Graphs I: Notation and Basics

Reading

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
 - Chapter 11

Overview

- Graph basics and notation
 - Equivalent graphs: isomorphism
- Degree sequence
 - Handshaking Theorem
- Trees
- Planar graphs
- Other types of graphs: multigraph, weighted, directed
- Problem solving with Graphs

Graph Basics and Notation

- Graphs model relationships:
 - friendships (e.g. social networks)
 - connectivity (e.g. cities linked by highways)
 - conflicts (e.g. radio-stations with listener overlap)

Graph G

Vertices (aka nodes): (a) (b) (c) (d) (e) (f) (g)

Degree: Number of relationships

 $V = \{a, b, c, d, e, f, g\}.$ $E = \begin{cases} (a, b), (a, c), (b, c), (b, d), \\ (b, e), (c, d), (d, e), (f, g) \end{cases}.$ e.g., degree(b) = 4.p = acbedb.

Graph Isomorphism

• Suppose we relabel the nodes in G to v_1, \ldots, v_7

Relabeling of Graph G

• Relabel nodes (i.e., give them new names) as follows:

 $a \rightarrow v_1, b \rightarrow v_2, c \rightarrow v_3, d \rightarrow v_4, e \rightarrow v_5, f \rightarrow v_6, g \rightarrow v_7$

• What is the new set of vertices:

 $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$

- How about edges? $E = \{(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_4), (v_2, v_5), (v_3, v_4), (v_4, v_5), (v_6, v_7)\}$
- If two graphs can be relabeled with v_1, \ldots, v_n , giving the *same* edge set, they are equivalent *isomorphic*.
- **Practice**. Exercise 11.2.

Paths and Connectivity

- A path from v₁ to v₂ is a sequence of vertices (start is v₁ and end is v₂):
 e.g., v₁v₃v₂v₅v₄v₂
- There is an edge in the graph between consecutive vertices in the path.
 e.g., v₁ and v₂ are *connected*.
- The length of a path is the number of edges traversed (e.g., 5).
- Cycle: path that starts and ends at a vertex without repeating any edge:
 e.g., v₁v₂v₃v₁
- Vertices v_1 and v_6 are not connected by a path.
- The graph *G* is *not* connected (*every* pair of vertices must be connected by a path).
- How can we make G connected?
 - Add any edge from vertices $\{v_1, v_2, v_3, v_4, v_5\}$ to vertices $\{v_6, v_7\}$

Graph Representation

Adjacency list

 $v_{1}: v_{2}, v_{3}$ $v_{2}: v_{1}, v_{3}, v_{4}, v_{5}$ $v_{3}: v_{1}, v_{2}, v_{4}$ $v_{4}: v_{2}, v_{3}, v_{5}$ $v_{5}: v_{2}, v_{4}$ $v_{6}: v_{7}$ $v_{7}: v_{6}$

• Adjacency matrix

 $v_1 \ v_2 \ v_3 \ v_4 \ v_5 \ v_6 \ v_7$ $v_1 [0 \ 1 \ 1 \ 0 \ 0]$ 0 0 $v_2 | 1 \ 0 \ 1 \ 1 \ 1 \ 0$ 0 $v_3 | 1 | 1 | 0 | 1 | 0 | 0$ 0 $v_4 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0$ 0 $v_5 0 1 0 1 0 0$ 0 $v_6 \mid 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ 1 $v_7 \lfloor 0$ 0 0 0 0 1 $0 \rfloor$

- More wasted memory; faster algorithms.
- Small redundancy: every edge is "represented" twice.

Graph, G

Degree Sequence

- degree δ_i = number of v_i 's neighbors

$$= \sum_{j}^{n} A_{ij}$$

 δ = [4 3 3 2 2 1 1]

• Other examples

Graph Types

- Complete, K_5 $\delta = [4,4,4,4,4]$
- Bipartite, $K_{3,2}$ $\delta = [3,3,2,2,2]$
- Line, L_5 $\delta = [2,2,2,1,1]$
- Cycle, $C_5 \delta = [2, 2, 2, 2, 2]$
- Star, S_6 $\delta = [5,1,1,1,1,1]$
- Wheel, W_6 $\boldsymbol{\delta} = [5,3,3,3,3,3]$

Handshaking Theorem

- Exercise 1. Construct a graph with degree sequence $\delta = [3, 3, 3, 2, 1, 1]$.
- Theorem [Handshaking Theorem]. For any graph the sum of vertex-degrees equals twice the number of edges, $\sum_{i=1}^{n} \delta_i = 2|E|$.
- *Proof sketch.* Every edge contributes 2 to the sum of degrees. (Why?)
 - Every edge connects two vertices.
 - If there are |E| edges, their contribution to the sum of degrees is 2|E|.
- Exercise. Give a formal proof by induction on the number of edges in the graph.
- Exercise 1 Answer. Can't be done. Why?
 - sum of degrees is 3 + 3 + 3 + 2 + 1 + 1 = 13 (odd).
- Exercise. At a party a person is odd if they shake hands with an odd number of people.
 - Show that the number of odd people is even.

Trees (More General than RBTs)

- Definition [General Tree].
 - A tree is a *connected* graph with no cycles.
- Building a tree, one edge at a time.

- Why is the dotted line in step 2 not allowed?
- Note that there is no designated root
 - If a root is desired, it is usually determined by the application
 - E.g., the starting state of your program
- Exercise 11.6. Every tree with n vertices has n 1 edges. (We proved this for RBTs.)

Rensselae

Planar Graphs

- A graph is planar if you can draw it without edge crossings.
- Consider a complete graph K₄

– Can we draw it without crossings?

Why do we care about planar graphs?

- Chip design: CPUs must be connected without wire-crossings (short circuit!)
 - Can you connect CPU 5 and 3?

- Town planning: connect utilities to homes without pipe-crossings (water and sewer)
 - Can it be done?

- **Map coloring:** adjacent countries sharing a border must have different colors. The map corresponds to a planar graph.
 - Four-color theorem says any map can be colored with 4 colors (excluding enclaves)

Planar Graphs Exercise

- Exercise 11.7. Euler's Invariant Characteristic: F + V E = 2- Faces, F: outer region of 3D object
- Planar K_4

• Planar map

- Pyramid
 - Same as planar K_4
- Cube (is it planar?)
- V = 8, E = 12, F = 66 + 8 - 12 = 2

V = 4, E = 6, F = 4

4 + 4 - 6 = 2

V = 11, E = 17, F = 88 + 11 - 17 = 2

Octohedron (is it planar?)

$$V = 6, E = 12, F = 8$$

8 + 6 - 12 = 2

Other Types of Graphs: Multigraph

- Multigraphs
 - Allow for multiple edges between the same nodes
 - What are the vertices/edges, in the graph to the right?

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$$

$$E = \{(v_1, v_2), (v_1, v_2), (v_2, v_3), (v_2, v_4), (v_2, v_5), (v_3, v_3), (v_3, v_4), (v_3, v_4), (v_3, v_4), (v_4, v_5)\}$$

Multigraphs used to model complex systems where standard graph is redundant

- Königsberg was an old Prussian city (today's Kaliningrad)
 - Can you cross each bridge exactly once?
 - An Eulerian path is path through the graph that visits each edge only once
 - Can you find such a path in the graph to the right?

Other Types of Graphs: Weighted, Directed

- Weighted graph
 - Each edge has a weight/cost
- Weighted graphs used to model a variety of scenarios
 - e.g., one internet service provider routing packages through another
 - weights correspond to the cost of sending the package
 - e.g., planning a route for your robot from point A to point B
 - weights model the physical length between nodes
- Directed graph
 - Each edge has a direction

 $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$ $E = \{(v_1, v_2), (v_2, v_4), (v_2, v_5), (v_3, v_1), (v_3, v_2), (v_3, v_4), (v_5, v_4), (v_6, v_7)\}$

- Used to model all sorts of asymmetric relationships
- ancestry graphs, tournaments, one-way streets, partially ordered sets (Example 11.6)

Problem Solving with Graphs

- Graphs are everywhere because relationships are everywhere
- On the right is elevation data in a park
 - One unit of rain falls on each grid-square
 - Water flows to a neighbor of lowest elevation (e.g., $17 \rightarrow 1$)
 - Where should we install drains and what should their capacities be?
- Model the problem as a directed graph.
 - Directed edges indicate how water flows: three disjoint trees.
 - Red, green and blue vertices are "sinks" (no out-going arrow)
- Place drains at the sinks
- Drain capacities: **blue**=9 units, **red**=7 units and **green**=9 units
- The solution pops out once we formulate the problem as a graph

3	2	17	11	12
4	1	18	10	7
21	22	23	16	8
20	13	5	19	9
25	24	6	14	15

