Number Theory

- Malik Magdon-Ismail. Discrete Mathematics and Computing.
- Chapter 10
- Division and Greatest Common Divisor (GCD)
- Euclid's algorithm
- Bezout's identity
- Fundamental Theorem of Arithmetic
- Modular Arithmetic
- Cryptography
- RSA public key cryptography

Number Theory Attracts the Best of the Best

- Number theory is fun because you don't need to know any math formalisms, and yet you can ask questions that no one knows the answer to
- Are there infinitely many prime pairs?
- A prime pair consists of two prime numbers, p and q, such that $p=q-2$
- "Babies can ask questions which grown-ups can't solve" - P. Erdős
- $6=1+2+3$ is perfect (equals the sum of its proper divisors)
- Is there an odd perfect number?
- Tinker first! Can you prove it?
- It turns out proving it is not so easy

The Basics

- Quotient-Remainder Theorem. For $n \in \mathbb{Z}$ and $d \in \mathbb{N}, n=q d+r$. The quotient $q \in$ \mathbb{Z} and the remainder $0 \leq r \leq d$ are unique.
- E.g., $n=27, d=6$. What are q and r ?
- $27=4 \times 6+3$
- i.e., $\operatorname{rem}(27,6)=3$
- Divisibility. d divides n (written $d \mid n$) if and only if $n=d q$ for some $q \in \mathbb{Z}$.
- e.g., 6|24.
- Primes. $\mathcal{P}=\{2,3,5,7,11,13, \ldots\}$. What is another definition of \mathcal{P} ?

$$
\mathcal{P}=\{p \mid p \geq 2 \text { and the only positive divisors of } p \text { are } 1, p\}
$$

- Division facts. Exercise 10.2.

1. $d \mid 0$
2. If $d \mid m$ and $d^{\prime} \mid n$, then $d d^{\prime} \mid m n$
3. If $d \mid m$ and $m \mid n$, then $d \mid n$
4. If $d \mid n$ and $d \mid m$, then $d \mid(m+n)$
5. If $d \mid n$, then $x d \mid x n$ for $x \in \mathbb{N}$
6. If $d \mid(m+n)$ and $d \mid m$, then $d \mid n$

Greatest Common Divisor

- One of the oldest problems in number theory. Euclid's algorithm is still one of the most famous algorithms in math/number theory
- Divisors of 30: \{1,2,3,5,6,10,30\}
- Divisors of 42 : $\{1,2,3,6,7,14,21,42\}$
- What are the common divisors?
- Common divisors: \{1,2,3,6\}. Greatest common divisor (GCD): 6.
- Definition [Greatest Common Divisor, GCD]. Let m, n be two integers not both zero. $\operatorname{gcd}(m, n)$ is the largest integer that divides both m and n :

$$
\operatorname{gcd}(m, n) \mid m \text { AND } \operatorname{gcd}(m, n) \mid n
$$

AND any other common divisor $d \leq \operatorname{gcd}(m, n)$.

- Notice that every common divisor divides the GCD (will prove later today)
- Also, $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m)$
- Relatively prime. If $\operatorname{gcd}(m, n)=1$, then m, n are relatively prime.
- Example: 6 and 35 are not prime, but are relatively prime. Other pairs?
- e.g., 8 and 9, 16 and 25 .

Greatest Common Divisor, cont'd

- Theorem. $\operatorname{gcd}(m, n)=\operatorname{gcd}(\operatorname{rem}(n, m), m)$.
- If $m>n$, swap the places of n and m in the theorem.
- Proof.
- First note that $n=q m+r \rightarrow r=n-q m$.
- Let $D=\operatorname{gcd}(m, n)$ and $d=\operatorname{gcd}(m, r)$.
- First note that $D \mid m$ and $D \mid n$. What does this imply?
- It means $D \mid(n-q m)=r$. What does this mean?
- Hence, $D \leq \operatorname{gcd}(m, r)=d$ because $D \mid m$ and $D \mid r$.
- Similarly, $d \mid m$ and $d \mid r$.
- i.e., $d \mid(q m+r)=n$ (fact 4). Thus, $d \mid m$ and $d \mid n$.
- Then, $d \leq \operatorname{gcd}(m, n)=D$
- Finally, we know $D \leq d$ and $d \leq D$.
- This means $d=D$, i.e., $\operatorname{gcd}(\operatorname{rem}(n, m), m)=\operatorname{gcd}(m, n)$.
- QED.
- Based on the GCD theorem.
- Keep applying theorem until either m or n is 0
- Guaranteed to terminate. Why?
- Theorem. $\operatorname{gcd}(m, n)=\operatorname{gcd}(\operatorname{rem}(n, m), m)$.
- Let's look at an example first:

$$
\begin{array}{ll}
& \operatorname{gcd}(42,108)= \\
=\operatorname{gcd}(42,24) & {[24=108-42 \cdot 2]} \\
=\operatorname{gcd}(24,18) & {[18=42-24=42-(108-42 \cdot 2)=3 \cdot 42-108]} \\
=\operatorname{gcd}(18,6) & {[6=24-18=(108-42 \cdot 2)-(3 \cdot 42-108)=2 \cdot 108-5 \cdot 42]} \\
=\operatorname{gcd}(6,0) & {[0=18-3 \cdot 6]} \\
=6
\end{array}
$$

- Remainders in Euclid's algorithm are integer linear combinations of 42 and 108.
- In particular, $\operatorname{gcd}(42,108)=6=2 \cdot 108-5 \cdot 42$.
- This will be true for $\operatorname{gcd}(m, n)$ in general:

$$
\operatorname{gcd}(m, n)=m x+n y \text { for some } x, y \in \mathbb{Z}
$$

Bezout's Identity: A "Formula" for GCD

- From Euclid's algorithm:

$$
\operatorname{gcd}(m, n)=m x+n y \text { for some } x, y \in \mathbb{Z}
$$

- Can any smaller positive number z be a linear combination of m and n ?
- Question credited to French mathematician Étienne Bézout
- Note that if such a number were to exist, namely $z=m x^{\prime}+n y^{\prime}$, then

$$
\operatorname{gcd}(m, n) \leq z \text { because } \operatorname{gcd}(m, n) \mid\left(m x^{\prime}+n y^{\prime}\right)
$$

- Theorem [Bézout's Identity]. $\operatorname{gcd}(m, n)$ is the smallest positive integer linear combination of m and n :

$$
\operatorname{gcd}(m, n)=\min \{m x+n y \mid x, y \in \mathbb{Z}\}
$$

- Proof sketch. Let l be the smallest positive linear combination of $m, n: l=m x+n y$.
- Prove $l \geq \operatorname{gcd}(m, n)$ as above.
- Prove $l \leq \operatorname{gcd}(m, n)$ by showing l is a common divisor of m and n
- The remainder $r=m-l q=m(1-x q)-n y q$
- r is a remainder, hence $0 \leq r<l$. But r is also a linear combination of m, n
- There is no "formula" for GCD. But this is close to a "formula".

GCD Facts

- Fact 1. $\operatorname{gcd}(m, n)=\operatorname{gcd}(m, \operatorname{rem}(n, m))$
- GCD Theorem
- Fact 2. Every common divisor of m, n divides $\operatorname{gcd}(m, n)$
- Proof. We know that $\operatorname{gcd}(m, n)=m x+n y$. Any common divisor divides the RHS and so also the LHS.
- e.g., common divisors of 30,42: 1,2,3,6; $\operatorname{gcd}(30,42)=6$.
- Fact 3. For $k \in \mathbb{N}, \operatorname{gcd}(k m, k n)=k \cdot \operatorname{gcd}(m, n)$
- Proof.

$$
\operatorname{gcd}(k m, k n)=k m x+k n y
$$

- where this is the smallest positive combination of $k m, k n$.
- But $k m x+k n y=k(m x+n y)$ means that $m x+n y$ is the smallest positive linear combination of m, n
- Why?
- Otherwise, $k(m x+n y)$ would be smaller
- e.g., $\operatorname{gcd}(6,15)=3 \rightarrow \operatorname{gcd}(12,30)=2 \times 3=6$

GCD Facts, cont'd

- Fact 4. IF $\operatorname{gcd}(l, m)=1$ AND $\operatorname{gcd}(l, n)=1$, $\operatorname{THEN} \operatorname{gcd}(l, m n)=1$.
- Proof. $1=l x+m y$ AND $1=l x^{\prime}+n y^{\prime}$. Multiplying
$1=(l x+m y)\left(l x^{\prime}+n y^{\prime}\right)=l\left(l x x^{\prime}+m x y^{\prime}+m y x^{\prime}\right)+m n\left(y y^{\prime}\right)$
- e.g., $\operatorname{gcd}(15,4)=1$ and $\operatorname{gcd}(15,7)=1 \rightarrow \operatorname{gcd}(15,28)=1$
- Fact 5. IF $d \mid m n$ and $\operatorname{gcd}(d, m)=1$, THEN $d \mid n$.
- Proof. $d x+m y=1 \rightarrow n d x+n m y=n$. Since $d \mid m n, d$ divides the LHS.
- Hence d divides the RHS, i.e., $d \mid n$.
- e.g., $4 \mid 15 \times 16$ and $\operatorname{gcd}(4,15)=1 \rightarrow 4 \mid 16$.

Die Hard: With a Vengeance

- One of my favorite movies
- Featuring a cool little number-theoretic problem
- Given 3 and 5-gallon jugs, measure exactly 4 gallons.
- [John McClane \& Zeus Carver Thwart Simon Gruber Algorithm]

1. Fill the 5 -gallon jug.
2. Pour from the 5 -gallon jug into the 3 -gallon jug until 3-gallon jug is full.
3. Empty the 3-gallon jug.
4. Pour the remaining 2 gallons from the 5 -gallon jug into the 3 -gallon jug.
5. Fill the 5 -gallon jug.
6. Pour from the 5 -gallon jug into the 3 -gallon jug (can pour exactly 1 gallon)
7. We have 4 gallons in the 5 -gallon jug.

Die Hard: With a Vengeance, cont'd

- Given 3 and 5-gallon jugs, measure exactly 4 gallons.
- Total water is only removed when we empty the 3-gallon jug
- Similarly, total water is only added when we fill the 5-gallon jug
- After each operation (except for shifting water), there are l gallons, where:

$$
l=-3 x+5 y
$$

- (the 3-gallon jug has been emptied x times and the 5-gallon jug filled y times)
- (integer linear combination of 3,5). Since $\operatorname{gcd}(3,5)=1$ we can get $l=1$, i.e.,

$$
1=-3 \cdot 3+5 \cdot 2
$$

- (after emptying 3-gallon jug 3 times and filling the 5-gallon jug twice, there is 1 gallon)
- Do this 4 times and you have 4 gallons (guaranteed)!
- Good thing the producers didn't choose 3- and 6-gallon jugs!
- Simon's bomb would have exploded (why?)! O.o

Fundamental Theorem of Arithmetic Part (ii)

- Theorem [Uniqueness of Prime Factorization]. Every $n \geq 2$ can be factored into a unique (up to reordering) prime number factorization.
- Proof. First prove Euclid's Lemma.
- Lemma [Euclid's Lemma]. For primes p, q_{1}, \ldots, q_{l}, if $p \mid q_{1} q_{2} \cdots q_{l}$, then p is one of the q_{i}.
- Proof of Lemma. If $p \mid q_{l}$ then $p=q_{l}$.
- If not, $\operatorname{gcd}\left(p \mid q_{l}\right)=1$ and $p \mid q_{1} \cdots q_{l-1}$ by GCD Fact 5 .
- Use induction on l to show that $p=q_{i}$ for some $i \geq 2$ or $p=q_{1}$.

Fundamental Theorem of Arithmetic Part (ii)

- Theorem [Uniqueness of Prime Factorization]. Every $n \geq 2$ can be factored into a unique (up to reordering) prime number factorization.
- Proof. First prove Euclid's Lemma.
- Lemma [Euclid's Lemma]. For primes p, q_{1}, \ldots, q_{l}, if $p \mid q_{1} q_{2} \cdots q_{l}$, then p is one of the q_{i}.
- We now prove the main result using a proof by contradiction.
- Suppose there exist numbers with non-unique factorization and let n_{*} be the smallest counter-example, $n_{*}>2$ and

$$
\begin{aligned}
n_{*} & =p_{1} p_{2} \cdots p_{n} \\
& =q_{1} q_{2} \cdots q_{k}
\end{aligned}
$$

- How do we use Euclid's lemma?
- Since $p_{1} \mid n_{*}$, this means that $p_{1} \mid q_{1} q_{2} \cdots q_{k}$. From Euclid's Lemma, p_{1} is one of the q_{i}. (Reorder the q_{i} so that $p_{1}=q_{1}$). This means that

$$
m_{*}=\frac{n_{*}}{p_{1}}=p_{2} \cdots p_{n}=q_{2} \cdots q_{k}
$$

- Contradiction since m_{*} has 2 representations and $m_{*}<n_{*}$!

Cryptography 101: Alice and Bob wish to securely exchange a message M

- Alice wishes to send a message M to Bob over a public wifi channel
- Simon can intercept the message and read M
- Suppose that Alice and Bob agree on a secret number k
- Also known as a private key; Simon cannot know k
- Now suppose Alice encrypts $M: M_{*}=k \times M$
- Bob decrypts $M_{*}: M^{\prime}=\frac{M_{*}}{k}=M \times k \times \frac{1}{k}=M$
- Thus, $M=M^{\prime}$ and Bob has recovered the original message
- Since Simon doesn't know k, he can't recover M from M_{*}
- Why is this secure? Why couldn't Simon just try a bunch of numbers for k ?
- Turns out factorization is computationally very hard!
- But if Alice sends two different messages using the same k, then she's in trouble:

$$
\operatorname{gcd}\left(M_{1 *}, M_{2 *}\right)=k \cdot \operatorname{gcd}\left(M_{1}, M_{2}\right)
$$

- The GCD algorithm is very fast; $\operatorname{gcd}\left(M_{1}, M_{2}\right)$ may not be 1 (unless they are prime), but typically few combinations will make sense (if M_{1}, M_{2} are strings)
- To improve the algorithm, we need modular arithmetic

Modular Arithmetic (aka Congruence)

- We say that a and b are congruent (modulo d) if and only if $d \mid(a-b)$, i.e., $a-b=k d$ for some $k \in \mathbb{Z}$. This is concisely written as

$$
a \equiv b(\bmod d)
$$

- pronounced " a is equal to $b \bmod d$ "
- Intuitively, a and b have the same remainder when divided by d
- For example, $41 \equiv 79(\bmod 19)$ because $41-79=-38=-2 \times 19$
- Modular Equivalence Properties. Suppose $a \equiv b(\bmod d)$, i.e., $a=b+k d$ and $r \equiv s(\bmod d)$, i.e., $r=s+l d$. Then
a) $a r \equiv b s(\bmod d)$
- Proof. $a r-b s=(b+k d)(s+l d)-b s$

$$
=d(k s+b l+d k l)
$$

- That means $d \mid(a r-b s)$

Modular Arithmetic (aka Congruence), cont'd

- We say that a and b are congruent (modulo d) if and only if $d \mid(a-b)$, i.e., $a-b=k d$ for some $k \in \mathbb{Z}$. This is concisely written as

$$
a \equiv b(\bmod d)
$$

- pronounced " a is equal to $b \bmod d$ "
- Intuitively, a and b have the same remainder when divided by d
- For example, $41 \equiv 79(\bmod 19)$ because $41-79=-38=-2 \times 19$
- Modular Equivalence Properties. Suppose $a \equiv b(\bmod d)$, i.e., $a=b+k d$ and $r \equiv s(\bmod d)$, i.e., $r=s+l d$. Then
a) $a r \equiv b s(\bmod d)$
b) $a+r \equiv b+s(\bmod d)$
- Proof. $(a+r)-(b+s)=(b+k d+s-l d)-b-s$

$$
=d(k+l)
$$

- That means $d \mid(a+r)-(b+s)$

Modular Arithmetic (aka Congruence), cont'd

- We say that a and b are congruent (modulo d) if and only if $d \mid(a-b)$, i.e., $a-b=k d$ for some $k \in \mathbb{Z}$. This is concisely written as

$$
a \equiv b(\bmod d)
$$

- pronounced " a is equal to $b \bmod d$ "
- Intuitively, a and b have the same remainder when divided by d
- For example, $41 \equiv 79(\bmod 19)$ because $41-79=-38=-2 \times 19$
- Modular Equivalence Properties. Suppose $a \equiv b(\bmod d)$, i.e., $a=b+k d$ and $r \equiv s(\bmod d)$, i.e., $r=s+l d$. Then
a) $a r \equiv b s(\bmod d)$
b) $a+r \equiv b+s(\bmod d)$
c) $a^{n} \equiv b^{n}(\bmod d)$
- Proof. Apply a) with $r=a, s=b$, to get $a^{2} \equiv b^{2}(\bmod d)$. Then apply a) with $r=a^{2}, s=b^{2}$ and so on, using induction.

Modular Arithmetic (aka Congruence), cont'd

- We say that a and b are congruent (modulo d) if and only if $d \mid(a-b)$, i.e., $a-b=k d$ for some $k \in \mathbb{Z}$. This is concisely written as

$$
a \equiv b(\bmod d)
$$

- pronounced " a is equal to $b \bmod d$ "
- Intuitively, a and b have the same remainder when divided by d
- For example, $41 \equiv 79(\bmod 19)$ because $41-79=-38=-2 \times 19$
- Modular Equivalence Properties. Suppose $a \equiv b(\bmod d)$, i.e., $a=b+k d$ and $r \equiv s(\bmod d)$, i.e., $r=s+l d$. Then
a) $a r \equiv b s(\bmod d)$
b) $a+r \equiv b+s(\bmod d)$
c) $a^{n} \equiv b^{n}(\bmod d)$
- Addition and multiplication are just like regular arithmetic.
- Example. What is the last digit of 3^{2024} ?

$$
\begin{aligned}
3^{2} & \equiv-1(\bmod 10) \\
\left(3^{2}\right)^{1012} & \equiv(-1)^{1012}(\bmod 10) \\
& \equiv 1(\bmod 10)
\end{aligned}
$$

Modular Division is Not Like Regular Arithmetic

- A few examples

$$
\begin{aligned}
15 \times 6 & \equiv 13 \times 6(\bmod 12) \\
15 & \not \equiv 13(\bmod 12) \\
15 \times 6 & \equiv 2 \times 6(\bmod 13) \\
15 & \equiv 2(\bmod 13) \\
7 \times 8 & \equiv 22 \times 8(\bmod 15) \\
7 & \equiv 22(\bmod 15)
\end{aligned}
$$

- Modular Division: cancelling a factor from both sides. Suppose $a c \equiv b c(\bmod d)$. You can cancel c to get $a \equiv b(\bmod d)$ if $\operatorname{gcd}(c, d)=1$.
- Proof. We know that $d \mid c(a-b)$.
- By GCD Fact 5, that means that $d \mid a-b$ because $\operatorname{gcd}(c, d)=1$.
- If d is prime, then division with prime modulus is pretty much like regular division.

Modular Division is Not Like Regular Arithmetic

- Modular Inverse. Inverses do not exist in \mathbb{N}, i.e., there exist no numbers $x, y \in \mathbb{N}$ such that $x \times y=1$.
- e.g., there exists no n such that $3 \times n=1$
- Modular inverse may exist.
- Suppose $3 \times n \equiv 1(\bmod 7)$. What is an example n for which this is true?

$$
n=5
$$

RSA Public Key Cryptography Uses Modular Arithmetic

- Bob broadcasts to the world the numbers 23, 55 (Bob’s RSA public key)
- When Alice wants to communicate to Bob, Alice encrypts her message M :

$$
M_{*} \equiv M^{23}(\bmod 55)
$$

- Bob then decodes the message as follows (using private key 7):

$$
M^{\prime} \equiv M_{*}^{7}(\bmod 55)
$$

- Example. Does Bob always decode to the correct message?

1. Suppose Alice wants to send $M=2$. What is M_{*} ?

- Take M to power $23: 2^{23} \equiv 8(\bmod 55)$
- Can use a halving algorithm to quickly compute the above congruence (see book)
- Now Bob receives $M_{*}=8$. What is M^{\prime} ?
- $8^{7} \equiv 2(\bmod 55)$

2. Suppose Alice wants to send $M=3$. What is M_{*} ?

- Take M to power $23: 3^{23} \equiv 27(\bmod 55)$
- Now Bob receives $M_{*}=27$. What is M^{\prime} ?
- $27^{7} \equiv 3(\bmod 55)$

RSA Public Key Cryptography Uses Modular Arithmetic, cont'd

- This looks weird, but it's actually a cute application of Fermat's little theorem:
- Theorem [Fermat's Little Theorem]. For every $a \in \mathbb{Z}$ and every prime number p that does not divide a :

$$
a^{p-1} \equiv 1(\bmod p)
$$

- Don't have time to prove it.
- In RSA, Bob picks two (large) primes p and q
- Bob also needs numbers e, d such that $e d \equiv 1(\bmod \operatorname{lcm}((p-1)(q-1)))$
- Then the public key is $e, p q$ and the private key is d
- It can be shown that for any M :

$$
\left(M^{e}\right)^{d} \equiv M(\bmod p q)
$$

- In order to infer d, Simon needs to factor $p q$ (computationally hard!)
- Exercise 10.14. Prove that Bob always decodes to the right message for 55,23 and 7
- Practical Implementation. Good idea to pad with random bits to make cypher text random.
- Otherwise, if Alice sends the same M_{*} multiple times, Simon will know that (but won't know the actual value of M_{*})

