Graphs I: Notation and Basics

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 11
- Graph basics and notation
- Equivalent graphs: isomorphism
- Degree sequence
- Handshaking Theorem
- Trees
- Planar graphs
- Other types of graphs: multigraph, weighted, directed
- Problem solving with Graphs

Graph Basics and Notation

- Graphs model relationships:
- friendships (e.g. social networks)
- connectivity (e.g. cities linked by highways)
- conflicts (e.g. radio-stations with listener overlap)

Graph G

Vertices (aka nodes): (a) (b)(c)(d) (c)(f)(G)

$$
\begin{array}{r}
V=\{a, b, c, d, e, f, g\} \\
E=\left\{\begin{array}{r}
(a, b),(a, c),(b, c),(b, d), \\
(b, e),(c, d),(d, e),(f, g)
\end{array}\right\} . \\
e . g ., \text { degree }(b)=4 . \\
p=a c b e d b .
\end{array}
$$

Graph Isomorphism

- Suppose we relabel the nodes in G to v_{1}, \ldots, v_{7}

Graph G

$\underline{\text { Relabeling of Graph } G}$

- Relabel nodes (i.e., give them new names) as follows:

$$
a \rightarrow v_{1}, b \rightarrow v_{2}, c \rightarrow v_{3}, d \rightarrow v_{4}, e \rightarrow v_{5}, f \rightarrow v_{6}, g \rightarrow v_{7}
$$

- What is the new set of vertices:

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}
$$

- How about edges?

$$
E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{2}, v_{5}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right),\left(v_{6}, v_{7}\right)\right\}
$$

- If two graphs can be relabeled with v_{1}, \ldots, v_{n}, giving the same edge set, they are equivalent - isomorphic.
- Practice. Exercise 11.2.

Paths and Connectivity

Graph, G

- A path from v_{1} to v_{2} is a sequence of vertices (start is v_{1} and end is v_{2}):
- e.g., $v_{1} v_{3} v_{2} v_{5} v_{4} v_{2}$
- There is an edge in the graph between consecutive vertices in the path.
- e.g., v_{1} and v_{2} are connected.
- The length of a path is the number of edges traversed (e.g., 5).
- Cycle: path that starts and ends at a vertex without repeating any edge:
- e.g., $v_{1} v_{2} v_{3} v_{1}$
- Vertices v_{1} and v_{6} are not connected by a path.
- The graph G is not connected (every pair of vertices must be connected by a path).
- How can we make G connected?
- Add any edge from vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ to vertices $\left\{v_{6}, v_{7}\right\}$

Graph Representation

- Adjacency list

$$
\begin{aligned}
& v_{1}: v_{2}, v_{3} \\
& v_{2}: v_{1}, v_{3}, v_{4}, v_{5} \\
& v_{3}: v_{1}, v_{2}, v_{4} \\
& v_{4}: v_{2}, v_{3}, v_{5} \\
& v_{5}: v_{2}, v_{4} \\
& v_{6}: v_{7} \\
& v_{7}: v_{6}
\end{aligned}
$$

- Adjacency matrix
v_{1}
v_{1}
v_{2}
v_{3}
v_{4}
v_{5}
v_{6}
v_{7}
$v_{7}$$\left[\begin{array}{lllllll}0 & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
- More wasted memory; faster algorithms.
- Small redundancy: every edge is "represented" twice.

Degree Sequence

- A node's degree is the number of its neighbors
- degree $\delta_{i}=$ number of v_{i} 's neighbors

$$
=\sum_{j}^{n} A_{i j}
$$

$$
\boldsymbol{\delta}=\left[\begin{array}{lllll}
4 & 3 & 3 & 2 & 2
\end{array} 1\right.
$$

- Other examples

Graph G

Co-author network
arxiv 1993-2003

(1M vertices, 1.5M edges)

Source: Google, 2002 (900K pages, 5M edges)

Graph Types

- Complete, K_{5}
$\boldsymbol{\delta}=[4,4,4,4,4]$
- Bipartite, $K_{3,2}$
$\boldsymbol{\delta}=[3,3,2,2,2]$

- Line, L_{5}
$\boldsymbol{\delta}=[2,2,2,1,1]$
- Cycle, C_{5}
$\boldsymbol{\delta}=[2,2,2,2,2]$
- Star, S_{6}
$\boldsymbol{\delta}=[5,1,1,1,1,1]$
- Wheel, W_{6}
$\boldsymbol{\delta}=[5,3,3,3,3,3]$

Handshaking Theorem

- Exercise 1. Construct a graph with degree sequence $\boldsymbol{\delta}=[3,3,3,2,1,1]$.
- Theorem [Handshaking Theorem]. For any graph the sum of vertex-degrees equals twice the number of edges, $\sum_{i=1}^{n} \delta_{i}=2|E|$.
- Proof sketch. Every edge contributes 2 to the sum of degrees. (Why?)
- Every edge connects two vertices.
- If there are $|E|$ edges, their contribution to the sum of degrees is $2|E|$.
- Exercise. Give a formal proof by induction on the number of edges in the graph.
- Exercise 1 Answer. Can't be done. Why?
- sum of degrees is $3+3+3+2+1+1=13$ (odd).
- Exercise. At a party a person is odd if they shake hands with an odd number of people.
- Show that the number of odd people is even.

Trees (More General than RBTs)

- Definition [General Tree].
- A tree is a connected graph with no cycles.
- Building a tree, one edge at a time.

- Why is the dotted line in step 2 not allowed?
- Note that there is no designated root
- If a root is desired, it is usually determined by the application
- E.g., the starting state of your program
- Exercise 11.6. Every tree with n vertices has $n-1$ edges. (We proved this for RBTs.)

Planar Graphs

- A graph is planar if you can draw it without edge crossings.
- Consider a complete graph K_{4}

- Can we draw it without crossings?

Why do we care about planar graphs?

- Chip design: CPUs must be connected without wire-crossings (short circuit!)
- Can you connect CPU 5 and 3 ?

- Town planning: connect utilities to homes without pipe-crossings (water and sewer)
- Can it be done?

- Map coloring: adjacent countries sharing a border must have dıfferent colors. The map corresponds to a planar graph.
- Four-color theorem says any map can be colored with 4 colors (excluding enclaves)

Planar Graphs Exercise

- Exercise 11.7. Euler's Invariant Characteristic: $F+V-E=2$
- Faces, F : outer region of 3D object
- Planar K_{4}

$$
\begin{gathered}
V=4, E=6, F=4 \\
4+4-6=2
\end{gathered}
$$

- Planar map

$$
\begin{gathered}
V=11, E=17, F=8 \\
8+11-17=2
\end{gathered}
$$

- Pyramid
- Same as planar K_{4}
- Cube (is it planar?)

$$
\begin{gathered}
V=8, E=12, F=6 \\
6+8-12=2
\end{gathered}
$$

- Octohedron (is it planar?)

$$
\begin{gathered}
V=6, E=12, F=8 \\
8+6-12=2
\end{gathered}
$$

Other Types of Graphs: Multigraph

- Multigraphs
- Allow for multiple edges between the same nodes

- What are the vertices/edges, in the graph to the right?

$$
\begin{gathered}
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\} \\
E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right),\left(v_{2}, v_{5}\right)\right. \\
\left.\left(v_{3}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{3}, v_{4}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right)\right\}
\end{gathered}
$$

- Multigraphs used to model complex systems where standard graph is redundant

- Königsberg was an old Prussian city (today’s Kaliningrad)
- Can you cross each bridge exactly once?
- An Eulerian path is path through the graph that visits each edge only once
- Can you find such a path in the graph to the right?

Other Types of Graphs: Weighted, Directed

- Weighted graph
- Each edge has a weight/cost
- Weighted graphs used to model a variety of scenarios

- e.g., one internet service provider routing packages through another
- weights correspond to the cost of sending the package
- e.g., planning a route for your robot from point A to point B
- weights model the physical length between nodes
- Directed graph
- Each edge has a direction

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\} \\
& E=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{4}\right),\left(v_{2}, v_{5}\right),\left(v_{3}, v_{1}\right)\right. \\
&\left.\left(v_{3}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{5}, v_{4}\right),\left(v_{6}, v_{7}\right)\right\}
\end{aligned}
$$

- Used to model all sorts of asymmetric relationships
- ancestry graphs, tournaments, one-way streets, partially ordered sets (Example 11.6)

Problem Solving with Graphs

- Graphs are everywhere because relationships are everywhere
- On the right is elevation data in a park
- One unit of rain falls on each grid-square
- Water flows to a neighbor of lowest elevation (e.g., $17 \rightarrow 1$)

3	2	17	11	12
4	1	18	10	7
21	22	23	16	8
20	13	5	19	9
25	24	6	14	15

- Where should we install drains and what should their capacities be?
- Model the problem as a directed graph.
- Directed edges indicate how water flows: three disjoint trees.
- Red, green and blue vertices are "sinks" (no out-going arrow)
- Place drains at the sinks
- Drain capacities: blue=9 units, red=7 units and green=9 units

- The solution pops out once we formulate the problem as a graph

