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Reading

@ Rensselaer

e Malik Magdon-Ismail. Discrete Mathematics and Computing.
— Chapter 10




Overview

@ Rensselaer

* Division and Greatest Common Divisor (GCD)
— Euclid’s algorithm
— Bezout’s identity

e Fundamental Theorem of Arithmetic

* Modular Arithmetic
— Cryptography
— RSA public key cryptography




Number Theory Attracts the Best of the Best @) Rensselaer

* Number theory is fun because you don’t need to know any math formalisms, and
yet you can ask questions that no one knows the answer to

— Are there infinitely many prime pairs?
— A prime pair consists of two prime numbers, p and g, such thatp = g — 2

* “Babies can ask questions which grown-ups can’t solve” — P. Erdds

e 6=1+2+ 3 is perfect (equals the sum of its proper divisors)
— |Is there an odd perfect number?
— Tinker first! Can you prove it?
* [t turns out proving it is not so easy




The Basics ©® Rensselaer

Quotient-Remainder Theorem. Forn € Zand d € N, n = qd + r. The quotient g €
Z. and the remainder 0 < r < d are unique.

— E.g,n=27,d =6. Whatareqg and r?
e 27=4X6+3
* i.e.,,rem(27,6) =3

Divisibility. d divides n (written d|n) if and only if n = dq for some q € Z.
— e.g., 6|24.

Primes. P = {2,3,5,7,11,13, ... }. What is another definition of P?
P = {plp = 2 and the only positive divisors of p are 1,p}

Division facts. Exercise 10.2.

1. d|0
If d|m and d’|n, then dd'|mn
If d|m and m|n, then d|n
If d|n and d|m, then d|(m + n)
If d|n, then xd|xn forx € N
If d|(m + n) and d|m, then d|n
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Greatest Common Divisor @) Rensselaer

* One of the oldest problems in number theory. Euclid’s algorithm is still one of the
most famous algorithms in math/number theory

 Divisors of 30:{1,2,3,5,6,10,30}
 Divisors of 42:{1,2,3,6,7,14,21,42}
— What are the common divisors?
— Common divisors: {1,2,3,6}. Greatest common divisor (GCD): 6.
* Definition [Greatest Common Divisor, GCD]. Let m, n be two integers not both zero.
gcd(m, n) is the largest integer that divides both m and n:
gcd(m,n) [m AND gcd(m, n) |n
AND any other common divisor d < gcd(m, n).
— Notice that every common divisor divides the GCD (will prove later today)
— Also, gcd(m,n) = gcd(n, m)
* Relatively prime. If gcd(m,n) = 1, then m, n are relatively prime.

— Example: 6 and 35 are not prime, but are relatively prime. Other pairs?
— e.g.,8and 9, 16 and 25.




Greatest Common Divisor, cont’d

@ Rensselaer

* Theorem. gcd(m,n) = gcd(rem(n, m), m).
— If m > n, swap the places of n and m in the theorem.
* Proof.
— First notethatn =gm+r - r =n — qm.
— Let D = gcd(m,n) and d = gcd(m, r).
— First note that D|m and D|n. What does this imply?
* It means D|(n — gm) = r. What does this mean?
* Hence, D < gcd(m,r) = d because D|m and D|r.
— Similarly, d|m and d|r.
* i.e., d|(gm + r) = n (fact 4). Thus, d|m and d|n.
* Then,d < gcd(m,n) =D
— Finally, we know D < d andd < D.
* Thismeansd = D, i.e., gcd(rem(n,m), m) = gcd(m, n).
— QED.




Euclid’s Algorithm ®) Rensselaer

e Based on the GCD theorem.
— Keep applying theorem until either mornis 0
— Guaranteed to terminate. Why?

* Theorem. gcd(m,n) = gcd(rem(n,m), m).

* Let’s look at an example first:
gcd(42,108) =

= gcd(42,24) (24 =108 —42 - 2]
= gcd(24,18) [18 =42 —24 =42 —- (108 —-42-2) =3-42 —108]
=gcd(18,6) [6=24—-18=(108—-42-2)—(3:-42—-108)=2-108—5"42]
= gcd(6,0) [0 =18 —-3-6]
=6
e Remainders in Euclid’s algorithm are integer linear combinations of 42 and 108.

— In particular, gcd(42,108) =6 =2-108 — 5 - 42.

* This will be true for gcd(m, n) in general:

gcd(m,n) = mx + ny forsome x,y € Z




Bezout’s Identity: A “Formula” for GCD ®) Rensselaer

* From Euclid’s algorithm:
gcd(m,n) = mx + ny forsome x,y € Z

e Can any smaller positive number z be a linear combination of m and n?
— Question credited to French mathematician Etienne Bézout

* Note that if such a number were to exist, namely z = mx’ + ny’, then
gcd(m,n) < z because gcd(m, n) |(mx’ + ny")

* Theorem [Bézout’s Identity]. gcd(m, n) is the smallest positive integer linear
combination of m and n:
gcd(m, n) = min{mx + ny|x,y € Z}
* Proof sketch. Let | be the smallest positive linear combination of m,n: [ = mx + ny.
— Prove [ = gcd(m, n) as above.
— Prove | < gcd(m, n) by showing [ is a common divisor of m and n
* The remainderr = m — lqg = m(1 — xq) — nyq
* risaremainder, hence 0 < r < [. Butris also a linear combination of m,n

* There is no “formula” for GCD. But this is close to a “formula”.




GCD Facts ® Rensselaer

* Fact1.gcd(m,n) = gcd(m, rem(n, m))
— GCD Theorem

* Fact 2. Every common divisor of m, n divides gcd(m, n)

— Proof. We know that gcd(m, n) = mx + ny. Any common divisor divides the
RHS and so also the LHS.

* e.g., common divisors of 30,42:1,2,3,6; gcd(30,42) = 6.

* Fact3.Fork € N, gcd(km, kn) = k - gcd(m, n)
— Proof.
gcd(km, kn) = kmx + kny
— where this is the smallest positive combination of km, kn.

— But kmx + kny = k(mx + ny) means that mx + ny is the smallest positive
linear combination of m, n

— Why?
— Otherwise, k(mx + ny) would be smaller
* e.g.,gcd(6,15) =3 - gcd(12,30) =2Xx3 =6
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GCD Facts, cont’d ©® Rensselaer

* Fact4.IF gcd(l,m) =1 AND gcd(l,n) = 1, THEN gcd(l, mn) = 1.
— Proof.1 = lx + my AND 1 = Ix' + ny’. Multiplying
1=(x+my)(x"+ny") =1l(lxx" + mxy' + myx") + mn(yy")
* e.g., gcd(15,4) = 1and ged(15,7) =1 - ged(15,28) =1
* Fact5.IFd|mn and gcd(d,m) = 1, THEN d|n.
— Proof. dx + my = 1 - ndx + nmy = n. Since d|mn, d divides the LHS.
* Hence d divides the RHS, i.e., d|n.
* e.g., 4|15 X 16 and gcd(4,15) = 1 — 4|16.
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Die Hard: With a Vengeance @ Rensselaer

* One of my favorite movies

— Featuring a cool little number-theoretic problem
* Given 3 and 5-gallon jugs, measure exactly 4 gallons.

* [John McClane & Zeus Carver Thwart Simon Gruber Algorithm]

Fill the 5-gallon jug.

Pour from the 5-gallon jug into the 3-gallon jug until 3-gallon jug is full.
Empty the 3-gallon jug.

Pour the remaining 2 gallons from the 5-gallon jug into the 3-gallon jug.
Fill the 5-gallon jug.

Pour from the 5-gallon jug into the 3-gallon jug (can pour exactly 1 gallon)

N o kR wNeE

We have 4 gallons in the 5-gallon jug.
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Die Hard: With a Vengeance, cont’d ® Rensselaer

* Given 3 and 5-gallon jugs, measure exactly 4 gallons.
* Total water is only removed when we empty the 3-gallon jug
* Similarly, total water is only added when we fill the 5-gallon jug

» After each operation (except for shifting water), there are [ gallons, where:
[ =—-3x+ 5y
— (the 3-gallon jug has been emptied x times and the 5-gallon jug filled y times)
— (integer linear combination of 3, 5). Since gcd(3,5) = 1wecangetl =1, i.e,,
1=-3-34+5:-2
— (after emptying 3-gallon jug 3 times and filling the 5-gallon jug twice, there is 1
gallon)
* Do this 4 times and you have 4 gallons (guaranteed)!

* Good thing the producers didn’t choose 3- and 6-gallon jugs!
— Simon’s bomb would have exploded (why?)! O.o




Fundamental Theorem of Arithmetic Part (ii) @ Rensselaer

* Theorem [Uniqueness of Prime Factorization]. Every n = 2 can be factored into a
unique (up to reordering) prime number factorization.
* Proof. First prove Euclid’s Lemma.

— Lemma [Euclid’s Lemmal]. For primes p, q4, ..., q;, if p|q19> *** q;, then p is one of
the q;.

— Proof of Lemma. If p|q; then p = q;.
 If not, gcd(plq;) = 1 and p|q, -+ q;—1 by GCD Fact 5.
e Use induction on [ to show that p = g; forsomei = 2 orp = q;.
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Fundamental Theorem of Arithmetic Part (ii) @2 Rensselaer

* Theorem [Uniqueness of Prime Factorization]. Every n = 2 can be factored into a
unique (up to reordering) prime number factorization.

* Proof. First prove Euclid’s Lemma.

— Lemma [Euclid’s Lemmal]. For primes p, q4, ..., q;, if p|q19> *** q;, then p is one of
the q;.

— We now prove the main result using a proof by contradiction.

— Suppose there exist numbers with non-unique factorization and let n, be the
smallest counter-example, n, > 2 and

Ny = P1P2 " Pn
= {4192 " qg
— How do we use Euclid’s lemma?

— Since p; |n., this means that p1|q195 *** qx. From Euclid’s Lemma, p4 is one of

the g;. (Reorder the g; so that p; = g4). This means that
n,

Mm,=—=DP2"""Pn=4(q2 (g
P1

— Contradiction since m, has 2 representations and m, < n,!
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Cryptography 101: Alice and Bob wish to
securely exchange a message M

Alice wishes to send a message M to Bob over a public wifi channel
— Simon can intercept the message and read M

Suppose that Alice and Bob agree on a secret number k
— Also known as a private key; Simon cannot know k

Now suppose Alice encrypts M: M, = k X M

BobdecryptsM*:M’=%=M><k><%=M

— Thus, M = M’ and Bob has recovered the original message
— Since Simon doesn’t know k, he can’t recover M from M,

Why is this secure? Why couldn’t Simon just try a bunch of numbers for k?
— Turns out factorization is computationally very hard!
But if Alice sends two different messages using the same k, then she’s in trouble:
gcd(My., My,) = k - ged(My, M3)
— The GCD algorithm is very fast; gcd(M;, M,) may not be 1 (unless they are
prime), but typically few combinations will make sense (if My, M, are strings)
— To improve the algorithm, we need modular arithmetic

@ Rensselaer




Modular Arithmetic (aka Congruence) ®) Rensselaer

* We say that a and b are congruent (modulo d) if and only if d|(a — b),
i.e., a —b = kd for some k € Z. This is concisely written as
a=b (modd)
— pronounced “a is equal to b mod d”

— Intuitively, a and b have the same remainder when divided by d
* For example, 41 = 79 (mod 19) because 41 — 79 = =38 = -2 X 19

* Modular Equivalence Properties. Suppose a = b (mod d), i.e.,a = b + kd and
r=s(modd),ie.,r =5+ ld. Then
a) ar = bs (mod d)
* Proof.ar —bs = (b + kd)(s + ld) — bs
= d(ks + bl + dkl)
— That means d|(ar — bs)

17




Modular Arithmetic (aka Congruence), cont'd (@) Rensselaer

* We say that a and b are congruent (modulo d) if and only if d|(a — b),
i.e., a —b = kd for some k € Z. This is concisely written as
a=b (modd)
— pronounced “a is equal to b mod d”

— Intuitively, a and b have the same remainder when divided by d
* For example, 41 = 79 (mod 19) because 41 — 79 = =38 = -2 X 19

* Modular Equivalence Properties. Suppose a = b (mod d), i.e.,a = b + kd and
r=s(modd),ie.,r =5+ ld. Then
a) ar = bs (mod d)
b) a+r=>b+s(modd)
e Proof. (a+r)—(b+s)=b+kd+s—-1d)—b—s
=d(k+1)
 Thatmeansd|(a+71) — (b +s)
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Modular Arithmetic (aka Congruence), cont'd (@) Rensselaer

* We say that a and b are congruent (modulo d) if and only if d|(a — b),
i.e., a —b = kd for some k € Z. This is concisely written as
a=b (modd)
— pronounced “a is equal to b mod d”

— Intuitively, a and b have the same remainder when divided by d
* For example, 41 = 79 (mod 19) because 41 — 79 = =38 = -2 X 19

* Modular Equivalence Properties. Suppose a = b (mod d), i.e.,a = b + kd and
r=s(modd),ie.,r =5+ ld. Then
a) ar = bs (mod d)
b) a+r=>b+s(modd)
c) a® =b™ (mod d)

* Proof. Apply a)withr = a,s = b, to get a? = b? (imod d). Then apply a)
with 7 = a?,s = b? and so on, using induction.

19




Modular Arithmetic (aka Congruence), cont'd (@) Rensselaer

* We say that a and b are congruent (modulo d) if and only if d|(a — b),
i.e., a —b = kd for some k € Z. This is concisely written as
a=b (modd)
— pronounced “a is equal to b mod d”
— Intuitively, a and b have the same remainder when divided by d

* For example, 41 = 79 (mod 19) because 41 — 79 = =38 = -2 X 19

* Modular Equivalence Properties. Suppose a = b (mod d), i.e.,a = b + kd and
r=s(modd),ie.,r =5+ ld. Then

a) ar = bs (mod d)

b) a+r=>b+s(modd)

c) a® =b™ (mod d)
e Addition and multiplication are just like regular arithmetic.
« Example. What is the last digit of 32924?

32 = —1 (mod 10)
(32)""" = (=1)1°12 (mod 10)
= 1 (mod 10)

20




Modular Division is Not Like Regular Arithmetic @ Rensselaer

* Afew examples
15X 6 =13 X 6 (mod 12)
15 # 13 (mod 12)

15X 6 =2 X 6 (mod 13)
15 = 2 (mod 13)

7 X 8 =22 X8 (mod 15)
7 = 22 (mod 15)

* Modular Division: cancelling a factor from both sides. Suppose ac = bc (mod d).
You can cancel c to get a = b (mod d) if gcd(c,d) = 1.

* Proof. We know that d|c(a — b).
— By GCD Fact 5, that means that d|a — b because gcd(c,d) = 1.

» If d is prime, then division with prime modulus is pretty much like regular division.
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Modular Division is Not Like Regular Arithmetic @ Rensselaer

* Modular Inverse. Inverses do not exist in N, i.e., there exist no numbers x,y € N
suchthatx Xy = 1.

— e.g., thereexistsnonsuchthat3 xn =1

* Modular inverse may exist.

— Suppose 3 X n = 1 (mod 7). What is an example n for which this is true?
n=>5
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RSA Public Key Cryptography Uses Modular
Arithmetic

@ Rensselaer

Bob broadcasts to the world the numbers 23, 55 (Bob’s RSA public key)

When Alice wants to communicate to Bob, Alice encrypts her message M:
M, = M?3 (mod 55)

Bob then decodes the message as follows (using private key 7):
M' = M (mod 55)
Example. Does Bob always decode to the correct message?
1. Suppose Alice wants to send M = 2. What is M..?
* Take M to power 23: 223 = 8 (mod 55)

— Can use a halving algorithm to quickly compute the above congruence
(see book)

* Now Bob receives M, = 8. What is M'?
« 87 = 2 (mod 55)
2. Suppose Alice wants to send M = 3. What is M,.?
 Take M to power 23: 323 = 27 (mod 55)
* Now Bob receives M, = 27. What is M'?
« 277 = 3 (mod 55)

23




RSA Public Key Cryptography Uses Modular
Arithmetic, cont’d

@ Rensselaer

* This looks weird, but it’s actually a cute application of Fermat’s little theorem:

* Theorem [Fermat’s Little Theorem]. For every a € Z and every prime number p that
does not divide a:
aP~1 =1 (mod p)

— Don’t have time to prove it.

* In RSA, Bob picks two (large) primes p and g

— Bob also needs numbers e, d such thated = 1 (mod lcm((p —1)(q — 1)))

— Then the public key is e, pq and the private key is d
— It can be shown that for any M:
(M€)* = M (mod pq)
— In order to infer d, Simon needs to factor pg (computationally hard!)
* Exercise 10.14. Prove that Bob always decodes to the right message for 55,23 and 7
* Practical Implementation. Good idea to pad with random bits to make cypher text
random.

— Otherwise, if Alice sends the same M, multiple times, Simon will know that (but
won’t know the actual value of M,)
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