Final Exam

170 Minutes

First Name: _____

Last Name: _____

RIN: _____

NO COLLABORATION or electronic devices. Any violations will result in an F.

No questions allowed during the test unless you think there is a mistake.

GOOD LUCK!

10 points per correct multiple-choice answer. Circle exactly one answer.20 points per correct answer to Problems 2-6.You MUST show CORRECT work to get credit.

Correct answers with no explanation will get a 0.

1	2	3	4	5	6	Total
200	20	20	20	20	20	300

1. What is the asymptotic behavior of the sum $S(n) = \sum_{i=1}^{n} i^9 + 100i^8$?

2. What can we say about this statement: $\exists C > 0 : \forall n \ge 1 : n^2 < \frac{1}{2}Cn^2 + n$?

3. What can we say about this statement: $\exists C > 0 : \forall n \ge 1 : n^3 < \frac{1}{2}Cn^2 + n$?

А	True
В	False
\mathbf{C}	Depends on C
D	Depends on n

- E None of the above.
- 4. Consider the recurrence $T_1 = 1, T_n = T_{n-1} + n^3$. Estimate T_{10} :
 - A 250 B 2500
 - C 25000
 - D 250000
 - D 250000
 - E None of the above.

E None of the above.

- 6. What is the last digit of 3^{100} ?
 - A 1
 - B 3
 - C 5
 - D 7

 - E 20
- 7. Consider a graph G where every vertex has degree 2. What do we know?
 - A G must have at least 3 vertices.
 - B G can be a cycle (i.e., the entire graph can be a single cycle).
 - C G must have a cycle.
 - D G is not a tree.
 - E All of the above.
- 8. Consider a graph G where every vertex has degree 3. What do we know?
 - $\begin{bmatrix} A \end{bmatrix}$ G must have an even number of vertices.
 - B G can be a tree.
 - C G cannot have any cycles.
 - D G cannot exist.
 - E All of the above.
- 9. How many graphs with 5 vertices are there?
 - A 32
 B 128
 C 256
 D 1024
 E None of the above.
- 10. Suppose FOCS has 300 students, and I split them in 3 sections with 100 students each. How many ways to split the students are there?
 - $\begin{array}{c|c}
 A & \binom{300}{100} \\
 B & \binom{300}{200} \\
 \hline C & \binom{300}{100,100,100} \\
 \hline D & 300! \\
 \hline E & \text{None of the above.} \end{array}$

- 11. You flipped 4 fair coins. What is the probability of exactly 3 heads?
 - A 1/16 B 2/16
 - C 3/16
 - D 4/16
 - E None of the above.
- 12. You flipped 4 fair coins. What is the probability of exactly 3 heads, given that the first coin was H?
 - A 1/8
 B 2/8
 C 3/8
 D 4/8
 E None of the above.
- 13. Suppose $\mathbb{E}[X] = 3, \mathbb{E}[Y] = 2$. What is $\mathbb{E}[2X + 5Y]$?
 - A 10
 B 16
 C 22
 D 28
 - E None of the above.
- 14. Let X be a positive random variable. If $\sigma^2(X) = 3$ and $\mathbb{E}[X^2] = 5$, what is $\mathbb{E}[X]$?
 - $\begin{array}{c|c} A & \sqrt{2} \\ \hline B & 2 \\ \hline C & 3 \\ \hline D & 4 \\ \hline E & None of the above. \end{array}$
- 15. On any day, with probability 0.5 I go to the cafeteria at noon: if I go at noon, I get my food at 12:10pm with probability 0.2 and at 12:30pm with probability 0.8; with probability 0.5, I go to the cafeteria at 12:30pm and get my food at 12:30pm. How many days am I expected to wait until I get my food at 12:10pm (start counting from 1)?
 - A 5
 B 10
 C 15
 D 20
 E None of the above.

16.	What do	we know	about the	language $\mathcal{L} =$	$\{w \# w$	$ w \in \cdot$	$\{0,1\}^{*}$	*}?
-----	---------	---------	-----------	--------------------------	------------	-----------------	---------------	-----

Α	It is	regular.
---	-------	----------

- B It is context-free.
- C It is decidable.
- D It is undecidable.
- E None of the above.

17. What do we know about the language $\mathcal{L} = \{w \# w^R \mid w \in \{0,1\}^*\}$?

Α	It	is	regu	lar.
11	10	TO	rugu.	tor.

- B It is context-free.
- C It is decidable.
- D It is undecidable.
- E None of the above.

18. Can a pushdown automaton (PDA) solve the language $\mathcal{L} = \{ww^R \mid w \in \{0, 1\}^*\}$?

А	No,	${\rm the}$	language	is	not	context-free.
---	-----	-------------	----------	----	-----	---------------

- B Yes, a deterministic PDA can solve \mathcal{L} .
- C Yes, a non-deterministic PDA can solve \mathcal{L} .
- D No, the language is not decidable.
- E None of the above.

19. Which of the following problems is decidable?

- A The halting problem.
- B Deciding whether a given program will print "Hello World".
- C Deciding whether a given program will terminate.
- D Deciding whether a given C program is well-formatted.
- E None of the above.

20. What do we know about the traveling salesman problem?

A It is known to be in the cla	ass P.
--------------------------------	--------

- B I can solve it by listing all possible trajectories.
- C It is undecidable.
- D I can always list all trajectories in linear time.
- E None of the above.

Problem 2. Prove that $\forall n \ge 1, \log_2(n) \le n$.

Problem 3. Suppose you are determined to flip a fair coin until you get the sequence HHH. What is the expected number of flips?

Problem 4. Prove that for any $n \ge 3$, there exists a set of n distinct natural numbers x_1, \ldots, x_n such that each x_i divides the sum $s = x_1 + \cdots + x_n$, i.e., $s = x_i k_i$ for some $k_i \in \mathbb{N}$. Tinker, tinker, tinker.

Problem 5. Consider the language of all odd-length zero strings $\mathcal{L}_O = \{0, 000, 00000, \dots\}$. Prove that \mathcal{L}_O has an undecidable subset. Problem 6. Consider the language $\mathcal{L}_{AddTwo} = \{0^{\bullet n}1^{\bullet n+2}\}$. Give pseudocode for a Turing Machine that decides this language.

[Your pseudocode needs to be detailed enough so it is clear that each step can indeed be performed using a Turing Machine.]

Scratch

Scratch