1 Digraphs

Definition 1

A digraph or directed graph G is a triple comprised of a vertex set $V(G)$, edge set $E(G)$, and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together are called endpoints of the edge. We say that an edge is from its tail to its head.

In a digraph, an edge is a loop if its endpoints are equal. Multiple edges are those with identical tails and identical heads.

A digraph is called simple, if it has no multiple edges. An edge with the tail u and the head v is denoted $u v$. Vertex u is called the predecessor of v, and v is called the successor of u.

Definition 2

The underlying graph of a digraph D is the graph G obtained from D by considering edges of D as unordered pairs.

A digraph is weakly connected if its underlying graph is connected.

A digraph is strongly connected, or strong, if for every ordered pair of distinct vertices x and y, there is a directed path starting at x and ending at y.

The strong components of a digraph are its maximal strong subgraphs.

A digraph without cycles is called a DAG (directed acyclic graph).

Theorem 1 Let S_{1} and S_{2} be two strong components of a digraph G. Then $S_{1} \cap S_{2}=\emptyset$.

Prove it. II

Theorem 2 Let $S_{1}, S_{2}, \ldots, S_{k}$ be the set of all strong components of a digraph G. Form a new digraph H whose vertices are S_{1}, \ldots, S_{k}, and the edges are the set of all ordered pairs $\left(S_{i}, S_{j}\right)$ such that, in graph G, there is an edge $x y$ where $x \in S_{i}$ and $y \in S_{j}$. Then H is a $D A G$.

Prove it. ॥

Definition 3

Let D be a digraph and $u, v \in V(D)$. The outdegree $d^{+}(u)$ (resp. indegree $\left.d^{-}(v)\right)$ of u is the number of edges with u as the tail (resp. v as the head).

Problem 1 In a digraph D,

$$
\sum_{v \in V(D)} d^{+}(v)=|E(D)|=\sum_{u \in V(D)} d^{-}(u)
$$

Prove it. ॥

Definition 4

A digraph is called a tournament iff for every two vertices, the digraph contains exactly one directed edge.

Definition 5

Let G be a digraph of the outdegree k for some integer $k>0$ whose edges are labeled with symbols $a_{1}, a_{2}, \ldots, a_{k}$ so that for every vertex $x \in V(G)$, the labels on the edges leaving x are $a_{1}, a_{2}, \ldots, a_{k}$. Such a graph is called an automaton graph.

Subgraphs; Isomorphism; decomposition; union the same

 for graphs and digraphs.Two digraphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ are isomorphic if there is a one-to-one mapping $f: V_{1} \rightarrow V_{2}$ such that for all u and $v \in V_{1}$, $(u v) \in E_{1}$ iff $(f(u) f(v)) \in E_{2}$.

The adjacency matrix of a graph $G: A=\left(a_{i, j}\right)$, where

$$
a_{i, j}=\left\{\begin{array}{l}
1, \text { iff } i j \in E \\
0, \text { else } .
\end{array}\right.
$$

In the case of a digraph with multiple edges, $a_{i, j}$ is the number of edges with tail i and head j. Unless it is specified, our digraphs have no multiple edges nor loops.

The incidence matrix $M(G)=\left(m_{i, j}\right)$ of a graph G with vertices v_{1}, \ldots, v_{n} and edges e_{1}, \ldots, e_{m}, is defined as follows

$$
m_{i, j}=\left\{\begin{array}{cl}
+1, & \text { if } v_{i} \text { is the tail of } e_{j}, \\
-1, & \text { if } v_{i} \text { is the head of } e_{j}, \\
0, & \text { else. }
\end{array}\right.
$$

In an undirected graph G, a walk is a list

$$
v_{1} e_{1} v_{2} e_{2} \ldots v_{k-1} e_{k} v_{k}
$$

such that v_{1}, \ldots, v_{k} are vertices; $e_{1}, e_{2}, \ldots, e_{k}$ are edges; and

$$
\forall i=1, \ldots, k-1, e_{i}=v_{i} v_{i+1}
$$

The length of a walk is the number of edges.
A trail is a walk without repeated edges.
A path is a trail without repeated vertices.
A trail whose first and last vertices are the same is called a closed walk, or a circuit.
A circuit without repeated vertices is called a cycle.
In a directed graph walks, trails, and paths are defined similarly satisfying the follow_the_arrows rule: the head of an edge is the tail of the next edge in the sequence.
Given a digraph G, its underlying graph G^{*} is obtained by replacing all directed edges with corresponding undirected edges.

A path or directed path in a digraph G is a sequence of edges $\left\{e_{i}\right\}_{i=1}^{p}$ such that for every $i=1, \ldots, p-1$, the head of e_{i} is the tail of e_{i+1}.

A digraph G is strongly connected or strong if for every x and y, there is a directed path starting at x and ending at y.

which graph is strongly connected?

A subgraph H is a strongly connected component of a given digraph G if H is strong and no other strong subgraph contains H.

Theorem 3 Every digraph G can be partitioned into strong connected components with disjoint sets of vertices.

An Eulerian trail in a digraph is a trail which contains all edges.
Lemma 1 Let G be a digraph with the smallest outdegree $d^{+}(G) \geq$ 1. Then G has a cycle.

Proof. Starting with an arbitrary vertex $x \in V(G)$, form a sequence of vertices as follows:

$$
\begin{aligned}
x_{1} & =x ; \\
x_{i+1} & =\text { the head of an edge } e_{i} \text { whose tail is } x_{i}
\end{aligned}
$$

Terminate the sequence when the first member x_{q} is encountered which is equal to a member x_{p} already in the sequence.

Clearly the sequence $x_{p} e_{p} x_{p+1} \cdots e_{q-2} x_{q-1} e_{q-1} x_{p}$ is a cycle. ॥
Theorem 4 Let G be a digraph whose underlying graph is connected and has at least 2 vertices. Then G has an Eulerian circuit iff for every vertex $i \in[1, n], d^{+}(i)=d^{-}(i)$.

Proof. Induction on the number of edges of the digraph. Since the underlying graph is connected, for every vertex $v \in V(G)$, $d^{+}(v) \geq 1$. This implies that $|E(G)| \geq|V(G)|$.

Base. Suppose $|E(G)|=|V(G)|$. Then $d^{+}(v)=d^{-}(v)=1$ for every vertex $v \in V(G)$. This implies that G is a directed cycle, which is also the Eulerian cycle of the graph.

Inductive step. Suppose the theorem holds for every graph with $<m$ edges, and let G be a graph with m edges which satisfies the condition of the Theorem.

Since $d^{+}(x) \geq 1$ for every $x \in V(G)$, by the Lemma 1 above, G has a directed cycle C. Consider now the graph $H=(V, E-E(C))$ which is obtained from G by removing all edges of C (see Figure below). Let $G_{1}, G_{2}, \ldots, G_{k}$ be the connected component of H. For every $G_{i}(i \in[1, k])$, which is not an isolated vertex, the conditions of the Theorem hold, and each of them has fewer than m edges (explain the reasons). Thus, by induction, each such component G_{i} has an Eulerian trail W_{i}. Then, combining all $W_{i} \mathrm{~s}$ with C yields an Eulerian trail for G. ॥

Theorem 5

A connected undirected graph is Eulerian if the degree of every vertex is even.

Fleury's Algorithm

Input: An undirected connected graph;
Output: An Eulerin trail, if it exists.

1. If there are vertices of odd degree, halt and return The Graph is not Eulerian;
2. Unmark all edges of G; choose any $v \in V(G) ; i=0$;
3. Select unmarked edge e incident to v which in not a bridge in the spanning subgraph comprised of unmarked edges; if such an edge does not exist, let e be any unmarked edge incident to v;
4. If $e=(v, u)$, then $C=C e u ; v=u ; i=i+1$; and mark e;
5. If $i=|E|$, then halt and output

$$
\mathrm{C} \text { is an eulerian trail; }
$$

otherwise go to step 2;

2 Problems.

Proposition 1 Let G be the graph with vertex set $\{1,2, \ldots, 15\}$ in which integers i and j are adjacent iff they have a common factor exceeding 1. How many connected components does G have? What is the maximal length of a path in G ?

Proposition $2 A$ digraph is called a tournament if its underlying graph is complete. A vertex v in a digraph is called a leader if every other vertex can be reached from v by a path of length at most 2. Prove that every tournament has a leader.

Problem 2 Prove that in every digraph, there is a strong component such that the digraph has no edges leaving the component; and there is a strong component such that the digraph has no edges entering the component.

Problem 3 Prove that in a digraph, every closed walk of an odd length contains a cycle of an odd length.

Problem 4 Let G be a digraph in which indegree equals outdegree at every vertex. Prove that G has a decomposition into cycles.

Problem 5 Prove that for every directed tree T on n vertices, there is a mapping $f: V(T) \rightarrow\{1,2, \ldots, n\}$ such that for every directed edge $u v \in E(T), f(u)<f(v)$.

3 deBruin Graphs

Puzzle

Can it be done for an arbitrary n ?
We are looking for a 0,1 -labelling of a cycle of length 2^{n} such that the 2^{n} intervals of length n of the cycle were all distinct?
deBruin graph D_{n} is a finite directed graph defined by
$V\left(D_{n}\right)$ the set of binary strings of length $n-1$;
$E\left(D_{n}\right)=\left\{\left(a_{1}, a_{2}, \ldots, a_{n-1}\right),\left(a_{2}, a_{3}, \ldots, a_{n}\right)\right.$ where $a_{i} \in\{0,1\}$.

Mark every edge by the string of length n whose first $n-1$ symbols are the label of the start vertex of the edge, and the last $n-1$ symbols is the label of the end vertex.

Then the task of the puzzle is to construct a closed trail in D_{n} which traverse every edge of D_{n} exactly once.

Questions:

1. what are the indegrees and outdegrees of D_{n} ?
2. how many vertices does D_{n} have?
3. how many edges does D_{n} have?
4. what is the diameter of D_{n} ?

The diameter of a directed graph is the largest distance between any two vertices, where the distance $\operatorname{dist}(x, y)$ between x and y is defined as the length of a shortest directed path starting at x and ending at y.

The Main Question: how does the deBruin graph help to solve the puzzle?

Question 1: What is the necessary and sufficient condition for a graph to be Eulerian?

Question 2: Is there a fast algorithm to construct an eulerian trail if it exists?

4 Kautz Graphs

The Kautz digraph K_{n} is a directed graph, where

- $V\left(K_{n}\right)$ is the set of strings $\left\{x_{1}, \ldots, x_{n-1}\right\}$ of length $n-1$ over the alphabet $\{0,1,2\}$, such that $\forall i \in[1, n-2], x_{i} \neq x_{i+1}$; and
- the set of edges are pairs of strings $\left(x_{1}, \ldots, x_{n-1} ; y_{1}, \ldots, y_{n-1}\right)$, where

$$
x_{2}=y_{1} ; \ldots ; x_{n-1}=y_{n-2}
$$

