
Contract-based Blame Assignment by Trace Analysis

Shaohui Wang
University of Pennsylvania

shaohui@seas.upenn.edu

Anaheed Ayoub
University of Pennsylvania

anaheed@seas.upenn.edu

Radoslav Ivanov
University of Pennsylvania

rivanov@seas.upenn.edu
Oleg Sokolsky

University of Pennsylvania
sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania

lee@cis.upenn.edu

ABSTRACT
Fault diagnosis in networked systems has been an exten-
sively studied field in systems engineering. Fault diagnosis
generally includes the tasks of fault detection and isolation,
and optionally recovery (FDIR). In this paper we further
consider the blame assignment problem: given a system
trace on which a system failure occurred and an identified
set of faulty components, determine which subsets of faulty
components are the culprits for the system failure.

We provide formal definitions of the notion culprits and
the blame assignment problem, under the assumptions that
only one system trace is given and the system cannot be
rerun. We show that the problem is equivalent to deciding
the unsatisfiability of a set of logical constraints on com-
ponent behaviors, and present the transformation from a
blame assignment instance into an instance of unsatisfiabil-
ity checking. We also apply the approach to a case study in
the medical device interoperability scenario that has moti-
vated our work.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring; D.2.1
[Requirements/Specifications]: Methodologies—blame as-
signment ; D.2.4 [Software/Program Verification]: For-
mal methods

Keywords
Blame Assignment; Component-based System; Trace Anal-
ysis; Fault Diagnosis

1. INTRODUCTION
A central idea in systems engineering is that complex

systems are built by assembling components. Component-
based systems are desirable because they allow independent
development of system components by different suppliers, as
well as their incremental construction and modification. The
down side of component-based development is that no single

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HiCoNS’13, April 9–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1961-4/13/04 ...$15.00.

entity – neither the integrator, nor component suppliers –
have a complete understanding of component behaviors and
possible interactions between them. This incomplete knowl-
edge, in turn, requires us to resort to black-box analysis
methods, when only the input-output behavior of a compo-
nent is specified.

In this work, we are interested in the forensic analysis of
a system following the discovered violation of system safety
properties. While this problem is common to all safety-
critical domains, our immediate motivation comes from the
domain of medical devices. In the United States, the Food
and Drug Administration (FDA) is responsible for assessing
safety of medical devices and regulating their use in health
care. When a system failure that harms a patient, known as
an adverse event occurs, the hospital is required to report it
to the FDA-maintained database [8]. Diagnosis of the root
cause is crucial for the subsequent recovery and follow-up
prevention measures. Such diagnosis requires recording of
system executions leading to the failure, as well as methods
for the efficient analysis of the recorded data.

There has been a great amount of research following the
seminal work of [5] and [16] in the study of fault diagno-
sis. In this paper, we take a step further and consider the
problem of blame assignment for component-based systems.
The system model we use is described in Section 4.1. In
this framework, the correct system behavior is captured by
a system contract. The correct behavior for each component
is captured in turn by a component contract.

We assume that no information is available about the in-
ternal behavior while only the values into and out of a com-
ponent can be observed. This is especially true in most
medical devices used currently, which has motivated collab-
orative efforts to bring open-source devices to hospitals [2].
We further assume that only one trace is observed. The
technique of rerunning the system under varying conditions
to observe more traces has been used in some of the existing
diagnosis approaches (e.g., [16, 5, 20]). However, rerunning
may not always be feasible in practice given the time, finan-
cial cost or the potential impact on patients [14, 3].

We make an initial attempt in defining the blame assign-
ment problem with the aforementioned assumptions. Intu-
itively, blame assignment is one step further than fault di-
agnosis: assuming the faulty components in the system are
identified, the blame assignment problem aims to determine
the subsets of the faulty components that are responsible for
the observed system failure.

We propose a formal solution to the blame assignment
problem. Given only the observed trace, we provide for-

malized reasoning rules to determine how the system would
behave if a suspected set of components are replaced with
correct ones. This yields a reconstructed set of all potential
system traces that could happen. On each reconstructed
trace in the set, we check whether the system violation disap-
peared, and make a decision of whether to blame a subset of
suspected components accordingly. In this paper, we focus
on a conservative policy of casting blame, i.e., we require the
system violation to disappear on every reconstructed trace
so as to blame a subset of faulty nodes. In such a case, we
call the subset a culprit. Based on our formulation, different
blame assignment policies can be easily expressed and are
discussed in Section 2.

Further investigation of the relations between the identi-
fied culprits yields a minimal culprit set. Soundly identi-
fying minimal culprits can make system maintenance cost-
effective, as it is enough to only replace components in the
minimal culprits instead of all faulty components.

The proposed approach is illustrated with a running ex-
ample described in Section 4. This example is adapted from
a typical medical device interoperability scenario [1, 13].

The paper is organized as follows. We first define the
blame assignment problem in Section 2 and discuss related
work in Section 3. Then we show the system models used in
our approach in Section 4. Our approach is then discussed
in Section 5 and Section 6. Finally we conclude with our
current work on tool implementation for blame assignment
(Section 7) and a discussion in Section 8. A case study
based on a medical device interoperability scenario is used
throughout the paper to illustrate the approach.

2. THE BLAME ASSIGNMENT PROBLEM
Given an observed trace Tr for system S on which a sys-

tem property ϕS is violated (denoted Tr 6|= ϕS), define

F = {A | A is a component in S and Tr 6|= ϕA} (1)

to be the set of faulty components for the violation of ϕS ,
where ϕA is the constraint on component A’s behavior. Not
all faulty components in F necessarily contribute to the sys-
tem violation. For example, some components may be faulty
but unrelated with a certain system property.

In this paper we focus on identifying the subsets of faulty
components F which are the culprits of the violation of sys-
tem property ϕS . To formally define the notion of a culprit
set, we consider a suspected subset A ⊆ F of faulty compo-
nents. Replacing every component in A with a correct one
would result an alternative system S′. Let

TRA =
{
tr | tr is a trace for S′ and

tr has the same system input as observed on Tr} (2)

be the set of possible system traces for S′ when rerunning the
system S′ with the same system input. A formal characteri-
zation of TRA is given after Proposition 2 of Section 6. Intu-
itively, A is a contributory cause[17] for the system property
violation if for some tr ∈ TRA, tr |= ϕS , i.e., the violation
of system property ϕS disappears on some system traces
after replacing the components in A with correct ones.

Let Corr(A) = {tr | tr ∈ TRA and tr |= ϕS}. We define
a ratio p : 2F → [0, 1] as

p(A) =
|Corr(A)|
|TRA|

. (3)

Proposition 1. A subset A ⊆ F of faulty components is a
contributory cause for the violation of a system property ϕS
on an observed trace Tr if and only if p(A) > 0.

For the computation of the value of p(A), explicit enu-
meration of the sets TRA and Corr(A) can be a choice for
small-sized, discrete event systems[4, 19]. As the system
complexity increases, the size of the set TRA could grow in-
tractable. Instead of computing the value for p, sampling in
the potential trace space to obtain an estimate p̂ of p could
be used. Similar techniques have already been used in the
work of fault diagnosis [5, 20].

The ratio p can be viewed as a measure of likelihood for a
subset A of faulty components to be the contributory cause.
The larger the value, the more likely the components in A
contributed to the system property violation.

When assigning blame to components causing system prop-
erty violation, the ratio p can also reflect different blame
assignment policies. If a policy postulates that at least one
subset A1 must be blamed, one may choose the subset which
maximizes the ratio p:

A1 = arg max
A∈2F

p(A). (4)

The calculated or estimated p ratio can also be compared
to an empirical value pblame ∈ [0, 1], where the blame is
assigned to a subset A only when p(A) > pblame. An ag-
gressive policy would choose a small value of pblame (e.g., 0
for the most aggressive policy) and blame a subset A when-
ever p(A) > pblame. A conservative policy may choose a
much larger threshold pblame in the range [0, 1].

In the wide spectrum from aggressive policies to conser-
vative ones, in this paper, we are interested in the special
case where p(A) = 1. It represents the most conservative
blame assignment policy with the highest confidence level.
Such a subset A of faulty components represent the main
contributory cause[17] for the observed system property vi-
olation. By using the approach we introduce in this paper,
we are able to cast blame on such a subsetA with the highest
confidence level.

In cases where for two subsets A and A′ such that p(A′) =
p(A) and A′ is a proper subset of A, A′ is blamed instead
of A. This also indicates a conservative policy where, blam-
ing less is preferred to blaming more. The behaviors of the
faulty, but non-blamed, components are not deemed as the
main contributory cause for the observed system failure.

We say that a subset A is minimal at a value pc if p(A) =
pc and there does not exist a subset A′ such that A′ ⊆ A,
A′ 6= A, and p(A′) = pc. We define a subset A to be a
culprit if p(A) = 1. Given a system S and a trace Tr such
that Tr 6|= ϕS , let F be as defined in (1), then the blame
assignment problem is to identify the set

Culprit = {A ∈ 2F | A is minimal at 1}. (5)

3. RELATED WORK
Comparison with fault diagnosis. Fault diagnosis [5,

16, 7, 4, 19] in component-based, discrete event systems has
been studied in various work in different settings. In these
works, a fault is defined as “a physical condition that causes
a device, a component or, an element to fail to perform in
a required manner[4].” Faults may cause errors in individ-
ual components, which may then propagate through com-
ponents and lead to system failures. Fault diagnosis gener-

ally includes the tasks of fault detection and isolation, and
optionally recovery (FDIR). Fault detection aims at deter-
mining whether the components contain faults; fault isola-
tion aims at determining the type and location of the faults;
whereas fault recovery aims at providing steering feedbacks
or remedy actions to the system.

Different from the task of fault isolation, the blame assign-
ment problem is to assign blame to components responsible
for the system property violation with the highest confidence
level. By assuming that fault detection on an observed sys-
tem trace has been performed and its result is an input to
our approach, we focus on identifying the minimal culprits
for system property violations. Therefore, one difference of
our work from fault isolation is that, the identified culprit
sets can be proper subsets of F . This indicates a scenario
where not all faulty components should be blamed for the
system property violation: some faulty components’s behav-
iors may have been caused by others producing the wrong
input, or some may be irrelevant to the system property,
though being faulty. In the worst case, our approach gives
the set F as the culprit, meaning that the faulty behaviors
of all components in F are the main contributory cause for
the system property violation.

Use of the ratio p. In this paper, we define the problem
using the ratio p that we showed in Section 2. In addition
to blame assignment, several existing techniques [4, 20] on
fault diagnosis implicitly used such a ratio.

Comparison with the work in [10]. The work of
Gössler et al. [10] has been a precursor to ours in attempt-
ing to establish the necessary and sufficient causal relation-
ships between components’ behaviors and system failure.
Our work differs from [10] in the notion of causes and the
rules by which traces are reconstructed. The culprits we
define in this paper are in fact contributory causes [17], a
characterization of an informal reasoning process. For trace
construction, the approach in [10] requires to only change
the faulty components’ behaviors while keeping non-faulty
components’ behaviors (input and output) unchanged. This
ignores the impact of changing one component’s behavior on
other components and imposes unnecessary constraints on
trace reconstruction. The example in Subsection 8.5 illus-
trates the undesired limitation from this rule.

In addition, in this paper we provide a complete formaliza-
tion of using state-of-the-art SAT/SMT solvers for efficient
computation of culprits, which are not discussed in [10]. On
the other hand, the work in [10] uses state machines as com-
ponent models, which may lend their approach advantages
in expressivity of component behaviors.

Comparison with work of higher order contracts.
The work in [9] and [11] in the field of programming lan-
guages study should not be confused with ours, despite the
same terms used such as contracts and blame. The con-
tracts in their line of work refer to the correct type check
of parameters in a function call, and blame is cast on either
the caller or the callee. In contrast, the blame assignment
problem we try to solve is for component-based systems.

4. SYSTEM MODEL AND TRACES
In this section, we present the language we use to de-

fine a component-based system. We first informally intro-
duce a simple system that we will use as a running example
throughout the paper. We then present the formal defini-

tions of a system in Section 4.1, and illustrate the definitions
using our example system in Section 4.2.

The system S in Figure 1 consists of three components
C, L, and V . Each component has named input ports and
output ports, which are typed variables (a through h). The
components are connected by two channels, one from port c
to port d and the other from port e to port f . Unconnected
component ports become the ports for the system S (a, b,
g, and h).

a
b

c
d

g

C

L

hV

e
f

Figure 1: Example System

The behavior of each component is specified as a logical
constraint on its input/output pairs of values, called its con-
tract. For example, for L, if the the input port d and output
port g are of type boolean, then the contract ϕL := g = d
requires that L produces the same output as the input.

A system contract is similarly defined on system input
ports and output ports. We also refer to a system contract
as a system property.

A trace for the system is a map from all ports to their
respective observed values. For example, {a → 98, b →
95, c → F, d → F, e → T, f → T, g → T, h → T} is a
trace for the system S in Figure 1.

4.1 Formal Definitions
A port x : Tx is a typed variable with name x and type

Tx.
A component A is a tuple 〈IA, OA, ϕA〉 where
• IA = {i1, . . . , im} is a set of input ports,
• OA = {o1, . . . , on} is a set of output ports, and
• ϕA, called the contract for the component, is a logical

constraint on ports in IA ∪OA.
A system S = 〈A1, . . . , AJ , θ, ϕS〉 is a set of components

A1, . . . , AJ connected by a set θ of channels, with a system
property ϕS .

A channel for S is a pair of ports (x, y) such that Tx = Ty,

x ∈
⋃J
j=1OAj , and y ∈

⋃J
j=1 IAj . x is called the source

of the channel, and y is called the target of the channel.
Intuitively, a channel (x, y) for S connects from the output
port x of one component of S to the input port y of another
component of S.

The system property ϕS for S is a logical constraint de-
fined on unconnected ports of S. Formally, let Iθ = {x |
∃y.(x, y) ∈ θ} and Oθ = {y | ∃x.(x, y) ∈ θ}, respectively;
then, ϕS is a logical constraint defined on ports in I ∪ O,
where I =

⋃J
j=1 IAj \ Oθ, and O =

⋃J
j=1OAj \ Iθ are the

input and output ports of S, respectively.
In this paper we make the following assumptions about

system construction. (a) Fan-in connections are not allowed,
i.e., it is required that ∀(x1, y1), (x2, y2) ∈ θ.y1 6= y2. (b)
The connected system is acyclic. (c) Each component pro-
duces one output on each of its output ports in response
to inputs on any subset of its input ports. (d) There is no

name clash among port names. (e) Channels are reliable. A
value passed into a channel will be successfully transmitted
out to the connected component. In other words, we only
consider traces Tr such that Tr(x) = Tr(y) if (x, y) is a
channel. Note that assumption (d) can be removed by qual-
ifying port names with the associated component names, as
is common in component-oriented languages.

We take a synchronous view of the system execution, where
a set of external events arriving at the input ports of the sys-
tem elicit outputs by the receiving components, which prop-
agate along the connections within the system until outputs
are produced on the output ports of the system, and then
the system waits until the next set of external events arrive.
Given the assumptions (a)–(c) above, each port will be used
in any such reaction once. We can thus record the whole re-
sponse in a single snapshot as values observed at each port.
In this work, we consider contracts that describe compo-
nent behavior in a single snapshot1; Section 8.2 discusses an
extension to temporal contracts that involve multiple snap-
shots. Thus, to simplify the discussion, we consider a trace
to contain a single snapshot, and formally define it as a map
from a port name to the value observed at the port within
the reaction.

The value at port x on trace Tr is denoted Tr(x). The
expression Tr(x) = Tr(y) states a fact that the value at
port x and port y are the same on trace Tr. Given a trace
Tr, a component A is said to be faulty on Tr if Tr 6|= ϕA.
A system S is said to have violated the property ϕS on the
trace Tr if Tr 6|= ϕS .

Lastly we note that the language for component/system
constraints description does not have to be limited to propo-
sitional logic. The approach can be generalized to logics
whose satisfiability relation is decidable and the number of
models for any formula is finite.

4.2 Medical Device Interoperability Case Study
The system S shown in Figure 1 is adapted from a medical

device interoperability scenario described in [1, 13].
L is a controller which enables and disables a laser scalpel

that a surgeon uses to perform chest operation on a patient.
V is a controller for the patient ventilator to help keep the
oxygen supply of the patient during whole body analgesia.

The system must ensure two properties: (a) the ventilator
V is turned on whenever the patient’s SpO2 (blood satura-
tion with oxygen) level is below the threshold, and (b) the
laser scalpel and the ventilator should not be both turned
on.

For property (b), if L and V are both on, then the contact
of laser with high concentration of oxygen could cause burn
or fire, which is a hazardous situation that must be avoided.

To ensure that violations to properties (a) or (b) do not
happen, a coordinator component C is used. The coordina-
tor C reads (a) the patient’s SpO2 level and (b) the threshold
value for SpO2, from ports a and b respectively. If a < b,
then it sends F to the laser scalpel in port c and T to the
ventilator in port e, indicating that the laser scalpel should
be disabled and the ventilator should be on; otherwise it
sends T to c and F to e.

1A snapshot is similar to the notion of measurement in the
literature on diagnosis [16], albeit constrained to one reac-
tion.

The laser scalpel and ventilator controller components L
and V forward the received instructions in ports d and f to
the actual devices via ports g and h, respectively.

Formal definition of the example in Figure 1. The
ports a and b are of type integers in between 0 and 100.
Other ports are booleans. The formula for checking port
value range is

ϕR(a, b) := (0 ≤ a ≤ 100) ∧ (0 ≤ b ≤ 100).

The system is defined as S := 〈C,L, V, θ, ϕS〉, where θ =
{(c, d), (e, f)}, and

ϕS := ϕR(a, b)∧[(a < b)∧(¬g∧h)∨((a ≥ b)∧¬(g∧h)]. (6)

The component C is defined as C := 〈IC , OC , ϕC〉, where
IC := {a, b}, OC := {c, e}, and

ϕC := ϕR(a, b)∧ [((a < b)∧¬c∧e)∨ ((a ≥ b)∧ c∧¬e)]. (7)

The component L is defined as L := 〈IL, OL, ϕL〉, where
IL := {d}, OL := {g}, and

ϕL := d = g. (8)

The component V is defined as V := 〈IV , OV , ϕV 〉, where
IV := {f}, OV := {h}, and

ϕV := f = h. (9)

Finally, the constraint on the channels is defined as

η := (c = d) ∧ (e = f). (10)

5. BLAME ASSIGNMENT
In this paper, we focus on blame assignment rather than

fault isolation. In blame assignment, we start with the set
F of faulty components for the system property violation
on a given trace Tr, and analyze which subsets of F are the
culprits for the system property violation. The set F is de-
termined by the violations of component contracts observed
within Tr.

The reasoning process for identifying culprits is called
trace reconstruction in this paper. That is, if we suspect
a subset A ⊆ F to be the culprit, then we analyze how
the system would behave should the faulty components in
A be replaced with good ones as specified in their respective
contracts. Due to the one-trace assumption that the sys-
tem will not be rerun to obtain more traces for analysis, we
perform this analysis based on information from the com-
ponent contracts. Given an input to a specific component
A, A’s output will either be the correct values specified in
A’s contract, or the faulty value as observed on the trace
Tr, depending on the trace reconstruction rules introduced
in this section.

By following the approach, a set TRA of potential system
traces will be constructed. We use the definition of the cul-
prit given in Section 2 to determine whether A is a culprit
or not.

The result of blame assignment is usually a subset of F
which caused the system property violation, whereas not all
faulty components are blamed. To illustrate this, consider
the trace Tr = {a → 98, b → 95, c → F, d → F, e → T, f →
T, g → T, h→ T} for the system shown in Figure 1.

By the contracts of the components and the system, it is
straightforward to decide that, on trace Tr, both C and L
are faulty, and a violation to the system property ϕS occurs.

In this case, it can be seen that either replacing the compo-
nent L or the component C can prevent the system violation
of the system property. It is not required that both of them
be replace.

In the rest of the section, we use the above example and
trace Tr to illustrate a straightforward process of trace re-
construction and analysis for culprits. In the next section,
we show how the blame assignment problem can be solved
efficiently.

For the system shown in Figure 1 and trace Tr = {a →
98, b → 95, c → F, d → F, e → T, f → T, g → T, h → T},
components C and L are faulty and the system property ϕS
is violated. We would like to determine which subsets of
F = {C,L} are the culprits for the violation of ϕS , without
additional reruns of the system to obtain new traces.

An informal analysis for the component L would proceed
as: “the system property violation could have been pre-
vented if component L were behaving correctly by giving
{g → F} as the output.” This analysis uses the implicit
assumption that, even if L is replaced with a good one, the
faulty component C would misbehave in the same manner
as observed, given the same input for component C.

An informal analysis for the component C would proceed
as: “the system property violation could have been pre-
vented if component C were behaving correctly by giving
{c→ T, e→ F} as the output.” Here, two implicit assump-
tions are used. First, when a component is replaced with
a good one, its output would change to the correct values
accordingly. Second, good components will keep correct be-
haviors in reconstructed traces, so V produces {h → F}
once its input has been changed to {f → F}.

Such implicit assumptions as in the above two examples
are the best one can assume about components’ behaviors,
given the one-trace assumption in our problem definition.

As a first step in providing a formal approach to blame
assignment, in this paper we explicitly state the informal
assumptions as reasoning rules when one has to answer the
question: “How would the system behave if a component is
replaced with a good one, assuming that the same input is
given to the new system?”

For a component A and a suspected subset A ⊆ F of
faulty components, the traces reconstruction rules are as fol-
lows.
(R1) If A 6∈ F , then it is deemed as a good component. In

the trace reconstruction, if its input is the same, then
its output is kept the same as observed.

(R2) If A 6∈ F but its input has changed to other values than
observed, then each of the correct output values cor-
responding to the changed input should be considered
as a possible execution the component could perform.

(R3) If A ∈ A ⊆ F , then A is a faulty component that is
replaced by a good one. Its behavior is the same as a
good component in Rule (R2).

(R4) If A ∈ F \ A, i.e., A is faulty but not in the consider-
ation of being suspected, then no matter whether its
input has changed or not, its output remains the same
as the value on the observed trace.

The rationale for Rule (R4) is that, for a faulty component
which we do not replace due to the one trace assumption,
we know no information on how it is supposed to behave
other than as observed on the only available trace. Thus it
is assumed that it will keep producing the same faulty value.

An example of using the rules is as follows. Consider the
system in Figure 1, the trace Tr = {a → 98, b → 95, c →
F, d → F, e → T, f → T, g → T, h → T}, and an analysis
session that only L is suspected (though C and L are both
faulty on this trace).

We first take the same input {a→ 98, b→ 95} as observed
on the trace Tr. Then we consider the component behavior
changes according to the topological order of their dataflow.

Since C is faulty but not suspected, the behavior of C is
kept as observed on Tr, i.e. C keeps producing the values
{c → F, e → T} (Rule (R4)). Component V is not faulty,
so it will behave correctly as specified in (9) to produce
{h→ T} (Rule (R1)). Component L is suspected, so it will
be replaced and behave as a correct one, producing {g → F}
as the output (Rule (R3)).

Therefore, the potential system trace after component L
is replaced is the reconstructed trace Tr′ = {a → 98, b →
95, c → F, d → F, e → T, f → T, g → F, h → T}. Thus we
obtained a set of possible system behaviors after replacing L,
i.e., TR{L} = {Tr′}.2 Since on Tr′ the system property is
not violated, we have Corr({L}) = {Tr′}, thus p({L}) = 1.
By definition in (5), {L} is a culprit.

By similar reasoning with trace reconstruction rules (R1)–
(R4), we have p({C}) = 1 and p({C,L}) = 1, so they are
culprits for the system violation as well. The subsets {L}
and {C} are all minimal at ratio 1, therefore Culprit =
{{L}, {C}}.

In general, given a system S = 〈A1, . . . , AJ , θ, ϕS〉 and
a trace Tr such that Tr 6|= ϕS , the straightforward blame
assignment process is as follows.

1. Compute the set F of faulty components.
2. Let C be an empty set.
3. For each non-empty subset A ⊆ F :

3.1 Let Corr(A) be an empty set.
3.2 Use trace construction rules (R1)–(R4) to obtain

the set TRA of reconstructed system traces.
3.3 Examine each trace Tr′ in TRA, determine if Tr′ |=

ϕS . If yes, put Tr′ into Corr(A).
3.4 Compute p(A) according to the definition in Equa-

tion (3). If p(A) = 1, put A into C.
4. Compute Culprit according to the definition in Equa-

tion (5), using the collected culprit sets in C.
5. Output Culprit.
However, this straightforward computation is time con-

suming. Indeed, as shown in Theorem 1 in Section 6, an in-
stance of the problem of determining whether A is a culprit
is equivalent to an instance of an unsatisfiability checking
problem in the logic used to express component contracts,
whereas the latter is known to be a problem in the coNP-
complete complexity class even for boolean logic[18].

On the other hand, also due to the equivalence shown in
Theorem 1, we could transform the culprit determination
problem into an equivalent unsatisfiability checking prob-
lem, for which standard best-effort solutions exist. State-
of-the-art SAT/SMT solvers can be employed for efficient
implementations to find culprits. This transformation is dis-
cussed in the next section.

2The example shown here is a special case, which only
has one reconstructed trace. If a component allows non-
deterministic outputs for an input, then a set of traces would
be constructed when the component is non-faulty or sus-
pected.

6. TRANSFORMATION INTO AN UNSAT-
ISFIABILITY CHECKING PROBLEM

The translation from deciding if A is a culprit to an un-
satisfiability checking problem is made possible by the fact
that both the conditions and the corresponding constraints
on component behaviors in reconstruction rules (R1)–(R4)
can be encoded in logical constraints analogous to Equa-
tions (6)–(9).

In this section, we present the transformation, assuming a
given system S = 〈A1, . . . , AJ , θ, ϕS〉, and a given trace Tr
with Tr 6|= ϕS .

We first construct a series of subformulas used in later
definitions (see Section 6.1 for details):

ι, η, (11)

ξAj ,k, for (1 ≤ j ≤ J , k = 1, 2, 3, 4), and (12)

κAj , for (1 ≤ j ≤ J). (13)

Here, ι is a formula constraining the input to the system
be the same as observed on trace Tr. η is a formula con-
straining that the two values on the source and target ports
of any channel are the same. ξAj ,k represents the condi-
tion check of Rule (Rk) for component Aj . κAj represents
the constraint on component Aj ’s behavior if it is supposed
to keep the output as on the observed trace in the trace
reconstruction, i.e., if Rule (R1) or (R4) applies. The cor-
responding behavior of component Aj if it is non-faulty, or
faulty and suspected (thus replaced with a correct one) is
the same as its contract ϕAj . Note that these definitions
are parametric to the set F of faulty components and the
set of suspected components A ⊆ F .

With the defined subformulas, it is then possible to define
the behavior of a component in the trace reconstruction:

ψAj := [(ξAj ,1 ∨ ξAj ,4)∧κAj]∨ [(ξAj ,2 ∨ ξAj ,3)∧ϕAj]. (14)

Informally, this means, if Rule (R1) or (R4) applies, then the
component Aj ’s behavior is constrained by κAj ; otherwise
it is constrained by its contract ϕAj .

Proposition 2. The formula

ψ := ι ∧ η ∧ ψA1 ∧ · · · ∧ ψAJ (15)

defines the set TRA of all the possible system behaviors with
the same input as observed on Tr, after suspected compo-
nents are replaced with correct ones.

Formally, TRA = {tr | tr |= ψ} where ψ is defined in
Equation (15) above.

According to the definition of p(A) in Equation (3), for
p(A) to be 1, we are left to check that on every trace in TRA
the property ϕS is satisfied. This is equivalent to checking
that

ψ ∧ ¬ϕS (16)

is unsatisfiable.

Theorem 1. Given a system S = 〈A1, . . . , AJ , θ, ϕS〉 with
components A1, . . . , AJ and a system trace Tr such that
Tr 6|= ϕS. Let F be defined as in (1) and let A ∈ 2F . Then
A is a culprit if and only if the formula ψ ∧ ¬ϕS defined in
Equation (16) is unsatisfiable.

Proof. First suppose (16) is unsatisfiable. Then for any
trace tr, either (a) tr 6|= ψ or (b) tr |= ψ but tr 6|= ¬ϕS .

This means that if trace tr ∈ TRA, then it must be that
tr 6|= ¬ϕS , i.e., tr |= ϕS , i.e., tr ∈ Corr(A). Therefore
p(A) = 1, so A is a culprit.

Conversely, suppose A is a culprit, then ∀tr ∈ TRA.tr |=
ϕS , so tr 6|= ¬ϕS , hence tr 6|= ψ ∧ ¬ϕS . On the other hand,
for trace tr 6∈ TRA, by the definition of TRA, tr 6|= ψ, hence
tr 6|= ψ ∧ ¬ϕS . Therefore, for any trace tr, Equation (16) is
not satisfied, i.e., (16) is unsatisfiable.

6.1 Formula Construction
We now expand the definitions in Equations (11)–(13).

The construction is systematic for any system S and trace
Tr as defined in Section 4.1, and parametric to the set F
of faulty components and a non-empty subset A ⊆ F of
suspected components.

A constraint that a port x should have the same as ob-
served on trace Tr is written as a logical formula

same(x) := x = Trx, (17)

where Trx is the value of x as observed on trace Tr.
The constraint ι on system input is defined as

ι :=
∧
x∈I

same(x), (18)

where I is the set of open input ports of system S.
The constraint η on channels is

η :=
∧

(x,y)∈θ

x = y. (19)

The test of whether a component Aj is in a set A is a
logical disjunction:

in(Aj ,A) :=
∨
A∈A

A = Aj . (20)

For a component Aj , the conditions for Rules (R1)–(R4)
can then be defined respectively as follows.

ξAj ,1 := ¬in(Aj ,F) ∧
∧

x∈IAj

same(x). (21)

ξAj ,2 := ¬in(Aj ,F) ∧ ¬
∧

x∈IAj

same(x). (22)

ξAj ,3 := in(Aj ,A). (23)

ξAj ,4 := in(Aj ,F) ∧ ¬in(Aj ,A). (24)

The constraints κAj on the components output if their
output values should be the same as observed is defined as:

κAj :=
∧

x∈OAj

same(x). (25)

For each subset A, using the formulas defined in (17)–(25)
to replace those used in (14)–(16), we obtain an instance of
the unsatisfiability problem. By courtesy of Theorem 1, we
can check for the unsatisfiability of the constructed formula
instead of explicitly constructing the set TRA and checking
system property ϕS on every trace in TRA.

6.2 Case Study Continued
Currently we are working on employing the presented ap-

proach to perform analyses on the laser scalpel/ventilator
interoperability case study, shown in Section 4.2. As an il-
lustration, we show the case for the system trace Tr = {a→

98, b → 95, c → F, d → F, e → T, f → T, g → T, h → T}
and suspected set A = {L} which is a subset of F = {C,L}
of faulty components.

The logical formulas for the case are constructed according
to Equations (18) through (25). For instance,

ι := (a = 98) ∧ (b = 95),

η := (c = d) ∧ (e = f).

For component C, ξC,1 and ξC,2 are defined to be

ξC,1 := ¬in(C,F) ∧ (a = 92) ∧ (b = 95),

ξC,2 := ¬in(C,F) ∧ ¬[(a = 92) ∧ (b = 95)],

while the definitions for ξC,3, ξC,4, and κC are the same as
Equations (23), (24) and (25), respectively. Note that the
formula

κC := (c = T) ∧ (e = F). (26)

represents the case that the faulty component C keeps pro-
ducing the same wrong values, according to Rule (R4).

The constructions for L are

ξL,1 := ¬in(L,F) ∧ (d = T) ∧ (g = F),

ξL,2 := ¬in(L,F) ∧ ¬[(d = T) ∧ (g = F)],

with ξL,3, ξL,4, and κL the same as in Equations (23), (24)
and (25), respectively. This is similar for V .

Lastly, an instance of the formula ψ∧¬ϕS in Equation (16)
is defined. This formula is unsatisfiable, which, by Theo-
rem 1, means that the set {L} is a culprit. By similar pro-
cesses, the sets {C} and {C,L} are culprits. By Definition 5,
we have Culprit = {{L}, {C}}.

This example shows the difference between blame assign-
ment and fault isolation. In fault isolation, after finding out
that L and C are both faulty, the task is to find out what
types of faults components L and C may have encountered
and where the faults may be located inside the components
L and C, respectively. In blame assignment, the task is
to identify the minimal subsets of components which have
contributed to the system property violation. In the above
example, although the components L and C are both faulty,
the blame assignment analysis we have performed identifies
L and C as individual culprits for the violation, whereas the
combination that the violations of both L and C occur is
not necessary for the system property violation.

7. IMPLEMENTATION
The construction shown in Section 6.2 is a general pro-

cess, given the system definition and a recorded trace. Ex-
isting state-of-the-art SAT/SMT solvers, such as Z3 from
Microsoft Research[6] used in this paper, support the en-
coding of formula objects definitions. With the formulas
encoded, a call to the theorem prover to check whether the
formula in Equation (16) is satisfiable is issued, and the re-
sult is parsed for determining a culprit.

To automate this process, we have implemented a Python
utility that employs the Z3 theorem prover to identify the
Culprit set defined in (5). The system description and trace
are written in two separate XML files and fed to the utility.
Component contracts ϕAj and system property ϕS are writ-
ten as strings that will be parsed into Z3 formula objects.

After reading in and parsing the XML files, the utility (a)
computes the set F , (b) constructs the set 2F , (c) for each

(non-empty) A ∈ 2F , constructs corresponding Z3 formula
objects used in (16), (d) calls the Z3 library for unsatisfia-
bility check, (e) records the suspected set if it is a culprit,
and finally (f) computes minimal culprits and outputs all
the culprits it gathered.

8. DISCUSSION

8.1 Relationship Between Component and Sys-
tem Contracts

We assumed in the paper that component and system con-
tracts are logically related to reflect the correct system de-
sign. Formally, for a system S = 〈A1, . . . , AJ , θ, ϕS〉, we
require that

J∧
j=1

ϕAj ∧ η → ϕS , (27)

where η is the port constraint defined in Equation (19). That
is, by composing components to design the system S, it
should be made sure that the system property is not vio-
lated for any accepted input. If this requirement does not
hold, the analysis in our approach would not proceed as the
set F of faulty components can be spurious.

This can be illustrated using a slight variation of the case
study shown in Subsection 4.2. Everything else being the
same, suppose the contract for C had mistakenly included
the assignment {a→ 98, b→ 95, c→ F, e→ T} as a correct
input/output pair. Then on the trace Tr = {a → 98, b →
95, c→ F, d→ F, e→ T, f → T, g → T, h→ T} in the run-
ning case study, C would not even be identified as a faulty
component in the first place. The set F of faulty compo-
nents in this case is just {L}, whereas the blame assignment
procedure introduced in our paper gives Culprit = {L} only.

This spurious result is due to the violation of the condition
in Equation (27). The given trace Tr in this case is an
assignment for the port variables that falsifies (27).

8.2 Extending to Temporal Contracts
For the clarity of presentation, in this paper we have

treated a trace as just one snapshot. In general, a sys-
tem engages in repeated interactions with its environment,
and contracts for both the system and individual compo-
nents can describe relationships between values produced
over multiple reactions.

The first complication in handling this general case is that
interactions may overlap. For example, if a system is a chain
of components, the last component in the chain may still
be producing a system output for one reaction, while the
first component may have already consumed the next system
input, starting the next reaction. Isolating a set of values
that belong in a snapshot is in itself a challenging problem
and has been studied under the name of trace alignment [12].

Assuming such alignment is possible, we can represent the
trace as a sequence of snapshots. We can then use a spec-
ification (for example, using a temporal logic) to describe
relationships between values in different snapshots. For our
case study, an example of a temporal property may be that
whenever an SpO2 reading (port a) is less than the threshold
(port b), then the output in port g of the laser scalpel com-
ponent L must be F three snapshots later. We express this
property using the “next snapshot” operator X of the linear
temporal logic [15] as a < b ⇒ XXX(g = F). In this case,

a violation will be detected with a delay of three snapshots,
once we observe the laser scalpel output. To perform the
blame assignment analysis, we can start trace resonstruc-
tion three steps in the past from the moment a violation is
observed.

In general, however, it is difficult to tell how far in the
past the trace reconstruction should extend. In [10], trace
reconstruction starts at the origin of the trace; however the
complexity of trace reconstruction grows with the length
of the trace. Incremental trace reconstruction may be one
possibility to explore.

8.3 Dealing with Timed Systems
In this paper contracts of the system/components are spec-

ified as relations on input/output pairs. The analysis does
not apply to cases where a system failure would consist of
timing information of the values in component ports.

In general, modeling time in the proposed approach can
be challenging. One has to provide abstractions to repre-
sent time in the system. In addition to considering different
values a port could produce, one has to consider different
times at which the value could be produced. This addi-
tional, orthogonal dimension of complication could dramat-
ically increase the space of potential system traces after the
replacement of components. The trace reconstruction idea
presented in the paper has to be extended to cope with the
time domain. This is currently one aspect of our ongoing
work.

8.4 Scalability
Two aspects affect the scalability of our approach. First,

in order to investigate each possible combination of faulty
components, we explicitly constructed the power set 2F for
the set F of faulty components for the observed system trace.
The scalability of our approach is limited by the number
of faulty components, rather than the total number of the
components in the system.

Second, unsatisfiability problems for boolean logic are known
to be coNP-complete[18], which imposes an algorithmic up-
per bound on analyzer capabilities. However, we envision
that the scalability of our approach is only limited by the
state-of-the-art SAT/SMT solvers being used. This is due
to the fact that our transformation of blame assignment
problem instances into unsatisfiability checking problem in-
stances only imposes minimal overhead: as seen in Section 6,
the number of variables for constructing logical formulas is
the same as the total number of different ports of compo-
nents, and the number of constructed clauses is linear to the
number of components in the system.

We are now working with case studies of larger sizes to ob-
tain empirical results on the above two aspects of limitations
on the scalability of our approach.

8.5 Comparison of Reasoning Rules for Trace
Reconstruction

In this subsection, we present a slightly revised version of
the laser scalpel and ventilator interoperability case study
which demonstrates the difference between our approach and
the work presented in [10].

In summary, the approach used in [10] to trace reconstruc-
tion requires that all non-faulty components’ behaviors be
kept unchanged in the reconstruction. This effectively rules
out traces where the input to non-faulty components has

been changed. To accommodate the loss of reconstructed
traces, the approach in [10] uses a different reasoning rule
for assigning blame, that is, as we interpret, the suspected
local component is blamed if and only if this test succeeds:
in every possible reconstructed trace where non-faulty com-
ponents’ behaviors are kept unchanged, if the violation on
the suspected local component disappears, then the system
property violation must also disappear.

This trace reconstruction and reasoning rule is equivalent
to ours with only one exception, which happens when there
are good components lying downstream in the topological
order according to data flow. The omission of certain traces
in this approach could lead to spurious analysis results as
we illustrate using the system S1 in Figure 2. In addition
to the system in Figure 1, two components L1 and V1 are
added, whose behaviors are analogous to those of L and V ,
i.e., forwarding the received messages. However, the system
property is now changed to

ϕS1 := ϕR(a, b) ∧ [((a < b) ∧ ¬k) ∨ ((a ≥ b) ∧ k)], (28)

i.e., the output l of the lower branch of the system is not
related to system property at all. (Note: This is a contrived
system property, but it does illustrate the point.)

a
b

c
d

g

C

L

hV

e
f

k
L1

lV1

i

j

Figure 2: Modified Interoperability Case Study

In this case, on the trace Tr = {a → 98, b → 95, c →
T, d → T, e → F, f → F, g → F, h → T, i → F, j → T, k →
F, l → T}, the components L and V are faulty, and the
global system property ϕS1 is violated.

When analyzing whether the subset {V } is a culprit, the
trace reconstruction using the approach in [10] is limited
by the output of C and the input of V1 on the observed
trace, where {e → F, j → T}. This means on any possible
reconstructed trace, it must be that {f → F, h→ T}, where
V ’s violation does not disappear. Thus, the precondition
of the test rule in [10] for culprit is vacuously false, which
makes the test for culprit vacuously succeed. Therefore V is
blamed in this case.

This result is apparently spurious, since the system prop-
erty ϕS1 has nothing to do with the component V (and V1)
by construction. In this case, an analysis engine should not
ever cast blame on any subset of {V, V1}.

As a comparison, our approach considers what the result-
ing traces would be should the faulty components be re-
placed with good ones. According to our analysis, the sub-
sets {L} and {L, V } are culprits, while Culprit = {{L}}.

9. CONCLUSION AND FUTURE WORK
In this paper, we have proposed the blame assignment

problem under the assumption that only one system trace
is available. We showed that our presented approach casts
blame on faulty components for the system property viola-
tion in a conservative yet high-confident manner.

The problem that we defined is equivalent to an unsatisfi-
ability checking problem, for which state-of-the-art theorem
provers exist. The theorem provers can be utilized for an ef-
ficient blame assignment engine implementation. Based on
our Python utility which automates the processes of trans-
lating blame assignment instances and analyzing for culprits,
larger-sized case studies will be studied for us to gain em-
pirical results on the scaleability of our approach.

10. ACKNOWLEDGEMENTS
The research is supported in part by the National Science

Foundation grants CNS-0834524, CNS-0930647, and CNS-
1035715. We would like to thank FDA researchers Paul L.
Jones and Yi Zhang for their motivating discussions on the
problem of blame assignment. We would also like to thank
Gregor Gössler for the in-depth discussion on their paper [10]
and challenges in the blame assignment problem.

11. REFERENCES
[1] The MDPnP website. www.mdpnp.org.

[2] The OSMD website.
http://osmdmadison.wordpress.com.

[3] Australian Transport Safety Bureau. In-flight
upset–Airbus A330-303, VH-QPA, 154 km West of
Learmonth, WA, 7 October 2008. Technical report,
Australian Transport Safety Bureau, 2011.

[4] S. Bhattacharyya, Z. Huang, V. Chandra, and
R. Kumar. A discrete event systems approach to
network fault management: detection and diagnosis of
faults. In Proceedings of the American Control
Conference, volume 6, pages 5108–5113, 2004.

[5] J. de Kleer and B. C. Williams. Diagnosing multiple
faults. Artificial Intelligence, 32(1):97–130, 1987.

[6] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS’08. Springer, 2008.

[7] A. Dubey, G. Karsai, R. Kereskenyi, and
N. Mahadevan. Towards a real-time component
framework for software health management. Technical
Report ISIS-09-111, Vanderbilt University, 2009.

[8] FDA. FDA MAUDE Database.

[9] R. B. Findler and M. Felleisen. Contracts for
higher-order functions. In International Conference on
Functional Programming, ICFP ’02, pages 48–59, New
York, NY, USA, 2002. ACM.

[10] G. Gössler, D. L. Métayer, and J.-B. Raclet. Causality
analysis in contract violation. In Proceedings of the
First international conference on Runtime verification,
RV’10, pages 270–284, 2010.

[11] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts
made manifest. JFP, 22(3):225–274, 2012.

[12] R. Jagadeesh Chandra Bose and W. van der Aalst.
Trace alignment in process mining: opportunities for
process diagnostics. Business Process Management,
pages 227–242, 2010.

[13] C. Kim, M. Sun, S. Mohan, H. Yun, L. Sha, and T. F.
Abdelzaher. A framework for the safe interoperability
of medical devices in the presence of network failures.
In ICCPS’10, pages 149–158, 2010.

[14] NERC Steering Group. Technical analysis of the
August 14, 2003, blackout: What happened, why, and
what did we learn? Technical report, North American
Electric Reliability Council, 2004.

[15] A. Pnueli. The temporal logic of programs. In
Proceedings of FOCS ’77, pages 46–57, 1977.

[16] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57–95, 1987.

[17] R. Riegelman et al. Contributory cause: unnecessary
and insufficient. Postgrad Med, 66(2):177, 1979.

[18] S. Rudich and A. Wigderson. Computational
complexity theory. American Mathematical Soc., 2004.

[19] M. Sampath, R. Sengupta, S. Lafortune,
K. Sinnamohideen, and D. Teneketzis. Failure
diagnosis using discrete-event models. IEEE
Transactions on Control Systems Technology,
4(2):105–124, 1996.

[20] A. Zeller. Isolating cause-effect chains from computer
programs. In ACM International Symposium on
Foundations of Software Engineering, pages 1–10,
2002.

	Introduction
	The Blame Assignment Problem
	Related Work
	System Model and Traces
	Formal Definitions
	Medical Device Interoperability Case Study

	Blame Assignment
	Transformation Into an Unsatisfiability Checking Problem
	Formula Construction
	Case Study Continued

	Implementation
	Discussion
	Relationship Between Component and System Contracts
	Extending to Temporal Contracts
	Dealing with Timed Systems
	Scalability
	Comparison of Reasoning Rules for Trace Reconstruction

	Conclusion and Future Work
	Acknowledgements
	References

