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ABSTRACT
This work considers the problem of performing resilient sen-
sor fusion using past sensor measurements. In particular,
we consider a system with n sensors measuring the same
physical variable where some sensors might be attacked or
faulty. We consider a setup in which each sensor provides
the controller with a set of possible values for the true value.
Here, more precise sensors provide smaller sets. Since a lot
of modern sensors provide multidimensional measurements
(e.g., position in three dimensions), the sets considered in
this work are multidimensional polyhedra.

Given the assumption that some sensors can be attacked
or faulty, the paper provides a sensor fusion algorithm that
obtains a fusion polyhedron which is guaranteed to contain
the true value and is minimal in size. A bound on the volume
of the fusion polyhedron is also proved based on the number
of faulty or attacked sensors. In addition, we incorporate
system dynamics in order to utilize past measurements and
further reduce the size of the fusion polyhedron. We describe
several ways of mapping previous measurements to current
time and compare them, under different assumptions, using
the volume of the fusion polyhedron. Finally, we illustrate
the implementation of the best of these methods and show
its effectiveness using a case study with sensor values from
a real robot.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access
(e.g., hacking, phreaking); C.3 [Special-purpose and
Application-based Systems]: Process control systems,
Real-time and embedded systems
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CPS security; sensor fusion; fault-tolerance; fault-tolerant
algorithms
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1. INTRODUCTION
With the cost of sensors constantly falling in recent years,

modern Cyber Physical Systems (CPS) can now be equipped
with multiple sensors measuring the same physical variable
(e.g., speed and position in automotive CPS). Their mea-
surements can be fused to obtain an estimate that is more
accurate than any individual sensor’s, thus improving the
system’s performance and reliability. Furthermore, having
diverse sensors increases the system’s robustness to environ-
mental disturbances (e.g., a tunnel or a mountainous region
for automotive CPS that heavily rely on GPS navigation)
and sensor limitations (e.g., low sampling rate, biased mea-
surement noise).

The increase in sensor diversity naturally leads to dif-
ferent characteristics of the various sensors. In particular,
some sensors may have drift (e.g., IMU), others may not
be very accurate (e.g., smart phone applications [12]), yet
others may be accurate but not always reliable (e.g., GPS).
Hence, the goal of any effective sensor fusion algorithm is
to account for these limitations and output a measurement
that is robust and accurate.

The importance of reliable sensor fusion is further high-
lighted with the increase of autonomy of modern control sys-
tems. In automotive CPS, for instance, a malicious attacker
may be able to corrupt the measurements of some sensors,
thereby misleading the controller into performing an unsafe
action. The consequences of such attacks may range from
slight disturbances in performance to life-threatening situ-
ations [3, 8]. Resilience to sensor attacks, therefore, is an
emerging additional requirement for modern sensor fusion
algorithms.

There is significant amount of academic literature devoted
to the problem of fault-tolerant sensor fusion. Problems in-
vestigated depend first and foremost on the sensor model
in consideration. The most popular model is a probabilistic
one: a sensor provides the controller with a numeric mea-
surement that is corrupted by noise with a known distri-
bution (e.g., uniform, Gaussian) [5, 13]. In an alternative
approach, a set is constructed around the sensor’s measure-
ment containing all points that may be the true value [10,
11]. The pivotal work with this viewpoint considers one-
dimensional intervals around measurements and assumes an
upper bound on the number of sensors whose intervals do
not contain the true value; the author then provides worst-
case bounds on the size of the fusion interval [9]. An exten-
sion of this work considers intervals in d dimensions, i.e., d-
rectangles, and obtains similar results [4]. Furthermore, re-



searchers assume a distribution of the true value over the in-
tervals so probabilistic analysis can again be performed [14].
Finally, this model can be used not only to aid control but
also for fault detection [7, 9].

This paper considers the problem of attack-resilient and
fault-tolerant sensor fusion with multidimensional abstract
sensors, i.e., a set is constructed around each sensor’s mea-
surement that contains all points that may be the true value.
The size of the set depends on the sensor’s precision – a
larger set means less confidence in the sensor’s measure-
ment. Since most modern sensors employ internal filter-
ing techniques (e.g., Kalman filters in GPS) these sets are
not always as simple as d-rectangles; hence, we focus on
d-dimensional polyhedra. Some camera-based velocity and
position estimators used in urban robotics applications, for
example, guarantee different position precisions for different
robot velocities. Note that this paper extends our previous
work in which we considered attack-resilient sensor fusion
with one-dimensional intervals and investigated the effects
of communication schedules on the size of the fusion interval
(without incorporating past measurements) [6].

The sensor model considered in this work is very general
as it does not make any assumptions about the distribution
of sensor noise; instead, the polyhedron is constructed based
on manufacturer specifications (e.g., worst-case guarantees
about sampling rate and implementation limitations) and
system dynamics. To deal with malicious and faulty sen-
sors in these scenarios, we propose an extension to the sen-
sor fusion algorithm for d-rectangles described by Chew and
Marzullo [4]. Given this algorithm, we provide worst-case
bounds on the size of the fusion polyhedron based on the
number of assumed faulty or attacked (see Section 2 for a
definition) polyhedra. Note that this approach could be ex-
tended to a set membership technique (e.g., [10, 11]) where
some of the sensors or state estimators may be corrupted.

In addition, we note that most CPS have known dynam-
ics. Therefore, this knowledge can be utilized to improve
sensor fusion (i.e., reduce the size of the obtained region)
by incorporating past measurements in the sensor fusion al-
gorithm. To achieve this, we consider discrete-time linear
systems with bounded measurement noise. Measurements
are collected from sensors at each time step and are used
for the remainder of the system’s operation to reduce the
size of the fused polyhedron. We consider all possible al-
gorithms of using historical measurements (given our weak
assumptions) and compare them by means of the volume
of the fusion polyhedron. Finally, we provide a case-study
with an autonomous vehicle, called the LandShark [1], to
illustrate the effectiveness of the best of these methods. In
particular, we consider four speed sensors, two of them also
measuring position, that provide the controller with two-
dimensional polyhedra. We then show the reduction in the
volume of the fusion polyhedron when historical measure-
ments are considered.

This paper is organized as follows. Section 2 introduces
the problems considered in the paper, namely reliable multi-
dimensional sensor fusion incorporating historical measure-
ments. Section 3 provides a sensor fusion algorithm that
meets the requirements outlined in Section 2. Section 4 ex-
tends the algorithm in Section 3 by incorporating system
dynamics and past measurements. Section 5 presents an im-
plementation of this algorithm and a case study to illustrate
its effectiveness. Finally, Section 6 concludes the work.

2. PROBLEM FORMULATION AND PRE-
LIMINARIES

This section describes the two problems considered in this
paper. We start by formulating the multidimensional sensor
fusion problem in a single time step (i.e., without taking
history into account). Given this algorithm, we outline the
problem of using system dynamics and past measurements
to improve the system’s sensor fusion.

2.1 Fusion Algorithm
We consider a system with n sensors measuring the same

physical variables. Each sensor provides the controller with
a d-dimensional measurement (e.g., position in three dimen-
sions, or estimates of both position and velocity); a polyhe-
dron is constructed around this measurement based on the
sensor’s precision and implementation guarantees (e.g., sam-
pling jitter). Additionally, the sensor may have an internal
filtering algorithm (e.g., Kalman filter) that will further af-
fect the shape of the polyhedron. Thus, the controller will
obtain n d-dimensional polyhedra P1, . . . , Pn of the form
Pi = {x | Bix ≤ bi}, where x ∈ Rd, Bi ∈ Rm×d and bi ∈ Rm.

Definition 1. A sensor is said to be correct if its poly-
hedron contains the true value and corrupted (due to faults
or attacks) otherwise.

We assume an upper bound of f corrupted sensors; since
the actual number of corrupted sensors is not known, f will
usually be set conservatively high, e.g., f = dn/2e − 1.

With these assumptions, the problem is to obtain an algo-
rithm that, given n polyhedra as input, will output a poly-
hedron that is guaranteed to contain the true value and will
be as small in volume as possible.

2.2 Fusing Past and Current Measurements
We note that most autonomous systems have known dy-

namics, hence previous measurements (i.e., measurement
history) can be used to aid the fusion algorithm. In this
paper we assume that sensors monitor a discrete-time linear
system of the form:

x(t+ 1) = Ax(t) + w.

Here x ∈ Rd is the state of the system (e.g., position), A ∈
Rd×d, and w ∈ Rd is bounded noise such that ‖w‖ ≤ M ,
where ‖ · ‖ denotes the L∞ norm, and M is a constant.

Definition 2. In this setting, a sensor is corrupted if
there exists a time step t such that its polyhedron does not
contain the true value at t.

We still use f to denote the upper bound on the number of
corrupted sensors. In particular, this means that there are
at least n− f sensors that are correct in all time steps. We
relax this assumption in Section 5 when discussing which of
the proposed methods of using history should be applied in
real systems.

Given a sensor fusion algorithm that satisfies the require-
ments outlined in the previous section, in this scenario the
problem is to find an algorithm to use past measurements
that satisfies the following criteria:

• the final fusion polyhedron is guaranteed to contain
the true value,



Algorithm 1 Sensor Fusion Algorithm

Input: An array of polyhedra P of size n and an upper
bound on the number of corrupted polyhedra f

1: C ← combinations n choose n minus f(P )
2: RN ,f ← ∅
3: for each K in C do
4: add(RN ,f , intersection(K))
5: end for
6: return conv(RN ,f )

• the fusion polyhedron is never larger in volume than
the fusion polyhedron obtained when no history is used,

• the fusion polyhedron is as small as possible.

2.3 Notation
Let N (t) denote all n polyhedra at time t. In Section 3

we drop the time notation and write N since only one time
step is considered. We use SN (t),f to denote the fusion poly-
hedron given the set N (t) and a fixed f . Let |P | denote the
volume of polyhedron P ; in particular, |SN (t),f | is the vol-
ume of the fusion polyhedron. We use C(t) to denote the
(unknown) set of all correct polyhedra.

3. SENSOR FUSION ALGORITHM
In this section, we describe a sensor fusion algorithm that

meets the criteria outlined in Section 2 before providing a
bound on the size of the fusion polyhedron based on the
number of assumed corrupted sensors.

The algorithm is described in Algorithm 1. It is based
on the algorithm for d-rectangles described by Chew and
Marzullo [4]. It computes the fusion polyhedron by finding
all regions contained in n− f polyhedra, denoted by RN ,f ,
and then taking their convex hull in order to return a poly-
hedron, i.e.,

SN ,f = conv(RN ,f ), (1)

where conv(·) denotes the convex hull. Intuitively, the algo-
rithm is conservative – since there are at least n− f correct
polyhedra, any point that is contained in n − f polyhedra
may be the true value, and thus it is included in the fusion
polyhedron; the convex hull is computed since the output
should be in the same format as the inputs (i.e., a polyhe-
dron).

The algorithm is illustrated in Figure 1. The system con-
sists of three sensors, hence three polyhedra are obtained,
and is assumed to have at most one corrupted sensor. There-
fore, all regions contained in at least two polyhedra are
found, and their convex hull is the fusion polyhedron (shaded).

Proposition 1. The fusion polyhedron computed by Al-
gorithm 1 will always contain the true value.

Proof. Since there are at least n− f correct polyhedra,
the true value is contained in at least n− f polyhedra, and
hence it will be included in the fusion polyhedron.

Proposition 2. The fusion polyhedron computed by Al-
gorithm 1 is the smallest convex set that is guaranteed to
contain the true value.

Figure 1: An illustration of the proposed sensor fusion algo-
rithm.

Proof. We first note that any set that is guaranteed to
contain the true value must contain RN ,f since any point
that is excluded may be the true value. This proves the
proposition since conv(RN ,f ) is the smallest convex set that
contains RN ,f .

Having shown the desired properties of the proposed al-
gorithm, we comment on its complexity. There are two sub-
procedures with exponential complexity. First, finding all
combinations of n− f polyhedra is exponential in the num-
ber of polyhedra. Second, computing the convex hull of a
set of polyhedra requires finding their vertices; this problem,
known in the literature as vertex enumeration, is not known
to have a polynomial algorithm in the number of hyperplanes
defining the polyhedra (hence in their dimension) [2].

To prove a bound on the volume of the fusion polyhedron,
for completeness we first prove the following lemma that will
be useful in showing the final result.

Lemma 1. The vertices of the convex hull of a set of poly-
hedra are a subset of the union of the vertices of the polyhe-
dra.

Proof. Let p be any vertex of the convex hull. Then
p =

∑
θivi, where the vi are the vertices of the polyhedra,∑

θi = 1 and θi ≥ 0 (i.e., p is a convex combination of the
vi’s). This means that p lies on a hyperplane defined by
some of the vi’s, hence it cannot be a vertex, unless it is one
of the vi’s.

Before formulating the theorem, we introduce the follow-
ing notation. Let minp B denote the pth smallest number in
the set of real numbers B with size r = |B|. Similarly, we use
maxp B to denote the pth largest number in B. We note that
minp B = maxr−p+1 B (e.g., if B = {14, 15, 16},min1 B =
14 = max3 B). Finally, let v be the number of vertices in
the fusion polyhedron.

Theorem 1. If f < n/v then

|SN ,f | ≤ minvf+1{|P | : P ∈ N}.
Proof. We use a counting argument. Let V be the set of

vertices of SN ,f . By Lemma 1, each vertex in V is a vertex of
one of the polyhedra formed by the intersection of n−f of the
sensor polyhedra (in step 4 of Algorithm 1). Therefore, it is
contained in at least n−f polyhedra. For each p ∈ V, let Pp

denote the number of polyhedra containing p. Consequently,
Pp ≥ n− f . Then

v(n− f) ≤
∑
p∈V

Pp.



Figure 2: An example showing that the bound specified in
Theorem 1 is tight.

The sum in the right-hand side can be split into two sums.
One contains the number of polyhedra where each of the
polyhedra contains all v vertices (we denote this number by
a). Then the number of the remaining polyhedra is n − a.
The part of the sum due to the polyhedra that contain fewer
than v vertices can be bounded from above by (n−a)(v−1)
since each of these polyhedra contains at most v−1 vertices.
We then have

v(n− f) ≤ av + (n− a)(v − 1),

which implies that a ≥ n− vf , i.e., at least n− vf polyhe-
dra contain the v vertices of the fusion polyhedron. Since
polyhedra, including the fusion polyhedron, are convex, we
conclude that at least n − vf polyhedra contain the fusion
polyhedron. This completes the proof, since

|SN ,f | ≤ max
n−vf

{|P | : P ∈ N} = min
vf+1
{|P | : P ∈ N}.

Theorem 1 suggests that if f < n/v then the volume of the
fusion polyhedron is bounded by the volume of some poly-
hedron. We note that this condition may not always hold as
the number of vertices of the fusion polyhedron may be the
sum of the number of vertices of the polyhedra. However,
the condition is tight in the sense that if it does not hold,
then the volume of the fusion polyhedron may be larger than
the volume of any of the individual polyhedra. This is illus-
trated in Figure 2. In this case, each polyhedron (P1, P2, P3

or P4) is a triangle that is a half of the big square, so n = 4,
and f = 1 = n/v. Hence the fusion polyhedron, i.e., square,
is larger in area than any of the triangles. In cases like this
one, we resort to the following bound.

Theorem 2. If f < dn/2e, then |SN ,f | is bounded by
the volume of conv(C) (i.e., the convex hull of all correct
polyhedra).

Proof. Assume the opposite – that there exists a point
xA ∈ SN ,f that is not in conv(C). Then for any convex
combination

∑
θivi = xA, where vi ∈ Pj for some j, at

least one vi must not be in C, meaning that it is contained
in at most f polyhedra, where f < n− f . Therefore, there
does not exist a convex combination

∑
θivi = xA with all vi

contained in at least n− f polyhedra, and hence xA cannot
be in SN ,f .

In conclusion, three different upper bounds on the volume
of the fusion polyhedron exist based on different values of

f . If f > dn/2e, then the fusion polyhedron can be arbi-
trarily large. This is due to the fact that there are now
enough corrupted sensors to include points not contained in
any correct polyhedra in the fusion polyhedron (as opposed
to Theorem 2). On the other hand, if f ≤ dn/2e, then
|SN ,f | ≤ |conv(C)|. In addition, if f < n/v, then the vol-
ume of SN ,f is bounded from above by the volume of some
polyhedron. Note that either of the last two bounds may be
tighter than the other depending on the scenario.

4. FUSING PAST AND CURRENT MEASURE-
MENTS

Having developed a sensor fusion algorithm that produces
a minimal polyhedron from n polyhedra in a given time step,
we now consider the problem of incorporating knowledge of
system dynamics to improve our resilient sensor fusion by
using measurement history. As outlined in Section 2, we
assume a discrete-time linear system with bounded noise of
the form: x(t + 1) = Ax(t) + w. Furthermore, as outlined
in Definition 2, the definition of a corrupted sensor is now
modified – a sensor s is corrupted if there exists a time t
at which s provides a polyhedron that does not contain the
true value.

To simplify notation, we use the mapping m defined as

m(P (t)) = AP (t) + w,

where P (t) is any polyhedron in time t. Then let m(N (t))∩p

N (t+1) denote the intersection of each sensor si’s measure-
ment in time t + 1 with the mapping of si’s measurement
from time t. Note that this object again contains n polyhe-
dra, some of which may be empty. We will refer to ∩p as
pairwise intersection.

It is worth noting here that our assumptions impose a
restriction on the number of ways in which history can be
used. In particular, we only assume an upper bound on the
number of corrupted sensors; thus, it is not possible to map
subsets of the polyhedra while guaranteeing that the fusion
polyhedron contains the true value. In other words, such
mappings would require additional assumptions on the num-
ber of corrupted sensors in certain subsets of N (t); hence,
all permitted actions in this work are: a) computing fu-
sion polyhedra for all n polyhedra in a given time step; b)
mapping this fusion polyhedron to the next time step; c) or
mapping all polyhedra to the next time step, thus doubling
both n and f . Formally, following are the ways of using past
measurements considered in this work:

1. map n: In this approach we map all polyhedra in N (t)
to time t+1, and obtain a total of 2n polyhedra in time
t+1. We then compute their fusion polyhedron with 2f
as the bound on the number of corrupted polyhedra.
This is illustrated in Figure 3a. Formally the fusion
polyhedron can be described as

Sm(N (t))∪N (t+1),2f .

2. map S and intersect : This algorithm computes the fu-
sion polyhedron at time t, maps it to time t + 1, and
then intersects it with the fusion polyhedron at time
t+ 1, as illustrated in Figure 3b. Formally we specify
this as

m(SN (t),f ) ∩ SN (t+1),f .



3. map S and fuse: Here the fusion polyhedron from time
t is mapped to time t+1, thus obtaining a total of n+1
polyhedra at time t+1, as presented in Figure 3c. Note
that f is still the same because SN (t),f is guaranteed
to contain the true value by Proposition 1. Formally
this is captured by

Sm(SN(t),f )∪N (t+1),f .

4. map R and intersect : This is similar to
map S and intersect, but instead we map RN (t),f to
time t+ 1, intersect with RN (t+1),f , and compute the
convex hull as illustrated in Figure 3d. Formally we
describe this as

conv(m(RN (t),f ) ∩RN (t+1),f ).

5. pairwise intersect : This algorithm performs pairwise
intersection as shown in Figure 3e. Formally we cap-
ture this as

Sm(N (t))∩pN (t+1),f .

The obvious way to compare these algorithms is through
the volume of the fusion polyhedra. We provide below a
series of results that relate the sizes of the fusion polyhedra
for the aforementioned methods used to incorporate mea-
surement history.

Theorem 3. The region obtained using
map R and intersect is a subset of the region derived by
map n.

Proof. Consider any point p ∈ m(RN (t),f ) ∩ RN (t+1),f .
Then p lies in at least n − f polyhedra in N (t + 1), and
there exists a q such that m(q) = p that lies in at least n−f
polyhedra in N (t). Thus, p lies in at least 2n−2f polyhedra
in m(N (t))∪N (t+1), i.e., p ∈ Rm(N (t))∪N (t+1),2f , implying

conv(m(RN (t),f ) ∩RN (t+1),f ) ⊆ conv(Rm(N (t))∪N (t+1),2f )

= Sm(N (t))∪N (t+1),2f .

Theorem 4. The polyhedron derived by
map R and intersect is a subset of the polyhedron obtained
by map S and intersect.

Proof. Note that for any sets A and B, conv(A ∩ B) ⊆
conv(A), and thus

conv(m(RN (t),f ) ∩RN (t+1),f ) ⊆ conv(RN (t+1),f )

= SN (t+1),f .

Furthermore, any point p ∈ conv(m(RN (t),f ) ∩ RN (t+1),f )
is a convex combination of points qi in m(RN (t),f ). But
m(RN (t),f ) ⊆ m(SN (t),f ) (since RN (t),f ⊆ SN (t),f ) and the
fact that m(SN (t),f ) is convex imply p ∈ m(SN (t),f ). Ac-
cordingly,

conv(m(RN (t),f ) ∩RN (t+1),f ) ⊆ SN (t+1),f and

conv(m(RN (t),f ) ∩RN (t+1),f ) ⊆ m(SN (t),f )

implying

conv(m(RN (t),f ) ∩RN (t+1),f ) ⊆ m(SN (t),f ) ∩ SN (t+1),f .

Theorem 5. The polyhedron obtained by
map R and intersect is a subset of the polyhedron derived
using map S and fuse.

Proof. Note that, since the fusion interval is always guar-
anteed to contain the true value, the number of corrupted
polyhedra in map S and fuse is still at most f , but the num-
ber of correct ones is now at least n + 1 − f . In addition,
note that

m(RN (t),f ) ∩RN (t+1),f ⊆ m(SN (t),f )

since m(RN (t),f ) ⊆ m(SN (t),f ). Furthermore, any point p ∈
RN (t+1),f is contained in n−f polyhedra in N (t+1). Thus,
all points in m(RN (t),f ) ∩ RN (t+1),f are contained in n +
1 − f polyhedra in m(SN (t),f ) ∪ N (t + 1), and hence in
Rm(SN(t),f )∪N (t+1),f . Since the fusion polyhedron is convex,

conv(m(RN (t),f ) ∩RN (t+1),f ) ⊆ Sm(SN(t),f )∪N (t+1),f .

Theorems 3, 4 and 5 suggest that map R and intersect
is the best of the first four methods enumerated above as
can also be seen in Figure 3. This intuitively makes sense
since it is only keeping enough information from previous
measurements to guarantee that the true value is preserved.
In particular, it is not computing the convex hull at time t
as map S and intersect and map S and fuse do (and poten-
tially introduce additional points to the fused region), nor is
it mapping potentially corrupted polyhedra as does map n.

We note, however, that without additional assumptions
about the rank ofA, map R and intersect and pairwise intersect
are not subsets of each other. Counter-examples are pre-
sented in Figure 4. In Figure 4a, RN (t),f is a single point
that is projected onto the x axis. Hence map R and intersect
is a subset of pairwise intersect, which produces an interval
of points. Conversely, Figure 4b shows an example where
pairwise intersect is a point, and map R and intersect is an
interval containing that point. It is worth noting, however,
that regardless of which of the two approaches is used, pair-
wise intersect can be used as a preliminary step to detect
corrupted sensors – if the two polyhedra of a certain sensor
have an empty intersection, then the sensor must be cor-
rupted (faulty or tampered with) in one of the rounds; thus,
it can be discarded from both, effectively reducing n and f
by one.

Finally, we note that if A is a full rank matrix and w = 0,
then pairwise intersect is the best of all five methods, as
shown in the following theorem.

Theorem 6. If A is full rank and w = 0, the polyhedron
obtained by pairwise intersect is a subset of the polyhedron
derived using map R and intersect.

Proof. Let p be any point in Rm(N (t))∩pN (t+1),f . Then
p lies in at least n − f polyhedra in m(N (t)) and at least
n− f polyhedra in N (t+ 1). Hence,

Rm(N (t))∩pN (t+1),f ⊆ RN (t+1),f .

Furthermore, there exists a point q = A−1p that is contained
in n− f intervals in N (t). Therefore, p is also contained in
m(RN (t),f ). Then

Rm(N (t))∩pN (t+1),f ⊆ m(RN (t),f ) ∩RN (t+1),f , i.e.,

Sm(N (t))∩pN (t+1),f ⊆ conv(m(RN (t),f ) ∩RN (t+1),f ).



(a) map n (b) map S and intersect

(c) map S and fuse (d) map R and intersect

(e) pairwise intersect

Figure 3: Illustrations of the different methods of using history. For simplicity A = I, the identity matrix, and w = 0.



(a) map R and intersect is not a subset of pair-
wise intersect.

(b) pairwise intersect is not a subset of
map R and intersect.

Figure 4: Examples showing that, in general, polyhedra obtained using map R and intersect and pairwise intersect are not
subsets of each other if A is not full rank.

The conditions in Theorem 6 may seem too strong at a
first glance. In reality, however, the difference between a
singular and a nonsingular matrix is almost negligible. In
particular, if A is singular, where λmin is its smallest (in
magnitude) nonzero eigenvalue, then A + εI is nonsingu-
lar, where 0 < ε < |λmin|. Therefore, systems with small
noise in their dynamics will closely approximate the above
requirements.

Therefore, we argue that systems that incorporate past
measurements in their sensor fusion algorithms should use
the pairwise intersect method. We now show that it satisfies
the requirements outlined in Section 2.

Proposition 3. The fusion polyhedron computed using
pairwise intersect will always contain the true value.

Proof. Note that pairwise intersection does not increase
the number of corrupted polyhedra. If a sensor is correct,
then both of its polyhedra (in time t and t+ 1) contain the
true value; in addition, the map m preserves the correct-
ness of polyhedra, hence any pairwise intersection will also
contain the true value. Thus, the number of corrupted and
correct sensors is the same, therefore Proposition 1 implies
that the fusion polyhedron contains the true value.

Proposition 4. The fusion polyhedron computed using
pairwise intersect is never larger than the fusion polyhedron
computed without using history.

Proof. Each of the polyhedra (e.g., m(P1(t))∩P1(t+ 1))
computed after pairwise intersection is a subset of the corre-
sponding polyhedron when no history is used (e.g., P1(t+1)).
Consequently, the fusion polyhedron will always be a sub-
set of the fusion polyhedron obtained when no history is
used.

Note that pairwise intersect and map R and intersect do
not add significant computational complexity to the sensor
fusion algorithm described in Section 3. While they still suf-
fer from the exponential procedure of computing the fusion
polyhedron at each time, each of the two methods requires
storing at most n polyhedra to represent historical measure-
ments - intuitively they are the “intersection” of all past

measurements. Thus, implementing any of these methods
will not add substantial computational or memory cost for
the system. The algorithm’s implementation is discussed in
greater detail in the following section.

5. APPLICATIONS
Given our results in Section 4, we argue that systems with

linear dynamics should use the pairwise intersect method.
This section provides an algorithm that implements this
method and a case study to illustrate its usefulness.

5.1 Implementation
The implementation is shown in Algorithm 2. In essence,

at each point in time n polyhedra (the pairwise intersec-
tions) are stored. Thus, past meas represents the “pairwise
intersection” of all previous measurements of each sensor.
In addition to being more efficient in terms of the size of
the fusion polyhedron, the algorithm also needs very little
memory – the required memory is linear in the number of
sensors irrespective of how long the system runs.

An important detail that is hidden behind the pair_inter
function is how corrupted sensors are dealt with. If a sen-
sor si’s two polyhedra have an empty intersection then that
sensor must be corrupted. This is where we use the assump-
tion about the same set of polyhedra that are corrupted
over time. In particular, if we relax this assumption, then
pairwise intersect does not guarantee that the true value is
contained in the fusion polyhedron. If this is the case, then
we revert to map R and intersect, the best of the methods
that do not rely on this assumption.

On the other hand, if that assumption is satisfied, both
polyhedra are discarded and n and f are reduced by one.
Furthermore, the system has the option of discarding all fu-
ture measurements provided by the sensor si; alternatively,
the system may update past meas with si’s measurement
in the next round. Which choice is made depends on the
system’s trust in the sensor – if it is believed to be often
faulty or under attack, then discarding all or some of its
future measurements is the better option. However, if it is
faulty rarely, then its future measurements should be kept



Algorithm 2 Implementation of the pairwise intersect al-
gorithm

Input: f , the number of corrupted sensors
1: past meas← ∅
2: for each step t do
3: cur meas← get_meas(t)
4: if past meas == ∅ then
5: past meas← cur meas
6: else
7: past meas = pair_inter(cur meas, past meas)
8: end if
9: S ← fuse_polyhedra(past meas, f)

10: send_polyhedron_to_controller(S)
11: end for

Figure 5: LandShark vehicle [1].

and incorporated in the algorithm. Quantification of sensor
trust, however, is not within the scope of this paper, hence
we take this choice as a design-time decision (input) and
leave its analysis for future work.

5.2 Case Study
To show the effectiveness of the pairwise intersect ap-

proach we use the sensors on a real autonomous vehicle,
called the LandShark [1] (the robot is shown in Figure 5).
The LandShark is capable of moving at a high speed on dif-
ferent surfaces and is usually used to carry humans or other
cargo in hostile environments.

The LandShark has four sensors that can be used to es-
timate velocity – GPS, camera and two encoders. In ad-
dition, GPS and the camera can be used to estimate the
vehicle’s position. Therefore, the encoders provide the con-
troller with interval estimations of the vehicle’s velocity only,
whereas GPS and the camera send two-dimensional polyhe-
dra as estimates of the velocity and position.1 The sizes of
the encoders’ intervals were obtained based on the manufac-
turer’s specification, whereas the shapes and sizes of GPS
and camera’s polyhedra were determined empirically – the
LandShark was driven in the open, and largest deviations
from the true values (as measured by a high-precision laser
tachometer) were collected.

Given this information, the following three scenarios were
simulated. The LandShark is moving in a straight line at
a constant speed of 10 mph. In each scenario, a different

1For this case study we only require one-dimensional posi-
tion as will become clear in the next paragraph. However,
our approach could easily be applied to multidimensional
measurements.

sensor was attacked such that a constant offset of 1 mph
was introduced to the sensor’s speed estimate. The sensors’
speed tolerances were as follows: 0.2 mph for the encoders,
1 mph for GPS and 2 mph for the camera. GPS’s toler-
ance for position was 30 feet, whereas the camera’s tolerance
varies with speed (hence its polyhedron is a trapezoid) and
was 100 feet at 10 mph. At each point in time, we compute
the fusion polyhedron in two ways – using only current mea-
surements and using the pairwise intersect method. Finally,
we record the differences and the improvement achieved by
using history.

To illustrate consistence with earlier one-dimensional works
(e.g., [9]), for each of the three scenarios we first computed
the size of the fusion interval in one dimension. Figure 6
presents the results. For each scenario, the size of the fu-
sion interval was never larger when using pairwise intersect,
while the gain was significant at certain times. This is par-
ticularly apparent when the encoder was under attack. The
reason for this, as we have shown in our recent work, is that
it is in general beneficial for the attacker to corrupt the most
precise sensors [6].

Figure 7 presents the results when two-dimensional poly-
hedra are considered. Note that in this case there are only
two sensors estimating the robot’s position – when one is
corrupted, the size of the fusion polyhedron can grow dra-
matically. Consequently, pairwise intersect is greatly bene-
ficial for the system as it identifies the corrupted sensors and
discards their measurements when their polyhedra do not in-
tersect. It is worth noting here that in all simulated scenarios
if a sensor is found corrupted in any step we do not disre-
gard its measurement in the next step. Note also that the
volumes in Figure 7 are much larger than those in Figure 6
– this is a result of the fact that position tolerances are mea-
sured in feet and are larger than 10. (i.e., 30 feet for GPS).
Finally, as consistent with Proposition 3, all fusion polyhe-
dra contained the actual value of velocity (i.e., 10 mph).

6. CONCLUSION
This paper considered the problem of resilient multidi-

mensional sensor fusion using measurement history. We fo-
cused on the setup where each sensor provides a multidimen-
sional polyhedron as a measurement of the plant’s state. We
presented a fusion algorithm for this case and gave bounds
on the volume of the fusion polyhedron based on the num-
ber of corrupted sensors. In addition, we investigated several
methods of using history to improve sensor fusion and iden-
tified the best ones depending on what conditions the system
in consideration satisfies. Finally, we presented a case study
to illustrate the improvement in sensor fusion that can be
obtained when history-based fusion is employed.

There are two main avenues that we plan to explore in
the future. Firstly, one could consider extending this ap-
proach to nonlinear systems; in this scenario polyhedra may
no longer be mapped into polyhedra. Thus, one can uti-
lize a set membership technique in order to compute the set
of possible true values [10, 11]. Secondly, one could take
into consideration sensor trust, i.e., how often a sensor has
been faulty over time, and incorporate this information in
the mapping algorithm.



(a) GPS under attack. (b) Camera under attack. (c) Encoder under attack.

Figure 6: Sizes of velocity (ONLY) fusion intervals for each of the three simulated scenarios; Dashed line – volume of the
fusion polyhedra when measurement history is not considered, Solid line – volume of the fusion polyhedra obtained using
pairwise intersect.

(a) GPS under attack. (b) Camera under attack. (c) Encoder under attack.

Figure 7: Sizes of fusion polyhedra of velocity and position for each of the three scenarios simulated; Dashed line – volume of
the fusion polyhedra when measurement history is not considered, Solid line – volume of the fusion polyhedra obtained using
pairwise intersect.
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