
Graphs I: Notation and Basics
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Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 11
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Overview

• Graph basics and notation

– Equivalent graphs: isomorphism

• Degree sequence

– Handshaking Theorem

• Trees

• Planar graphs

• Other types of graphs: multigraph, weighted, directed

• Problem solving with Graphs

3



Graph Basics and Notation

• Graphs model relationships: 

– friendships (e.g. social networks)

– connectivity (e.g. cities linked by highways)

– conflicts (e.g. radio-stations with listener overlap)
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Graph Isomorphism

• Suppose we relabel the nodes in 𝐺 to 𝑣1, … , 𝑣7

• Relabel nodes (i.e., give them new names) as follows:
𝑎 → 𝑣1, 𝑏 → 𝑣2, 𝑐 → 𝑣3, 𝑑 → 𝑣4, 𝑒 → 𝑣5, 𝑓 → 𝑣6, 𝑔 → 𝑣7

• What is the new set of vertices:

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7}

• How about edges?
𝐸 = { 𝑣1, 𝑣2 , 𝑣1, 𝑣3 , 𝑣2, 𝑣3 , 𝑣2, 𝑣4 , 𝑣2, 𝑣5 , 𝑣3, 𝑣4 , 𝑣4, 𝑣5 , (𝑣6, 𝑣7)}

• If two graphs can be relabeled with 𝑣1, … , 𝑣𝑛, giving the same edge set, they are 
equivalent – isomorphic.

• Practice. Exercise 11.2.
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Paths and Connectivity

• A path from 𝑣1 to 𝑣2 is a sequence of vertices (start is 𝑣1 and end is 𝑣2): 

– e.g., 𝑣1𝑣3𝑣2𝑣5𝑣4𝑣2

• There is an edge in the graph between consecutive vertices in the path.

– e.g., 𝑣1 and 𝑣2 are connected.

• The length of a path is the number of edges traversed (e.g., 5).

• Cycle: path that starts and ends at a vertex without repeating any edge: 

– e.g., 𝑣1𝑣2𝑣3𝑣1

• Vertices 𝑣1 and 𝑣6 are not connected by a path.

• The graph 𝐺 is not connected (every pair of vertices must be connected by a path).

• How can we make G connected?

– Add any edge from vertices {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} to vertices {𝑣6, 𝑣7}
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Graph Representation

• Adjacency list
𝑣1: 𝑣2, 𝑣3
𝑣2: 𝑣1, 𝑣3, 𝑣4, 𝑣5
𝑣3: 𝑣1, 𝑣2, 𝑣4
𝑣4: 𝑣2, 𝑣3, 𝑣5
𝑣5: 𝑣2, 𝑣4
𝑣6: 𝑣7
𝑣7: 𝑣6

• Adjacency matrix
𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

𝑣1
𝑣2
𝑣3
𝑣4
𝑣5
𝑣6
𝑣7

0 1 1 0 0 0 0
1 0 1 1 1 0 0
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 1 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

– More wasted memory; faster algorithms.

– Small redundancy: every edge is “represented” twice.
8



Degree Sequence

• A node’s degree is the number of its neighbors

– degree 𝛿𝑖 = number of 𝑣𝑖’s neighbors

=

𝑗

𝑛

𝐴𝑖𝑗

𝜹 = [4 3 3 2 2 1 1]

• Other examples
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Graph Types

• Complete, 𝐾5
𝜹 = [4,4,4,4,4]

• Bipartite, 𝐾3,2
𝜹 = [3,3,2,2,2]

• Line, 𝐿5
𝜹 = [2,2,2,1,1]

• Cycle, 𝐶5
𝜹 = [2,2,2,2,2]

• Star, 𝑆6
𝜹 = [5,1,1,1,1,1]

• Wheel, 𝑊6

𝜹 = [5,3,3,3,3,3]
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Handshaking Theorem

• Exercise 1. Construct a graph with degree sequence 𝜹 = [3, 3, 3, 2, 1, 1].

• Theorem [Handshaking Theorem]. For any graph the sum of vertex-degrees equals 
twice the number of edges, σ𝑖=1

𝑛 𝛿𝑖 = 2|𝐸|.

• Proof sketch. Every edge contributes 2 to the sum of degrees. (Why?)

– Every edge connects two vertices.

– If there are |𝐸| edges, their contribution to the sum of degrees is 2|𝐸|.

• Exercise. Give a formal proof by induction on the number of edges in the graph.

• Exercise 1 Answer. Can’t be done. Why?

– sum of degrees is 3 + 3 + 3 + 2 + 1 + 1 = 13 (odd).

• Exercise. At a party a person is odd if they shake hands with an odd number of 
people.

– Show that the number of odd people is even.
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Trees (More General than RBTs)

• Definition [General Tree].

– A tree is a connected graph with no cycles.

• Building a tree, one edge at a time.

• Why is the dotted line in step 2 not allowed?

• Note that there is no designated root

– If a root is desired, it is usually determined by the application

– E.g., the starting state of your program

• Exercise 11.6. Every tree with 𝑛 vertices has 𝑛 − 1 edges. (We proved this for RBTs.)
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Planar Graphs

• A graph is planar if you can draw it without edge crossings.

• Consider a complete graph 𝐾4

– Can we draw it without crossings?

13



Why do we care about planar graphs?

• Chip design: CPUs must be connected without wire-crossings (short circuit!)

– Can you connect CPU 5 and 3?

• Town planning: connect utilities to homes without pipe-crossings (water and sewer)

– Can it be done?

• Map coloring: adjacent countries sharing a border must have different colors. The 
map corresponds to a planar graph.

– Four-color theorem says any map can be colored with 4 colors (excluding 
enclaves)
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Planar Graphs Exercise

• Exercise 11.7. Euler’s Invariant Characteristic: 𝐹 + 𝑉 − 𝐸 = 2

– Faces, 𝐹: outer region of 3D object

• Planar 𝐾4
𝑉 = 4, 𝐸 = 6, 𝐹 = 4

4 + 4 − 6 = 2

• Planar map
𝑉 = 11, 𝐸 = 17, 𝐹 = 8

8 + 11 − 17 = 2

• Pyramid

– Same as planar 𝐾4

• Cube (is it planar?)
𝑉 = 8, 𝐸 = 12, 𝐹 = 6

6 + 8 − 12 = 2

• Octohedron (is it planar?)
𝑉 = 6, 𝐸 = 12, 𝐹 = 8

8 + 6 − 12 = 2 15



Other Types of Graphs: Multigraph

• Multigraphs

– Allow for multiple edges between the same nodes

– What are the vertices/edges, in the graph to the right?
𝑉 = 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7

𝐸 = { 𝑣1, 𝑣2 , 𝑣1, 𝑣2 , 𝑣2, 𝑣3 , 𝑣2, 𝑣4 , 𝑣2, 𝑣5 ,
𝑣3, 𝑣3 , 𝑣3, 𝑣4 , 𝑣3, 𝑣4 , 𝑣3, 𝑣4 , (𝑣4, 𝑣5)}

– Multigraphs used to model complex systems where standard graph is redundant

– Königsberg was an old Prussian city (today’s Kaliningrad)

• Can you cross each bridge exactly once?

• An Eulerian path is path through the graph that visits each edge only once

• Can you find such a path in the graph to the right? 16



Other Types of Graphs: Weighted, Directed 

• Weighted graph

– Each edge has a weight/cost

• Weighted graphs used to model a variety of scenarios

– e.g., one internet service provider routing packages through another

• weights correspond to the cost of sending the package 

– e.g., planning a route for your robot from point A to point B

• weights model the physical length between nodes

• Directed graph

– Each edge has a direction
𝑉 = 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7

𝐸 = { 𝑣1, 𝑣2 , 𝑣2, 𝑣4 , 𝑣2, 𝑣5 , 𝑣3, 𝑣1 ,
𝑣3, 𝑣2 , 𝑣3, 𝑣4 , 𝑣5, 𝑣4 , (𝑣6, 𝑣7)}

– Used to model all sorts of asymmetric relationships

– ancestry graphs, tournaments, one-way streets, partially ordered sets (Example 
11.6)
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Problem Solving with Graphs

• Graphs are everywhere because relationships are everywhere

• On the right is elevation data in a park

– One unit of rain falls on each grid-square

– Water flows to a neighbor of lowest elevation (e.g., 17 → 1)

– Where should we install drains and what should their capacities be?

• Model the problem as a directed graph.

– Directed edges indicate how water flows: three disjoint trees.

– Red, green and blue vertices are “sinks” (no out-going arrow)

• Place drains at the sinks

• Drain capacities: blue=9 units, red=7 units and green=9 units

• The solution pops out once we formulate the problem as a graph
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3 2 17 11 12

4 1 18 10 7

21 22 23 16 8

20 13 5 19 9

25 24 6 14 15
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