Midterm

110 Minutes

First Name: _____

Last Name: _____

RIN: _____

NO COLLABORATION or electronic devices. Any violations will result in an F.

No questions allowed during the test unless you think there is a mistake.

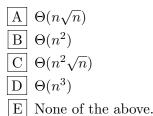
GOOD LUCK!

10 points per correct multiple-choice answer. Circle exactly one answer.20 points per correct answer to Problems 2-6.You MUST show CORRECT work to get credit.

Correct answers with no explanation will get a 0.

1	2	3	4	5	6	Total
150	20	20	20	20	20	250

- 1. What is the asymptotic behavior of the sum $S(n) = \sum_{i=1}^{n^2} i^2$?
 - $\begin{array}{|c|c|c|} \hline \mathbf{A} & \Theta(n^3) \\ \hline \mathbf{B} & O(n^4) \\ \hline \mathbf{C} & \Theta(n^5) \\ \hline \mathbf{D} & O(n^6) \\ \hline \mathbf{E} & \text{None of the above.} \end{array}$
- 2. What is the asymptotic behavior of the function $S(n) = n^{1.5}$?



- 3. What is the value of the sum $S = \sum_{i=1}^{10} \sum_{j=1}^{5} i?$
 - A 200
 B 225
 C 250
 D 275
 E 300

4. What is the correct asymptotic behavior of the sum $S(n) = \sum_{i=1}^{n} i^{10}$?

- $\begin{array}{c|c} A & \Theta(n^{10}) \\ \hline B & \Theta(n^{11}) \\ \hline C & \Theta(n^{12}) \end{array}$
- $\boxed{\mathbf{D}} \Theta(n^{13})$
- E None of the above.
- 5. We know that gcd(290, 310) = 290x + 310y. Which of the following values are possible for x and y?

- 6. What is the remainder when 10^{100} is divided by 11?
 - A -2
 - B -1
 - \mathbf{C} 0
 - D 1
 - E 2
- 7. Consider a graph G with degree sequence [2, 2, 2, 2, 2]. How many edges does G have?

8. Consider a graph G with degree sequence [3, 2, 2, 2, 2]. How many edges does G have?

- $\begin{bmatrix} A & 4 \\ B & 6 \\ \hline C & 8 \\ \hline D & 1 \end{bmatrix}$
- D
 10

 E
 None of the above.
- - A
 8

 B
 9

 C
 10

 D
 11

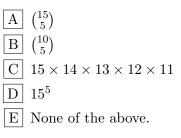
 E
 None of the above.
- 9. There are 10 types of people in the world: those who know binary and those who don't. What is 2¹¹?
 - A
 128

 B
 256

 C
 512

 D
 1024
 - E None of the above.
- 10. Suppose FOCS has 6 sections (with 33 students per section). Each student shakes hands only with students who are in different sections. What do we know?
 - A The number of students who shake hands with an odd number of students is even.
 - B The number of students who shake hands with an odd number of students is odd.
 - C There are 198×165 handshakes in total.
 - D The number of handshakes cannot be determined.
 - E None of the above.

- 11. How many subsets of $\{1, 2, 3, 4, 5, 6\}$ contain at least one even number?
- 12. Consider all 7-bit binary strings with a 1 in the first position and a 0 in the last position? How many such strings are there?
 - A 16
 B 32
 C 64
 D 128
 E None of the above.
- 13. Suppose you guess randomly on all 15 multiple-choice questions and you answer 5 correctly.
 - What is the number of all 5-question sets (e.g., a 5-question set is $\{q_1, q_4, q_7, q_{11}, q_{12}\}$)?



- 14. In how many ways can you misspell WINTER, assuming you use the same letters?
- 15. What is the last digit of 11^5 ?

Α	0
В	1
С	2
D	3
Е	None of the above.

Problem 2. Prove that $\sqrt{12}$ is irrational.

Problem 3. What is the last digit of 102^{1211} ? [Hint: $11^2 = 121$]

Problem 4. Prove using induction that $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}, \forall n \ge 1.$

Problem 5. Consider the recurrence $A_0 = 0, A_1 = 1, A_n = 2A_{n-1} - A_{n-2}$. Guess a formula for A_n and prove it using induction. Tinker, tinker, tinker.

Problem 6. For a graph G, the complement \overline{G} has the same vertices, but the edges in \overline{G} are the complement of the edges in G: distinct vertices u and v are adjacent in \overline{G} if and only if they are not adjacent in G.

Prove that if G is regular, then \overline{G} is regular. [In a regular graph, all vertices have the same degree.]

Scratch

Scratch