Final Exam

170 Minutes

First Name: \qquad
Last Name: \qquad
RIN: \qquad

NO COLLABORATION or electronic devices.
Any violations will result in an F .
No questions allowed during the test unless you think there is a mistake.

GOOD LUCK!

10 points per correct multiple-choice answer. Circle exactly one answer. 20 points per correct answer to Problems 2-6.
You MUST show CORRECT work to get credit.
Correct answers with no explanation will get a 0 .

1	2	3	4	5	6	Total
200	20	20	20	20	20	300

1. What is the asymptotic behavior of the sum $S(n)=\sum_{i=1}^{n} i^{9}+100 i^{8}$?

$$
\begin{array}{lll}
\hline \mathrm{A} & O\left(n^{9}\right) \\
\mathrm{B} & O\left(n^{8}\right) \\
\mathrm{A} & O\left(100 n^{9}\right) \\
\mathrm{D} & O\left(n^{10}\right) \\
\mathrm{E} & \text { None of the above. }
\end{array}
$$

2. What can we say about this statement: $\exists C>0: \forall n \geq 1: n^{2}<\frac{1}{2} C n^{2}+n$?

A True
B False
C Depends on C
D Depends on n
E None of the above.
3. What can we say about this statement: $\exists C>0: \forall n \geq 1: n^{3}<\frac{1}{2} C n^{2}+n$?

A	True
B	False

C Depends on C
D Depends on n
E None of the above.
4. Consider the recurrence $T_{1}=1, T_{n}=T_{n-1}+n^{3}$. Estimate T_{10} :

| A | 250 |
| :--- | :--- | :--- |
| B | 2500 |
| C | 25000 |
| D | 250000 |
| E | None of the above. |

5. Calculate the sum $\sum_{i=1}^{5} \sum_{j=0}^{3} i 2^{j}$.

A 200
B 225
(C) 250

D 275
E None of the above.
6. What is the last digit of 3^{100} ?

A	1
B	3
C	5
D	7
E	20

7. Consider a graph G where every vertex has degree 2 . What do we know?

A G must have at least 3 vertices.
B G can be a cycle (i.e., the entire graph can be a single cycle).
(C G must have a cycle.
D G is not a tree.
E All of the above.
8. Consider a graph G where every vertex has degree 3 . What do we know?

A G must have an even number of vertices.
B G can be a tree.
C G cannot have any cycles.
D G cannot exist.
E All of the above.
9. How many graphs with 5 vertices are there?

| A | 32 |
| :--- | :--- | :--- |
| B | 128 |
| C | 256 |
| D | 1024 |
| E | None of the above. |

10. Suppose FOCS has 300 students, and I split them in 3 sections with 100 students each. How many ways to split the students are there?
$\begin{array}{cc}\mathrm{A} & \binom{300}{100} \\ \mathrm{~B} & \binom{300}{200}\end{array}$
C $\binom{300}{100,100,100}$
D 300!
E None of the above.
11. You flipped 4 fair coins. What is the probability of exactly 3 heads?

A	$1 / 16$
B	$2 / 16$
C	$3 / 16$
D	$4 / 16$
E	None of the above.

12. You flipped 4 fair coins. What is the probability of exactly 3 heads, given that the first coin was H ?

A	$1 / 8$
B	$2 / 8$
C	$3 / 8$
D	$4 / 8$
E	None of the above.

13. Suppose $\mathbb{E}[X]=3, \mathbb{E}[Y]=2$. What is $\mathbb{E}[2 X+5 Y]$?

A	10
B	16
C	22
D	28
E	None of the above.

14. Let X be a positive random variable. If $\sigma^{2}(X)=3$ and $\mathbb{E}\left[X^{2}\right]=5$, what is $\mathbb{E}[X]$?

| A | $\sqrt{2}$ |
| :--- | :--- | :--- |
| B | 2 |
| C | 3 |
| D | 4 |
| E | None of the above. |

15. On any day, with probability 0.5 I go to the cafeteria at noon: if I go at noon, I get my food at $12: 10 \mathrm{pm}$ with probability 0.2 and at $12: 30 \mathrm{pm}$ with probability 0.8 ; with probability 0.5 , I go to the cafeteria at $12: 30 \mathrm{pm}$ and get my food at $12: 30 \mathrm{pm}$. How many days am I expected to wait until I get my food at 12:10pm (start counting from 1)?

A	5
B	10
C	15
D	20
E	None of the above.

16. What do we know about the language $\mathcal{L}=\left\{w \# w \mid w \in\{0,1\}^{*}\right\}$?

A It is regular.
B It is context-free.
C It is decidable.
D It is undecidable.
E None of the above.
17. What do we know about the language $\mathcal{L}=\left\{w \# w^{R} \mid w \in\{0,1\}^{*}\right\}$?

A It is regular.
B It is context-free.
C It is decidable.
D It is undecidable.
E None of the above.
18. Can a pushdown automaton (PDA) solve the language $\mathcal{L}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$?

A No, the language is not context-free.
B Yes, a deterministic PDA can solve \mathcal{L}.
C Yes, a non-deterministic PDA can solve \mathcal{L}.
D No, the language is not decidable.
E None of the above.
19. Which of the following problems is decidable?

A The halting problem.
B Deciding whether a given program will print "Hello World".
C Deciding whether a given program will terminate.
D Deciding whether a given C program is well-formatted.
E None of the above.
20. What do we know about the traveling salesman problem?

A It is known to be in the class P.
B I can solve it by listing all possible trajectories.
C It is undecidable.
D I can always list all trajectories in linear time.
E None of the above.

Problem 2. Prove that $\forall n \geq 1, \log _{2}(n) \leq n$.

Problem 3. Suppose you are determined to flip a fair coin until you get the sequence HHH. What is the expected number of flips?

Problem 4. Prove that for any $n \geq 3$, there exists a set of n distinct natural numbers x_{1}, \ldots, x_{n} such that each x_{i} divides the sum $s=x_{1}+\cdots+x_{n}$, i.e., $s=x_{i} k_{i}$ for some $k_{i} \in \mathbb{N}$. Tinker, tinker, tinker.

Problem 5. Consider the language of all odd-length zero strings $\mathcal{L}_{O}=\{0,000,00000, \ldots\}$. Prove that \mathcal{L}_{O} has an undecidable subset.

Problem 6. Consider the language $\mathcal{L}_{\text {AddTwo }}=\left\{0^{\bullet n} 1^{\bullet n+2}\right\}$. Give pseudocode for a Turing Machine that decides this language.
[Your pseudocode needs to be detailed enough so it is clear that each step can indeed be performed using a Turing Machine.]

Scratch

Scratch

