FINAL: <u>180 Minutes</u>

Last Name:	
First Name:	
RIN:	
Section:	

Answer **ALL** questions. You may use **two** double sided $8\frac{1}{2} \times 11$ crib sheets.

You **MUST** show **CORRECT** work (even for multiple choice) to receive full credit. **NO COLLABORATION or electronic devices. Any violations result in an F. NO questions** allowed during the test. Interpret and do the best you can.

GOOD LUCK!

1	2	3	4	5	6	Total
200	30	30	30	30	30	350

INSTRUCTIONS

- 1. This is a **closed book** test. No electronics, books, notes, internet, etc.
- 2. You can have two double sided $8\frac{1}{2} \times 11$ crib-sheets (handed in separately).
- 3. The test will become available in Submitty at 8am on the test date. Your PDF is due in Submitty by 8am the next day. You have 3 hours to do the exam and 3 additional hours to type your answers and submit a PDF.
- 4. By submitting the test you attest that the work is entirely your own and you obeyed the time limits of the exam.
- 5. Your submission *must* be typed PDF. The 3 hour test time for solving the problems must be continuous. The extra 3 hours is to type your answers and explanations: you may take breaks, but not change answers.
- 6. You *must* show your work for *every* answer immediately after the answer. The format for what you hand in is something like:

```
Problem 1

(1) A

Because x is even, therefore ...

(2) B

Because \sqrt{2} is irrational, therefore ...

(4) D

By the law of total expectation, \mathbb{E}[\mathbf{X}] = \cdots

:

(20) A

We proved in class that \ell = n - 1. Therefore ...

Problem 2

:
```

- Start each long-answer question on a new page.
- Some problems may be "easy", so give a short explanation.
- Some problems may require a detailed reasoning.
- 3*3+1+3=13 is not an explanation. Everyone knows that 3*3+1+3=13. Why this equation? Where do the numbers come from?

7. If you don't show correct work, you won't get credit.

- 8. Be especially careful in the multiple choice.
 - Correct answers get 10 points.
 - Wrong answers or correct answers without correct justification get 0.
- 9. Submit with plenty of time to spare. A late test won't be accepted.

1 Circle at most one answer per question. 10 points for each correct answer.

(1) "For a constant
$$c > 0$$
, $1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}$, where n is any natural number." Which claim is this?

$$\boxed{\mathbf{A}} \exists c > 0 : (\exists n \in \mathbb{N} : 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}).$$

$$\boxed{\mathbf{B}} \exists c > 0 : (\forall n \in \mathbb{N} : 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}).$$

$$\boxed{\mathbf{C}} \exists n \in \mathbb{N} : (\forall c > 0 : 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}).$$

$$\boxed{\mathbf{D}} \forall n \in \mathbb{N} : (\exists c > 0 : 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}).$$

$$\boxed{\mathbf{E}} \text{ None of the above.}$$

- (2) You will pick a constant C > 0 such that no matter which $n \in \mathbb{N}$ I pick, $\sum_{i=1}^{n} i \leq Cn$. Which is true?
 - A You can pick a C satisfying $C \leq 10$.
 - B You can pick a C satisfying 10 < C < 100.
 - C You can pick a C satisfying 100 < C < 1000.
 - D You can pick a C satisfying 1000 < C.
 - $|\mathbf{E}|$ There is no constant C > 0 that you can pick.
- (3) $T_1 = 2$ and $T_n = T_{n-1} + 2n$ for n > 1. What is T_{100} ? A 5050. B 10100. C 20200.
 - D 40400.
 - E None of the above.
- (4) $T_1 = 1$ and $T_n = n \times T_{n-1}$ for n > 1. Which is true? $\boxed{A} T(n) \in O(n^2).$ $\boxed{B} T(n) \in o(2^n).$ $\boxed{C} T(n) \in \Theta(2^n).$ $\boxed{D} T(n) \in \omega(2^n).$
 - E None of the above.
- (5) You divide 2^{2016} candies evenly among 11 kids. How many candies are left over?
 - A 0.
 - B 3.
 - C 6.
 - D 9.
 - E None of the above.

- (6) Estimate the sum $S = \sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$.
 - $\begin{tabular}{|c|c|c|c|} \hline A & 0 < S \le 2. \\ \hline B & 2 < S \le 2000. \\ \hline C & 2000 < S \le 20000. \\ \hline D & 20000 < S \le 200000. \\ \hline E & None of the above. \\ \hline \end{tabular}$
- (7) How many of the numbers $100, 101, 102, \ldots, 999$ do not contain the digit 2?
 - A 100.
 - B 504.
 - C 648.
 - D 729.
 - **E** None of the above.
- (8) Let S be the sum of the reciprocals of all natural numbers not containing the digit 2. Estimate S.
 - $\begin{array}{l} \hline \mathbf{A} \ 0 < S \leq 2. \\ \hline \mathbf{B} \ 2 < S \leq 2000. \\ \hline \mathbf{C} \ 2000 < S \leq 20000. \\ \hline \mathbf{D} \ 20000 < S \leq 20000. \\ \hline \mathbf{E} \ \\ \hline \mathbf{None of the above.} \end{array} \\ \begin{array}{l} S = & 1 + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \frac{1}{17} + \frac{1}{18} + \frac{1}{19} + \frac{1}{30} + \frac{1}{31} + \frac{1}{33} + \frac{1}{34} + \frac{1}{35} + \cdots \end{array}$
- (9) Shirts come in 3 colors R, G or B. In how many ways can you distribute shirts to 7 students?
 - $\begin{bmatrix} A & \binom{7}{3} \\ B & 7^3 \\ \hline C & 3^7 \\ \hline D & 7!/3! \\ \end{bmatrix}$
 - E None of the above.
- (10) Repeat problem 9 if at least two shirts of each color are distributed to students (7 shirts in total).
 - A 570
 - B 600.
 - C 630.
 - D 660.
 - E None of the above.

- (11) Every vertex in a graph G has degree 1. Which is true?
 - A The graph G must be disconnected.
 - B The graph G could have 5 vertices.
 - C The graph G must have a cycle.
 - D The graph G is not possible.
 - E None of the above

(12) You rolled a pair of dice. What are the chances you rolled exactly one 5?

- A 9/36.
- B 10/36.
- C 11/36.
- D 12/36.
- E None of the above.
- (13) You rolled a pair of dice. What are the chances you rolled exactly one 5 if the sum is even?
 - A 4/10.
 - B 5/10.
 - C 4/11.
 - D 5/11.
 - E None of the above.
- (14) Which of the following random variables \mathbf{X} is not a binomial random variable.
 - A Randomly throw 100 darts at a dart board. X is the number of darts hitting the bulls-eye.
 - B Randomly answer 100 5-choice multiple choice questions. X is the number of questions correct.
 - C Randomly answer 100 5-choice multiple choice questions. X is the number of questions wrong.
 - $|\mathbf{D}|$ 1000 students randomly line up, 500 are boys. \mathbf{X} is the number of boys in the first 100 students.
 - **E** They are all binomial random variables.
- (15) A social network (graph) is a *tree* with 20 people. The edges are friendships. Each person randomly picks red or blue. Friends compare to see if they match. What is the expected number of matches.
 - A 4.75.
 - B 5.
 - C 9.5
 - D 10.
 - E None of the above or not enough information.

- (16) On BlueToe, your first child is equally likely to be a boy or girl. From then on, the sex of a child is the same as the previous child with probability 2/3 and different with probability 1/3. What is the expected number of kids to get a girl?
 - A 1.5.
 - B 2.
 - C 2.5.
 - D 3.
 - **E** None of the above.

(17) On BlueToe, as in problem 16, what is the expected number of kids to two girls?

- A 3.25.
- B 4.
- C 4.5.
- D 5.25.
- E None of the above.

(18) Estimate the number of DFA you can draw with 4 states, q_0, q_1, q_2, q_3 . Tinker!

- A About a hundred.
- B About a thousand.
- C About a million.
- D About a billion.
- E About a trillion.

(19) Which string can be generated by the CFG $S \rightarrow 0|1|SSS$?

- A 1111.
- B 0000.
- C 000111.
- D 111000.
- E None of the above.

(20) If \mathcal{L}_A is decidable, then \mathcal{L}_B is decidable. We know that \mathcal{L}_B is undecidable. Therefore:

A \mathcal{L}_A must be finite.

B \mathcal{L}_A must be infinite.

$$|\mathcal{L}_A| > |\mathcal{L}_B|$$

$$\boxed{\mathrm{D}} |\mathcal{L}_B| < |\mathcal{L}_A| \ .$$

E None of the above.

2 Determine the Type of Proof and Prove

 $\underline{\mathit{Prove}}$ that there is a constant c>0 for which, no matter which $n\in N$ you pick,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}.$$

Product of 5 Consecutive Numbers.

Prove that the product of any 5 consecutive natural numbers is divisible by 5! (e.g. $5!|3 \times 4 \times 5 \times 6 \times 7$).

4 Expected Waiting Time to All Colors of Starbust.

Starburst is sold in 2-packs, and there are 3 colors of starbust. What is the expected number of 2-packs you will buy if your goal is to get all colors?

5 DFA or no DFA

Give a DFA for $\mathcal{L} = \{0^{\bullet n^2} | n \ge 1\} = \{0, 0000, 00000000, \ldots\}$, or prove that \mathcal{L} can't be solved with DFA.

6 Transducer Turing Machine for Reversal.

Give a high level pseudo-code description of a transducer Turing Machine for reversal. The input on the tape is any binary string w. When the Turing Machine halts, the reversal of w should have replaced w. E.g.:

0

1

1

(Don't give machine level details, but you should make it clear how the Turing Machine moves back and forth. Tinker.)

SCRATCH

SCRATCH