
1 Non-deterministic Turing Machine

A nondeterministic Turing machine is a gener-
alization of the standard TM for which every configura-
tion may yield none, or one or more than one next
configurations.

In contrast to the deterministic Turing machines, for
which a computation is a sequence of configurations,
a computation of a nondeterministic TM is a tree of
configurations that can be reached from the start con-
figuration.

In this tree, the children-nodes of a node are its next
configurations. Thus, the configuration, whose state is
either qa, or qr has no children-nodes.

1

A nondeterministic Turing machine, writtenNTM ,
is a 7-tuple

M = (Q,Σ,Γ,∆, q0, qa, qr),

where all ingredients except for ∆ are defined as before
for the deterministic TM.

∆ : (Q× Γ) −→ P(Q× Γ× {L,R}).

The transition function of an NTM may correspond, for
a given pair (q, σ), a set of triples {(p, σ′, D)}; this set
can be empty.

The transition function is sometimes presented as a set
∆ of pairs:

((q, σ)(p, σ′, D)).

While for a deterministic TM, there can be just one pair
with a given first term (q, σ), for a non-deterministic
TM, ∆ may have more than one, or none, pair with a
given first term.

Thus, for each combination of a state and a tape-symbol,
there can be more than one appropriate steps, or none
at all. A configuration of an NTM may yield several,
but a finite configurations in one step.

2

An input to an NTM is said to be accepted if there
exists at least one node of the computation tree
which is an accept-configuration.

The path from the root to the accept-configuration is
said to be selected non-deterministically.

A non-deterministic Turing Machine is called
a decider if all branches halt on all inputs.

If, for some input, all branches are rejected,
then the input is rejected.

NDTM computation tree: schematic representation

3

Example. A high-level description of an NTM which
accepts composite numbers L in the unary representa-
tion.

L = {II · · · I
︸ ︷︷ ︸

m times

: m is a composite integer.}.

Given an input II . . . I
︸ ︷︷ ︸

m times

≡ Im, if m is not a prime, i.e.

m = p × q for some integers p, q < m, the machine
performs the following instructions:

1. Non-deterministically choose two integers p and q

(p, q 6= m);

2. transform the input configuration (ǫ qstart I
m) into

(Im # Ip # Iq# d ǫ)
/* here # serves as a separator; d is a state of the
control;*/

3. Multiply p and q, that is, transform (Im # Ip # Iq# d ǫ)
into (Im#Ip×q# f ǫ);

4. Compare the length of m with p× q: accept if they
are the same, otherwise reject.

4

How to interpret the instruction “Non-deterministically
choose two numbers p and q”?

To non-deterministically select p and q:

• starting from a given square, repeat p times: write
I , move to the right.

• write #, move to the right.

• repeat q times: write I , move to the right.

by NDTM

I I I. . .

m

I I. . .

p

I I. . .

q

#

WRITE I WRITE #

Computation

1. Non-deterministically write in IpIq (p > 1, q > 1)

2. Deterministically generate in Ip×q

3. Deterministically compare Im with Ip×q

5

Definition 1 Two TM’s M1 and M2 are said to be

computationally equivalent, if L(M1) = L(M2).

Theorem 1

Every non-deterministic Turing machine has an equiv-
alent deterministic Turing machine. If L is decided by
an NDTM N in time f (n), then there is a deterministic
TM which decides L in time O(cf(n)), for some c > 1.

Proof. Let N = (Q,Σ,Γ,∆, q0, qa, qr) and let d be
the smallest integer such that for each (q, σ) there is at
most d choices for N .

A deterministic TM D traverses all nodes of the com-
putational tree of N . Although the traversal can be
exponentially longer than a path from the start config-
uration to the accepting configuration, it is finite, since
every node of the tree has a finite and bounded

number of children-nodes. The latter is determined by
the cardinality of |δ(Q × Γ)|, which is a finite number
since δ(Q× Γ) ⊆ Q× Γ× {L,R}).

6

D has three tapes (we already saw that such multi-tape
TM is equivalent to a single tape TM):

input tape: contains the input w (never changes);

simulation tape: maintains a copy of N ’s tape on a
branch of its nondeterministic computation;

address tape: keeps track of the current location of
D in the N ’s computational tree; in particular, enu-
merates tree-paths in the lexicographical order.

7

D works as follows:

1. Insert the input w to tape 1; empty tapes 2 and 3.

2. Copy tape 1 to tape 2.

3. Simulate one branch of nondeterministic computa-
tion. Before each step ofN , consult the next symbol
on tape 3 to determine which choice to make among
those allowed by N ’s transition function.

• if no more symbols remain on tape 3 or if this
nondeterministic choice is invalid, abort this branch
by going to stage 4.

• if a rejection configuration is encountered, go to
stage 4.

• if an accepting configuration is encountered, accept
the input.

4. Replace the string on tape 3 with the lexicographi-
cally next string. Simulate the next branch of N ’s
computation by going to stage 2.

Corollary. A language is Turing-recognizable (accept-
able) iff some nondeterministic Turing machine recog-
nizes (accepts) it.

8

2 Examples of non-deterministic Turing Machines

Example 1

Given a set S = {a1, . . . , an} of integers, determine if
there is a subset T ⊆ S such that

∑

ai∈T
ai =

∑

ai∈S−T
ai.

The task is to construct an NDTM which accepts a
language L corresponding to the problem.

Language:

L = {a1#a2# . . . am# : ∃T ⊆ S, such that
∑

ai∈T
ai =

∑

ai∈S−T
ai.}

Assume that there are two auxiliary TM (determinis-

tic):

• C, a copy machine: copies a specified string on the
tape to a specified location;

• Sum, a summation machine: sums up specified num-
bers.

9

NDTM which accepts L;

1. Place S onto the tape;
2. sum up the numbers in the input; let the result be A1

3. append the string with $;
4. while moving from the left to $;

nondeterministically copy all ai ∈ T

to the right from the rightmost #
append with #

5. sum up the numbers that were copied; let the result be A2;
6. accept if A1 = 2A2

10

Example 2

Given a graph G = (V,E) and an integer k > 0, deter-
mine if there is a subset C ⊆ V such that

• |C| ≥ k;

• any two vertices in C are adjacent (C is a clique).

Present the problem as one of accepting a language L;
describe an NDTM to accept L.

Solution. Define language L as follows:

L = {〈G, k〉 : G has a clique of size ≥ k.}

/* we assume that there is some standard way of pre-
senting G as a string in a finite alphabet */

Assume there is a TM which, given two vertices of G,
answers if these vertices are adjacent.

11

NDTM which accepts L;

1. Place 〈G, k〉 onto the tape;
2. append the string with $;
3. while moving from the left to $;

nondeterministically select some vertices vi ∈ V (G)
/*assumption: there is a “finite-choice” computational
path which does the selection, e.g.
it can be just having a vector of length n with
components 0 or 1 that define the selection */

4. check if the number of selected vertices ≥ k;
5. for every two selected vertices check if they are adjacent;
6. accept if all pairs are adjacent

12

Example 3

Given a graph G = (V,E) and an integer k > 0, deter-
mine if there is a path P in G such that

• the length of P ≥ k;

• no two vertices in G are traced twice by P .

Present the problem as one of accepting a language L;
describe an NDTM to accept L.

Solution. Define language L as follows:

L = {〈G, k〉 : G there is a path of length ≥ k.}

Assume there is a TM which, given two vertices of G,
answers if these vertices are adjacent.

13

NDTM which accepts L;

1. Place 〈G, k〉 onto the tape;
2. append the string with $;
3. while moving from the left to $;

nondeterministically select some vertices vi ∈ V (G)
/* we assume here without going into details that there is
a “finite-choice” computational path which does the
selection; for example, it can be just having a vector of
length n with components 0 or 1 that define the selection */

4. check if the number of selected vertices ≥ k;
5. for every two consequently selected vertices check if

they are adjacent;
6. accept if all checked pairs of vertices are adjacent.

14

