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Reading

• Malik Magdon-Ismail. Discrete Mathematics and Computing.

– Chapter 10
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Overview

• Division and Greatest Common Divisor (GCD)

– Euclid’s algorithm

– Bezout’s identity

• Fundamental Theorem of Arithmetic

• Modular Arithmetic

– Cryptography

– RSA public key cryptography
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Number Theory Attracts the Best of the Best

• Number theory is fun because you don’t need to know any math formalisms, and 
yet you can ask questions that no one knows the answer to

– Are there infinitely many prime pairs?

– A prime pair consists of two prime numbers, 𝑝 and 𝑞, such that 𝑝 = 𝑞 − 2

• “Babies can ask questions which grown-ups can’t solve” – P. Erdős

• 6 = 1 + 2 + 3 is perfect (equals the sum of its proper divisors)

– Is there an odd perfect number?

– Tinker first! Can you prove it?

• It turns out proving it is not so easy
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The Basics

• Quotient-Remainder Theorem. For 𝑛 ∈ ℤ and 𝑑 ∈ ℕ, 𝑛 = 𝑞𝑑 + 𝑟. The quotient 𝑞 ∈
ℤ and the remainder 0 ≤ 𝑟 ≤ 𝑑 are unique.

– E.g., 𝑛 = 27, 𝑑 = 6. What are 𝑞 and 𝑟?

• 27 = 4 × 6 + 3

• i.e., 𝑟𝑒𝑚(27, 6) = 3

• Divisibility. 𝑑 divides 𝑛 (written 𝑑|𝑛) if and only if 𝑛 = 𝑑𝑞 for some 𝑞 ∈ ℤ.

– e.g., 6|24.

• Primes. 𝒫 = 2,3,5,7,11,13, … . What is another definition of 𝒫?
𝒫 = 𝑝 𝑝 ≥ 2 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑛𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠 𝑜𝑓 𝑝 𝑎𝑟𝑒 1, 𝑝

• Division facts. Exercise 10.2.

1. 𝑑|0

2. If 𝑑|𝑚 and 𝑑′|𝑛, then 𝑑𝑑′|𝑚𝑛

3. If 𝑑|𝑚 and 𝑚|𝑛, then 𝑑|𝑛

4. If 𝑑|𝑛 and 𝑑|𝑚, then 𝑑| 𝑚 + 𝑛

5. If 𝑑|𝑛, then 𝑥𝑑|𝑥𝑛 for 𝑥 ∈ ℕ

6. If 𝑑|(𝑚 + 𝑛) and 𝑑|𝑚, then 𝑑|𝑛
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Greatest Common Divisor

• One of the oldest problems in number theory. Euclid’s algorithm is still one of the 
most famous algorithms in math/number theory

• Divisors of 30: 1,2,3,5,6,10,30

• Divisors of 42: {1,2,3,6,7,14,21,42}

– What are the common divisors?

– Common divisors: {1,2,3,6}. Greatest common divisor (GCD): 6.

• Definition [Greatest Common Divisor, GCD]. Let 𝑚, 𝑛 be two integers not both zero. 
gcd(𝑚, 𝑛) is the largest integer that divides both 𝑚 and 𝑛: 

gcd 𝑚, 𝑛 |𝑚 AND gcd 𝑚, 𝑛 |𝑛

AND any other common divisor 𝑑 ≤ gcd 𝑚, 𝑛 .

– Notice that every common divisor divides the GCD (will prove later today)

– Also, gcd 𝑚, 𝑛 = gcd(𝑛,𝑚)

• Relatively prime. If gcd 𝑚, 𝑛 = 1, then 𝑚, 𝑛 are relatively prime.

– Example: 6 and 35 are not prime, but are relatively prime. Other pairs?

– e.g., 8 and 9, 16 and 25.
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Greatest Common Divisor, cont’d

• Theorem. gcd 𝑚, 𝑛 = gcd 𝑟𝑒𝑚 𝑛,𝑚 ,𝑚 .

– If 𝑚 > 𝑛, swap the places of 𝑛 and 𝑚 in the theorem.

• Proof. 

– First note that 𝑛 = 𝑞𝑚 + 𝑟 → 𝑟 = 𝑛 − 𝑞𝑚.

– Let 𝐷 = gcd(𝑚, 𝑛) and 𝑑 = gcd 𝑚, 𝑟 .

– First note that 𝐷|𝑚 and 𝐷|𝑛. What does this imply?

• It means 𝐷| 𝑛 − 𝑞𝑚 = 𝑟. What does this mean?

• Hence, 𝐷 ≤ gcd 𝑚, 𝑟 = 𝑑 because 𝐷|𝑚 and 𝐷|𝑟.

– Similarly, 𝑑|𝑚 and 𝑑|𝑟.

• i.e., 𝑑| 𝑞𝑚 + 𝑟 = 𝑛 (fact 4). Thus, 𝑑|𝑚 and 𝑑|𝑛.

• Then, 𝑑 ≤ gcd 𝑚, 𝑛 = 𝐷

– Finally, we know 𝐷 ≤ 𝑑 and 𝑑 ≤ 𝐷.

• This means 𝑑 = 𝐷, i.e., gcd 𝑟𝑒𝑚 𝑛,𝑚 ,𝑚 = gcd(𝑚, 𝑛).

– QED.
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Euclid’s Algorithm

• Based on the GCD theorem.

– Keep applying theorem until either 𝑚 or 𝑛 is 0

– Guaranteed to terminate. Why?

• Theorem. gcd 𝑚, 𝑛 = gcd 𝑟𝑒𝑚 𝑛,𝑚 ,𝑚 .

• Let’s look at an example first:
gcd 42,108 =

= gcd 42,24 24 = 108 − 42 ⋅ 2
= gcd 24,18 [18 = 42 − 24 = 42 − 108 − 42 ⋅ 2 = 3 ⋅ 𝟒𝟐 − 𝟏𝟎𝟖]
= gcd 18,6 [6 = 24 − 18 = 108 − 42 ⋅ 2 − (3 ⋅ 42 − 108) = 2 ⋅ 108 − 5 ⋅ 42]
= gcd 6,0 [0 = 18 − 3 ⋅ 6]
= 6

• Remainders in Euclid’s algorithm are integer linear combinations of 42 and 108.

– In particular, gcd 42, 108 = 6 = 2 ⋅ 108 − 5 ⋅ 42.

• This will be true for gcd(𝑚, 𝑛) in general:

gcd(𝑚, 𝑛) = 𝑚𝑥 + 𝑛𝑦 for some 𝑥, 𝑦 ∈ ℤ
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Bezout’s Identity: A “Formula” for GCD

• From Euclid’s algorithm:

gcd(𝑚, 𝑛) = 𝑚𝑥 + 𝑛𝑦 for some 𝑥, 𝑦 ∈ ℤ

• Can any smaller positive number 𝑧 be a linear combination of 𝑚 and 𝑛?

– Question credited to French mathematician Étienne Bézout

• Note that if such a number were to exist, namely 𝑧 = 𝑚𝑥′ + 𝑛𝑦′, then

gcd 𝑚, 𝑛 ≤ 𝑧 because gcd 𝑚, 𝑛 | 𝑚𝑥′ + 𝑛𝑦′

• Theorem [Bézout’s Identity]. gcd(𝑚, 𝑛) is the smallest positive integer linear 
combination of 𝑚 and 𝑛:

gcd 𝑚, 𝑛 = min 𝑚𝑥 + 𝑛𝑦 𝑥, 𝑦 ∈ ℤ

• Proof sketch. Let 𝑙 be the smallest positive linear combination of 𝑚, 𝑛: 𝑙 = 𝑚𝑥 + 𝑛𝑦.

– Prove 𝑙 ≥ gcd(𝑚, 𝑛) as above.

– Prove 𝑙 ≤ gcd(𝑚, 𝑛) by showing 𝑙 is a common divisor of 𝑚 and 𝑛

• The remainder 𝑟 = 𝑚 − 𝑙𝑞 = 𝑚 1 − 𝑥𝑞 − 𝑛𝑦𝑞

• 𝑟 is a remainder, hence 0 ≤ 𝑟 < 𝑙. But 𝑟 is also a linear combination of 𝑚, 𝑛

• There is no “formula” for GCD. But this is close to a “formula”.
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GCD Facts

• Fact 1. gcd 𝑚, 𝑛 = gcd 𝑚, 𝑟𝑒𝑚 𝑛,𝑚

– GCD Theorem

• Fact 2. Every common divisor of 𝑚, 𝑛 divides gcd(𝑚, 𝑛)

– Proof. We know that gcd 𝑚, 𝑛 = 𝑚𝑥 + 𝑛𝑦. Any common divisor divides the 
RHS and so also the LHS.

• e.g., common divisors of 30,42: 1,2,3,6; gcd 30,42 = 6.

• Fact 3. For 𝑘 ∈ ℕ, gcd 𝑘𝑚, 𝑘𝑛 = 𝑘 ⋅ 𝑔𝑐𝑑(𝑚, 𝑛)

– Proof. 

gcd 𝑘𝑚, 𝑘𝑛 = 𝑘𝑚𝑥 + 𝑘𝑛𝑦

– where this is the smallest positive combination of 𝑘𝑚, 𝑘𝑛. 

– But 𝑘𝑚𝑥 + 𝑘𝑛𝑦 = 𝑘 𝑚𝑥 + 𝑛𝑦 means that 𝑚𝑥 + 𝑛𝑦 is the smallest positive 
linear combination of 𝑚, 𝑛

– Why?

– Otherwise, 𝑘 𝑚𝑥 + 𝑛𝑦 would be smaller

• e.g., gcd 6,15 = 3 → gcd 12,30 = 2 × 3 = 6
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GCD Facts, cont’d

• Fact 4. IF gcd 𝑙,𝑚 = 1 AND gcd 𝑙, 𝑛 = 1, THEN gcd 𝑙,𝑚𝑛 = 1.

– Proof. 1 = 𝑙𝑥 + 𝑚𝑦 AND 1 = 𝑙𝑥′ + 𝑛𝑦′. Multiplying
1 = 𝑙𝑥 + 𝑚𝑦 𝑙𝑥′ + 𝑛𝑦′ = 𝑙 𝑙𝑥𝑥′ +𝑚𝑥𝑦′ +𝑚𝑦𝑥′ +𝑚𝑛(𝑦𝑦′)

• e.g., gcd 15,4 = 1 and gcd 15,7 = 1 → gcd 15,28 = 1

• Fact 5. IF 𝑑|𝑚𝑛 and gcd 𝑑,𝑚 = 1, THEN 𝑑|𝑛.

– Proof. 𝑑𝑥 +𝑚𝑦 = 1 → 𝑛𝑑𝑥 + 𝑛𝑚𝑦 = 𝑛. Since 𝑑|𝑚𝑛, 𝑑 divides the LHS. 

• Hence 𝑑 divides the RHS, i.e., 𝑑|𝑛.

• e.g., 4|15 × 16 and gcd 4,15 = 1 → 4|16.
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Die Hard: With a Vengeance

• One of my favorite movies

– Featuring a cool little number-theoretic problem

• Given 3 and 5-gallon jugs, measure exactly 4 gallons. 

• [John McClane & Zeus Carver Thwart Simon Gruber Algorithm]

1. Fill the 5-gallon jug.

2. Pour from the 5-gallon jug into the 3-gallon jug until 3-gallon jug is full.

3. Empty the 3-gallon jug.

4. Pour the remaining 2 gallons from the 5-gallon jug into the 3-gallon jug.

5. Fill the 5-gallon jug.

6. Pour from the 5-gallon jug into the 3-gallon jug (can pour exactly 1 gallon)

7. We have 4 gallons in the 5-gallon jug.
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Die Hard: With a Vengeance, cont’d

• Given 3 and 5-gallon jugs, measure exactly 4 gallons. 

• Total water is only removed when we empty the 3-gallon jug

• Similarly, total water is only added when we fill the 5-gallon jug

• After each operation (except for shifting water), there are 𝑙 gallons, where:
𝑙 = −3𝑥 + 5𝑦

– (the 3-gallon jug has been emptied 𝑥 times and the 5-gallon jug filled 𝑦 times)

– (integer linear combination of 3, 5). Since gcd(3, 5) = 1 we can get 𝑙 = 1, i.e.,
1 = −3 ⋅ 3 + 5 ⋅ 2

– (after emptying 3-gallon jug 3 times and filling the 5-gallon jug twice, there is 1 
gallon)

• Do this 4 times and you have 4 gallons (guaranteed)!

• Good thing the producers didn’t choose 3- and 6-gallon jugs!

– Simon’s bomb would have exploded (why?)! O.o
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Fundamental Theorem of Arithmetic Part (ii)

• Theorem [Uniqueness of Prime Factorization]. Every 𝑛 ≥ 2 can be factored into a 
unique (up to reordering) prime number factorization.

• Proof. First prove Euclid’s Lemma.

– Lemma [Euclid’s Lemma]. For primes 𝑝, 𝑞1, … , 𝑞𝑙, if 𝑝|𝑞1𝑞2⋯𝑞𝑙, then 𝑝 is one of 
the 𝑞𝑖.

– Proof of Lemma. If 𝑝|𝑞𝑙 then 𝑝 = 𝑞𝑙. 

• If not, gcd 𝑝 𝑞𝑙 = 1 and 𝑝|𝑞1⋯𝑞𝑙−1 by GCD Fact 5. 

• Use induction on 𝑙 to show that 𝑝 = 𝑞𝑖 for some 𝑖 ≥ 2 or 𝑝 = 𝑞1.
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Fundamental Theorem of Arithmetic Part (ii)

• Theorem [Uniqueness of Prime Factorization]. Every 𝑛 ≥ 2 can be factored into a 
unique (up to reordering) prime number factorization.

• Proof. First prove Euclid’s Lemma.

– Lemma [Euclid’s Lemma]. For primes 𝑝, 𝑞1, … , 𝑞𝑙, if 𝑝|𝑞1𝑞2⋯𝑞𝑙, then 𝑝 is one of 
the 𝑞𝑖.

– We now prove the main result using a proof by contradiction. 

– Suppose there exist numbers with non-unique factorization and let 𝑛∗ be the 
smallest counter-example, 𝑛∗ > 2 and 

𝑛∗ = 𝑝1𝑝2⋯𝑝𝑛
= 𝑞1𝑞2⋯𝑞𝑘

– How do we use Euclid’s lemma?

– Since 𝑝1|𝑛∗, this means that 𝑝1|𝑞1𝑞2⋯𝑞𝑘. From Euclid’s Lemma, 𝑝1 is one of 
the 𝑞𝑖. (Reorder the 𝑞𝑖 so that 𝑝1 = 𝑞1). This means that

𝑚∗ =
𝑛∗
𝑝1

= 𝑝2⋯𝑝𝑛 = 𝑞2⋯𝑞𝑘

– Contradiction since 𝑚∗ has 2 representations and 𝑚∗ < 𝑛∗!
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Cryptography 101: Alice and Bob wish to 

securely exchange a message 𝑴

• Alice wishes to send a message 𝑀 to Bob over a public wifi channel

– Simon can intercept the message and read 𝑀

• Suppose that Alice and Bob agree on a secret number 𝑘

– Also known as a private key; Simon cannot know 𝑘

• Now suppose Alice encrypts 𝑀: 𝑀∗ = 𝑘 ×𝑀

• Bob decrypts 𝑀∗: 𝑀′ =
𝑀∗

𝑘
= 𝑀 × 𝑘 ×

1

𝑘
= 𝑀

– Thus, 𝑀 = 𝑀′ and Bob has recovered the original message

– Since Simon doesn’t know 𝑘, he can’t recover 𝑀 from 𝑀∗

• Why is this secure? Why couldn’t Simon just try a bunch of numbers for 𝑘?

– Turns out factorization is computationally very hard!

• But if Alice sends two different messages using the same 𝑘, then she’s in trouble:
gcd 𝑀1∗, 𝑀2∗ = 𝑘 ⋅ gcd(𝑀1, 𝑀2)

– The GCD algorithm is very fast; gcd(𝑀1, 𝑀2) may not be 1 (unless they are 
prime), but typically few combinations will make sense (if 𝑀1, 𝑀2 are strings)

– To improve the algorithm, we need modular arithmetic
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Modular Arithmetic (aka Congruence)

• We say that 𝑎 and 𝑏 are congruent (modulo 𝑑) if and only if 𝑑| 𝑎 − 𝑏 , 
i.e., 𝑎 − 𝑏 = 𝑘𝑑 for some 𝑘 ∈ ℤ. This is concisely written as

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑)

– pronounced “𝑎 is equal to 𝑏 mod 𝑑”

– Intuitively, 𝑎 and 𝑏 have the same remainder when divided by 𝑑

• For example, 41 ≡ 79 (𝑚𝑜𝑑 19) because 41 − 79 = −38 = −2 × 19

• Modular Equivalence Properties. Suppose 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑), i.e., 𝑎 = 𝑏 + 𝑘𝑑 and 
𝑟 ≡ 𝑠 (𝑚𝑜𝑑 𝑑), i.e., 𝑟 = 𝑠 + 𝑙𝑑. Then

a) 𝑎𝑟 ≡ 𝑏𝑠 𝑚𝑜𝑑 𝑑

• Proof. 𝑎𝑟 − 𝑏𝑠 = 𝑏 + 𝑘𝑑 𝑠 + 𝑙𝑑 − 𝑏𝑠
= 𝑑 𝑘𝑠 + 𝑏𝑙 + 𝑑𝑘𝑙

– That means 𝑑|(𝑎𝑟 − 𝑏𝑠)
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Modular Arithmetic (aka Congruence), cont’d

• We say that 𝑎 and 𝑏 are congruent (modulo 𝑑) if and only if 𝑑| 𝑎 − 𝑏 , 
i.e., 𝑎 − 𝑏 = 𝑘𝑑 for some 𝑘 ∈ ℤ. This is concisely written as

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑)

– pronounced “𝑎 is equal to 𝑏 mod 𝑑”

– Intuitively, 𝑎 and 𝑏 have the same remainder when divided by 𝑑

• For example, 41 ≡ 79 (𝑚𝑜𝑑 19) because 41 − 79 = −38 = −2 × 19

• Modular Equivalence Properties. Suppose 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑), i.e., 𝑎 = 𝑏 + 𝑘𝑑 and 
𝑟 ≡ 𝑠 (𝑚𝑜𝑑 𝑑), i.e., 𝑟 = 𝑠 + 𝑙𝑑. Then

a) 𝑎𝑟 ≡ 𝑏𝑠 𝑚𝑜𝑑 𝑑

b) 𝑎 + 𝑟 ≡ 𝑏 + 𝑠 𝑚𝑜𝑑 𝑑

• Proof. 𝑎 + 𝑟 − 𝑏 + 𝑠 = 𝑏 + 𝑘𝑑 + 𝑠 − 𝑙𝑑 − 𝑏 − 𝑠
= 𝑑(𝑘 + 𝑙)

• That means 𝑑| 𝑎 + 𝑟 − (𝑏 + 𝑠)
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Modular Arithmetic (aka Congruence), cont’d

• We say that 𝑎 and 𝑏 are congruent (modulo 𝑑) if and only if 𝑑| 𝑎 − 𝑏 , 
i.e., 𝑎 − 𝑏 = 𝑘𝑑 for some 𝑘 ∈ ℤ. This is concisely written as

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑)

– pronounced “𝑎 is equal to 𝑏 mod 𝑑”

– Intuitively, 𝑎 and 𝑏 have the same remainder when divided by 𝑑

• For example, 41 ≡ 79 (𝑚𝑜𝑑 19) because 41 − 79 = −38 = −2 × 19

• Modular Equivalence Properties. Suppose 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑), i.e., 𝑎 = 𝑏 + 𝑘𝑑 and 
𝑟 ≡ 𝑠 (𝑚𝑜𝑑 𝑑), i.e., 𝑟 = 𝑠 + 𝑙𝑑. Then

a) 𝑎𝑟 ≡ 𝑏𝑠 𝑚𝑜𝑑 𝑑

b) 𝑎 + 𝑟 ≡ 𝑏 + 𝑠 𝑚𝑜𝑑 𝑑

c) 𝑎𝑛 ≡ 𝑏𝑛 (𝑚𝑜𝑑 𝑑)

• Proof. Apply a) with 𝑟 = 𝑎, 𝑠 = 𝑏, to get 𝑎2 ≡ 𝑏2 (𝑚𝑜𝑑 𝑑). Then apply a) 
with 𝑟 = 𝑎2, 𝑠 = 𝑏2 and so on, using induction.
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Modular Arithmetic (aka Congruence), cont’d

• We say that 𝑎 and 𝑏 are congruent (modulo 𝑑) if and only if 𝑑| 𝑎 − 𝑏 , 
i.e., 𝑎 − 𝑏 = 𝑘𝑑 for some 𝑘 ∈ ℤ. This is concisely written as

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑)

– pronounced “𝑎 is equal to 𝑏 mod 𝑑”

– Intuitively, 𝑎 and 𝑏 have the same remainder when divided by 𝑑

• For example, 41 ≡ 79 (𝑚𝑜𝑑 19) because 41 − 79 = −38 = −2 × 19

• Modular Equivalence Properties. Suppose 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑), i.e., 𝑎 = 𝑏 + 𝑘𝑑 and 
𝑟 ≡ 𝑠 (𝑚𝑜𝑑 𝑑), i.e., 𝑟 = 𝑠 + 𝑙𝑑. Then

a) 𝑎𝑟 ≡ 𝑏𝑠 𝑚𝑜𝑑 𝑑

b) 𝑎 + 𝑟 ≡ 𝑏 + 𝑠 𝑚𝑜𝑑 𝑑

c) 𝑎𝑛 ≡ 𝑏𝑛 (𝑚𝑜𝑑 𝑑)

• Addition and multiplication are just like regular arithmetic.

• Example. What is the last digit of 32024?
32 ≡ −1 (𝑚𝑜𝑑 10)

32
1012

≡ −1 1012 (𝑚𝑜𝑑 10)

≡ 1 (𝑚𝑜𝑑 10)
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Modular Division is Not Like Regular Arithmetic

• A few examples
15 × 6 ≡ 13 × 6 (𝑚𝑜𝑑 12)

15 ≢ 13 (𝑚𝑜𝑑 12)

15 × 6 ≡ 2 × 6 𝑚𝑜𝑑 13
15 ≡ 2 𝑚𝑜𝑑 13

7 × 8 ≡ 22 × 8 (𝑚𝑜𝑑 15)
7 ≡ 22 (𝑚𝑜𝑑 15)

• Modular Division: cancelling a factor from both sides. Suppose 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑑). 
You can cancel 𝑐 to get 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑑) if gcd 𝑐, 𝑑 = 1.

• Proof. We know that 𝑑|𝑐(𝑎 − 𝑏). 

– By GCD Fact 5, that means that 𝑑|𝑎 − 𝑏 because gcd 𝑐, 𝑑 = 1.

• If 𝑑 is prime, then division with prime modulus is pretty much like regular division.
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Modular Division is Not Like Regular Arithmetic

• Modular Inverse. Inverses do not exist in ℕ, i.e., there exist no numbers 𝑥, 𝑦 ∈ ℕ
such that 𝑥 × 𝑦 = 1. 

– e.g., there exists no 𝑛 such that 3 × 𝑛 = 1

• Modular inverse may exist.

– Suppose 3 × 𝑛 ≡ 1 (𝑚𝑜𝑑 7). What is an example 𝑛 for which this is true?
𝑛 = 5
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RSA Public Key Cryptography Uses Modular 

Arithmetic

• Bob broadcasts to the world the numbers 23, 55 (Bob’s RSA public key)

• When Alice wants to communicate to Bob, Alice encrypts her message 𝑀:
𝑀∗ ≡ 𝑀23 (𝑚𝑜𝑑 55)

• Bob then decodes the message as follows (using private key 7):
𝑀′ ≡ 𝑀∗

7 (𝑚𝑜𝑑 55)

• Example. Does Bob always decode to the correct message?

1. Suppose Alice wants to send 𝑀 = 2. What is 𝑀∗?

• Take 𝑀 to power 23: 223 ≡ 8 (𝑚𝑜𝑑 55)

– Can use a halving algorithm to quickly compute the above congruence 
(see book)

• Now Bob receives 𝑀∗ = 8. What is 𝑀′?

• 87 ≡ 2 (𝑚𝑜𝑑 55)

2. Suppose Alice wants to send 𝑀 = 3. What is 𝑀∗?

• Take 𝑀 to power 23: 323 ≡ 27 (𝑚𝑜𝑑 55)

• Now Bob receives 𝑀∗ = 27. What is 𝑀′?

• 277 ≡ 3 (𝑚𝑜𝑑 55)
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RSA Public Key Cryptography Uses Modular 

Arithmetic, cont’d

• This looks weird, but it’s actually a cute application of Fermat’s little theorem:

• Theorem [Fermat’s Little Theorem]. For every 𝑎 ∈ ℤ and every prime number 𝑝 that 
does not divide 𝑎:

𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝)

– Don’t have time to prove it.

• In RSA, Bob picks two (large) primes 𝑝 and 𝑞

– Bob also needs numbers 𝑒, 𝑑 such that 𝑒𝑑 ≡ 1 𝑚𝑜𝑑 𝑙𝑐𝑚 𝑝 − 1 𝑞 − 1

– Then the public key is 𝑒, 𝑝𝑞 and the private key is 𝑑

– It can be shown that for any 𝑀:
𝑀𝑒 𝑑 ≡ 𝑀 (𝑚𝑜𝑑 𝑝𝑞)

– In order to infer 𝑑, Simon needs to factor 𝑝𝑞 (computationally hard!)

• Exercise 10.14. Prove that Bob always decodes to the right message for 55,23 and 7

• Practical Implementation. Good idea to pad with random bits to make cypher text 
random.

– Otherwise, if Alice sends the same 𝑀∗ multiple times, Simon will know that (but 
won’t know the actual value of 𝑀∗)
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