1 Non-deterministic Turing Machine

A nondeterministic Turing machine is a gener-
alization of the standard TM for which every configura-
tion may yield none, or one or more than one next
configurations.

In contrast to the deterministic Turing machines, for
which a computation is a sequence of configurations,
a computation of a nondeterministic TM is a tree of
configurations that can be reached from the start con-
figuration.

In this tree, the children-nodes of a node are its next
configurations. Thus, the configuration, whose state is
either g,, or g, has no children-nodes.

A nondeterministic Turing machine, written NT'M ,
is a 7-tuple

M = (Q, Z; F, A? q0, a, %“)7

where all ingredients except for A are defined as before
for the deterministic TM.

A (QxT)—PQxTx{L,R}).

The transition function of an NTM may correspond, for
a given pair (q,), a set of triples {(p, o', D)}; this set
can be empty.

The transition function is sometimes presented as a set
A of pairs:

((q,0)(p,0’, D)).

While for a deterministic TM, there can be just one pair
with a given first term (q, o), for a non-deterministic
TM, A may have more than one, or none, pair with a
given first term.

Thus, for each combination of a state and a tape-symbol,
there can be more than one appropriate steps, or none
at all. A configuration of an NTM may vield several,
but a finite configurations in one step.

An input to an NTM is said to be accepted if there
exists at least one node of the computation tree
which is an accept-configuration.

The path from the root to the accept-configuration is
said to be selected non-deterministically.

A non-deterministic Turing Machine is called
a decider if all branches halt on all inputs.

If, for some input, all branches are rejected,
then the input is rejected.

- -
NDTM computation tree: schematic representation

Example. A high-level description of an NTM which
accepts composite numbers L in the unary representa-
tion.

L =A{Il---1: misa composite integer.}.

N—_——
m times

Given an input /1 ... I = I" if m is not a prime, 7.e.
m times .
m = p X q for some integers p,q < m, the machine

performs the following instructions:

1. Non-deterministically choose two integers p and q
(P, q # m);

2. transform the input configuration (€ gszare I™) into

(I 4 I 4 114 d o
/* here # serves as a separator; d is a state of the
control;*/

3. Multiply p and g, that is, transform (I # I? # [91# d ¢)

into (I"M#IP*4 f €);

4. Compare the length of m with p x ¢: accept if they
are the same, otherwise reject.

How to interpret the instruction “Non-deterministically
choose two numbers p and ¢”7

To non-deterministically select p and q:

e starting from a given square, repeat p times: write
I, move to the right.

e write #, move to the right.

e repeat ¢ times: write I, move to the right.

Computation
by NDTM
WRITE 1 WRITE #

ol drfefrlqrfarlgafe] | [[] [¢

m p q

1. Non-deterministically write in 1717 (p > 1,q > 1)
2. Deterministically generate in 17"

3. Deterministically compare I™ with [P*4

Definition 1 Two TM’s My and M- are said to be
computationally equivalent, if L(My) = L(M>).

Theorem 1

Every non-deterministic Turing machine has an equiv-
alent deterministic Turing machine. If L is decided by
an NDTM N in time f(n), then there is a deterministic
TM which decides L in time O(c/™), for some ¢ > 1.

Proof. Let N = (Q, %, ', A, qo, ¢u, ¢;) and let d be
the smallest integer such that for each (¢, o) there is at
most d choices for V.

A deterministic TM D traverses all nodes of the com-
putational tree of N. Although the traversal can be
exponentially longer than a path from the start config-
uration to the accepting configuration, it is finite, since
every node of the tree has a finite and bounded
number of children-nodes. The latter is determined by
the cardinality of [§(Q) x I')|, which is a finite number
since 0(Q x ') C Q x I' x {L, R}).

D has three tapes (we already saw that such multi-tape
TM is equivalent to a single tape TM):

input tape: contains the input w (never changes);

simulation tape: maintains a copy of N's tape on a
branch of its nondeterministic computation;

address tape: keeps track of the current location of
D in the N’s computational tree; in particular, enu-
merates tree-paths in the lexicographical order.

D works as follows:

1. Insert the input w to tape 1; empty tapes 2 and 3.
2. Copy tape 1 to tape 2.

3. Simulate one branch of nondeterministic computa-
tion. Before each step of NV, consult the next symbol
on tape 3 to determine which choice to make among
those allowed by N’s transition function.

e if no more symbols remain on tape 3 or if this
nondeterministic choice is invalid, abort this branch
by going to stage 4.

e if a rejection configuration is encountered, go to
stage 4.

e if an accepting configuration is encountered, accept
the input.

4. Replace the string on tape 3 with the lexicographi-
cally next string. Simulate the next branch of N's
computation by going to stage 2.

Corollary. A language is Turing-recognizable (accept-
able) iff some nondeterministic Turing machine recog-
nizes (accepts) it.

2 Examples of non-deterministic Turing Machines

Example 1

Given a set S = {ay,...,a,} of integers, determine if
there is a subset T C S such that

>ooa; = Y Q.
a; €T a;eS—=T

The task is to construct an NDTM which accepts a
language L corresponding to the problem.

Language:

L ={a#ast#...ap# AT C S, such that > a;= > a;.}
a; €T a;eS—T

Assume that there are two auxiliary TM (determinis-
tic):

e (', a copy machine: copies a specified string on the
tape to a specified location;

e Sum, a summation machine: sums up specified num-
bers.

NDTM which accepts L;

1. Place S onto the tape;
2. sum up the numbers in the input; let the result be A;
3. append the string with $;
4. while moving from the left to $;
nondeterministically copy all a; € T°
to the right from the rightmost #
append with #
5. sum up the numbers that were copied; let the result be As;
6. accept if A; = 2A,

10

Example 2
Given a graph G = (V, E') and an integer k > 0, deter-
mine if there is a subset C' C V such that

o |C] > k;

e any two vertices in C' are adjacent (C' is a clique).

Present the problem as one of accepting a language L;
describe an NDTM to accept L.

Solution. Define language L as follows:

L = {(G, k) : G has a clique of size > k.}

/* we assume that there is some standard way of pre-
senting GG as a string in a finite alphabet */

Assume there is a T'M which, given two vertices of G,
answers if these vertices are adjacent.

11

NDTM which accepts L;

L.
2.
3.

ot

Place (G, k) onto the tape;

append the string with $;

while moving from the left to $;
nondeterministically select some vertices v; € V(G)
[*assumption: there is a “finite-choice” computational
path which does the selection, e.g.
it can be just having a vector of length n with
components 0 or 1 that define the selection */

check if the number of selected vertices > k;

for every two selected vertices check if they are adjacent;

accept if all pairs are adjacent

12

Example 3

Given a graph G = (V, E') and an integer k > 0, deter-
mine if there is a path P in G such that

e the length of P > k;

e 1o two vertices in GG are traced twice by P.

Present the problem as one of accepting a language L;
describe an NDTM to accept L.

Solution. Define language L as follows:

L = {(G, k) : G there is a path of length > k.}

Assume there is a T'M which, given two vertices of G,
answers if these vertices are adjacent.

13

NDTM which accepts L;

1. Place (G, k) onto the tape;
2. append the string with $:
3. while moving from the left to $;
nondeterministically select some vertices v; € V(G)
/* we assume here without going into details that there is
a “finite-choice” computational path which does the
selection; for example, it can be just having a vector of
length n with components 0 or 1 that define the selection *,
4. check if the number of selected vertices > k:
5. for every two consequently selected vertices check if
they are adjacent;
6. accept if all checked pairs of vertices are adjacent.

14

