## Course Introduction

- My name is Radoslav Ivanov
- Call me Rado
- Undergrad degree in CS and ECON from Colgate in 2011
- Got my PhD in CS from UPenn in 2017
- My research is on safe and secure autonomous systems
- Verification of neural networks
- Attack-resilient sensor fusion
- Context-aware detection and estimation
- Started at RPI in Jan. 2022


## Impressive Progress in Autonomy

## Control



Boston Dynamics


JPL-Caltech, DARPA Robotics Challenge

## Perception



YOLO v. 3


Zhu, Zhou, Daniilidis, ICCV'15

## Learning

Robot Motor Skill Coordination with EM-based Reinforcement Learning

Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell

Italian Institute of Technology

Kormushev, Calinon, Caldwell, IROS'10


DeepMind

## But we're not there yet...

## Tesla Driver Was on Autopilot Eating a Bagel When He Smashed into a Fire Truck


 In 2018 was suing Autoplot tat th
Board MTSE) report this week
The aencry investoptors reported thet the divier was having breatsat while he bet
 not brake priof to the crash.

Uber self-driving car involved in fatal crash couldn't detect jaywalkers




320936/waymo-self-driving-car crash-arizona

## 

Waymo self-driving minivan involved in crash in Arizona
Minor inurres reported


NEWS TECHNOLOGY

## National Security

Home $>$ Collections $>$ Surveillance
Iran says it downed U.S. stealth drone; 1 acknowledges aircraft downing

By Greg Jaffe and Thomas Erdbrink, December 04, 2011
A secret U.S. surveillance drone that went missing last week in western Afgha
have crashed in Iran, in what may be the first case of such an aircraft ending an adversary.
Iran's news agencies asserted that the nation's defense forces brought down tt Iran's news agencies asserted that the nation's defense forces brought down ti
Iranian reports said was an RQ-17o stealth aircraft. It is designed to penetrat $\epsilon$
defenses that could see and possily shoot downless-sophisticated Predator a defenses that could see and possibly shoot down less-sophisticated Predator a A stealthy RQ-170 drone played a critical role in surveilling the compound in $]$ Osama bin Laden was hiding in the months before the raid in which he was ki SEALS in May.
U.S. officials acknowledged Sunday that a drone had been lost near the Irania declined to say what kind of aircraft was missing.
The Iranian government has not released any pictures of the recovered aircral was downed by defense forces after it flew across the border and into the cour unnamed Iranian defense official said in one report that a cyberattack caused U.S. officials cast doubt on th Iranian assertions. "We have no indication that it was brought down by hostil, senior Pentagon official, speaking on the condition of anonymity to discuss se

${ }_{\text {I }}$ Car hackers use laptop to control standard car
By Zoe Kleinman



## Neural Network (NN) Vulnerabilities

- Neural networks increasingly used in safety-critical systems

Perception (autonomous cars)


Wong et al., Corl'19

Control (air traffic avoidance)


Katz et al., CAV ‘17

- Safety concerns discovered in both domains

"panda"
57.7\% confidence


Goofellow et al., ICRL‘15

Table 2: Verifying properties of the ACAS Xu networks.

|  | Networks | Result | Time | Stack | Splits |
| :---: | ---: | :---: | :---: | ---: | :---: |
| $\phi_{1}$ | 41 | UNSAT | 394517 | 47 | 1522384 |
|  | 4 | TIMEOUT |  |  |  |
| $\phi_{2}$ | 1 | UNSAT | 463 | 55 | 88388 |
|  | 35 | SAT | 82419 | 44 | 284515 |
| $\phi_{3}$ | 42 | UNSAT | 28156 | 22 | 52080 |
| $\phi_{4}$ | 42 | UNSAT | 12475 | 21 | 23940 |

$99.3 \%$ confidence

"gibbon"

## Cyber-Physical Systems (CPS)

Tight coupling between communication, computation and interaction with the physical world

Aircraft


## Military



## Autonomous Cars



## Smart Grids



## Medical CPS



Robotics


## A standard CPS design



F1/10 Autonomous Racing Competition, ES Week 2016

## Problem: How do we know car won't crash?

- How do we build safe algorithms?
- How do we analyze algorithms?
- What about "black-box" components such as neural networks?
- How do we convince other people car is safe (assurance argument)?

- Discrete objects.
- Reasoning about discrete objects
- Counting discrete objects
- Randomness: probability
- What can we compute?
-What can we compute efficiently?
... it will be everywhere


## Course Mechanics

- Meeting time: MTh 10am-noon
- Each lecture will last around 75-90 minutes
- We will meet in Sage 3303
- Recitation sessions: W 10am-4pm (depending on your section)
-Sessions 10am-3pm will meet in Aemos Eaton 215
- Session 3-4pm will meet in Lowe 3039
- Led by TAs
- Instructor office hours: M 1-2pm, W 4-5pm, F 9-10am
- Lally 309
- Office hours will be in person unless noted otherwise
- Office hour on Wed, Jan. 10: 3-4pm
- We will have 3 quizzes
- Each quiz will be an hour long, multiple choice only
- Dates are (all at 8am during the Wednesday slot):
- Feb. 7
- Mar. 27
- Apr. 17
- Midterm exam (at 8am during the Wednesday slot)
-two-hour exam on Feb. 28
- Final exam
- Scheduled by the Registrar
- Locations TBD
- TAs: Michael Cleversley (clevem), Sharmishtha Dutta (duttas), Shuhang Tan (tans5), Yuchen Zhang (zhangy94)
- Office hours: TBD
- Will be monitoring Piazza and grading
- Mentors: Wilde Chu (chuw7), Mohamed Lashuel (lashum), Michael Lyga (lygam), David Wang (wangd14), Ilan Beyen (beyeni), Emma Huntington (huntie), Matthew Hurtado (hurtam), Jun Kim (kimj43), Zain Magdon-Ismail (magdoz2), Fatih Orhan (orhanf), Justin Ottesen (ottesj), Shimu Pan (pans), Eric Scheer (scheee2)
- Office hours: by appointment
-Will be helping with marking
- Course website: http://cs.rpi.edu/~ivanor/focs/S24/focs.html
- All course information will be posted on the website
- lecture slides
-homework assignments (already posted)
- practice exams
- Homework assignments and submissions will be through Submitty (submitty.cs.rpi.edu)


## Course Mechanics: Piazza

- We will be using Piazza for questions and discussions
- Signup link:
https://piazza.com/rpi/spring2024/csci2200/home
- Please request access if you are not enrolled already
- Please use Piazza for questions and discussion
- I won't monitor Submitty/Webex for questions
- Discrete Mathematics and Computing, M. Magdon-Ismail
- Very well written book
- We will try to cover 1 chapter per lecture
- The book is required
- Won't be able to cover all examples/exercises from the book
- You will need to read each chapter and work out the exercises on your own
- Homework problems will be assigned from the book also
- Problems also posted on course website
- If you have an older version of the book, the problem numbers may be different!
- Prof. Magdon-Ismail will exchange a new copy of the book for an old one if you got the older version
- This is a theory course
- Despite its current trajectory, CS is still based in math
- Need to understand algorithms
- Homeworks will be problem sets from the book
-Submit through Submitty
- Please make sure you have access now
- Course page was just set up this morning so it may be online yet
-There will be 10 homeworks total
- Homework: 10\% (1\% each)
- 3 Quizzes: 30\% (10\% each)
- Midterm: 30\%
- Final: 30\%
- In-class pop quizzes (roughly one per week): 2\% bonus
- Please bring your laptops to class so you can submit these
- Will get full $2 \%$ if you do well on $60 \%$ of pop quizzes
- Will get $1 \%$ if you do well on $40 \%$ of pop quizzes
- If you do the pop-quizzes, you'll make up points for 2 homeworks!
- We will use the following homework grading scheme:
- Correct solution (MUST show your work): 100\%
- You made significant progress (MUST show your work): 80\%
- You understood the problem and made a reasonable attempt but something went wrong: 50\%
- Not in the right ball park or serious error: 0\%


## Prerequisites

- CS II (data structures)
- Calc I
- Calc II is strongly recommended!
- Programming, numbers, geometry, algebra, calculus, . . .
-What is the minimum element in the set $\{8,9,3,10,19\}$ ?


## 3

- Does this set of positive numbers have a minimum element: $\{25,97,107,100,18,33,99,27,2014,2200,23, \ldots\}$
-Any (non-empty) set containing only positive integers has a minimum element.
- Well-ordering principle
- Can you build an algorithm to find it?
- Suppose after first 1 M numbers the min is 10
-When do you declare you have found the minimum?
- Any algorithm you come up with may not always terminate


## Two-Contact Covid on a Grid

- Need to model the spread process
- A square gets infected if two or more neighbors are infected
- Given initial gray infections, who ultimately gets infected?
- Minimum infections to infect everyone?
- Given few vaccines, who to immunize?
- Answers involve discrete math.



## Two-Contact Covid on a Grid

- Given initial gray infections, who ultimately gets infected?
- Last two columns don't get infected
- Minimum infections to infect everyone?
- Turns out 6 isn't enough
- Given few vaccines, who to immunize?
- Look at first few susceptible people


day 1

day 2

day 4

day 5

day 6

day 7

day 8


## Scheduling Speed Dates

- In each round 4 people "group"-speed-date around a table. (4 rounds in all)

- How to organize the rounds so that people meet as many people as possible?
- Do you care about average or minimum number of meetups per person?
- Can everyone meet at least 10 people?
- What happens if you assign tables randomly?
- Answers involve discrete math.
- People are circles and links are friendships.
- Model friendships with à graph
- Who would you advertise to? You wish to maximize adoption of your new technology.
- Can you find all cliques of certain size?
- Answers involve discrete math.
- Desktop, smartphone, fitbits, smart watches
- We have deep questions:
- What can we compute?
- What can't we compute?
-Think about finding the smallest number in an infinite set
- Turns out it cannot be computed! Ever!
- In other words, for any algorithm, I can give you a set for which your algorithm won't ever terminate
- How fast?
- Answers involve discrete math.


## Post's Correspondence Problem (PCP)

- PCP: Consider 3 dominos

| $d_{1}$ | $d_{2}$ |
| :--- | :--- |
| 0 $d_{3}$ <br> 100 01 110 |  |

- Can I arrange dominos (using multiple copies of each) so that top and bottom strings match

$$
d_{3} d_{2} d_{3} d_{1}=\begin{array}{|l|l|l|l|}
\hline 110 & 01 & 110 & 0 \\
\hline 11 & 00 & 11 & 100 \\
\hline
\end{array}
$$

- INPUT: Dominos $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$.
- Challenge ( $\$ 1000$ reward): write a program that takes a txt file of dominos and ALWAYS TERMINATES with the correct answer
- Correct sequence of dominoes or says it can't be done!
- Prove your program is correct!


## Matching Subset Sums

- Consider the set of numbers:

$$
\{3,7,9,5,4,10,13\}
$$

- What are all the subsets that sum up to 22 ?

$$
\{10,7,5\},\{9,13\},\{3,9,10\},\{3,5,4,10\}, \ldots
$$

-Quite a few

- Enumerating all subsets is hard (i.e., slow)
- Are there distinct subsets that sum up to the same thing?

$$
\{10,7,5\},\{9,13\}
$$

- If there are none, can you prove it?
- Computers used in safety-critical systems
-Self-driving cars, medical systems
- Need to prove algorithms and their implementations are correct!
- Some things we can prove in the worst case
- E.g., find all people who get infected
- Sometimes all we can give are probabilistic guarantees
- World is probabilistic anyway
- In this class, we'll look at proof techniques for both cases


## Computing is Mathematics

- "Too few people recognize that the high technology so celebrated today is essentially a mathematical technology."
- "A programmer must demonstrate that their program has the required properties. If this comes as an afterthought, it is all but certain that they won't be able to meet this obligation. Only if this obligation influences the design is there hope to meet it...
- "The required techniques of effective reasoning are pretty formal, but as long as programming is done by people who don't master them, the software crisis will remain with us and will be considered an incurable disease. And you know what incurable diseases do: they invite the quacks and charlatans in, who in this case take the form of Software Engineering Gurus."
- Edsger Dijkstra
- Rado (Dijkstra): Turns out coding is very difficult (especially in the case of large systems), but I mostly agree
- "A mouse tries to escape from an old fashioned cage. After many futile attempts bouncing back-and-forth, thumping his body against the cage bars, he finally finds one place where the bars are slightly wider apart. The mouse, bruised and battered escapes through this small opening, and to his elation, finds freedom." - Polya

- Connect tiles of the same letter with wires. Wires cannot cross, enter tiles, or leave the box. How can it be done? If it can't be done, why not?
- Don't be quick to dismiss either conclusion. Try this and that. Fiddle around until you understand the problem and the difficulty. Patience.
- To solve such problems, "You need brains and good luck. But, you must also sit tight and wait til l you get a bright idea." - Polya.


## Getting Good at Discrete Math

- The professional's workflow in addressing a discrete math problem:

1. Model the problem your are trying to solve using a discrete mathematical object.
2. Tinker with easy cases to build an understanding of the model.
3. Based on the tinkering, formulate a conjecture about your problem/model.
4. Prove the conjecture and make it a theorem. You now know something new.

## Acknowledgements

- Slides are based on lectures developed by Prof. Malik MagdonIsmail (RPI)

