets to a sink-ISP
(red). What is the maximum transmission rate achievable without
exceeding the link capacities? We achieved flow rate 10. [easy]
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