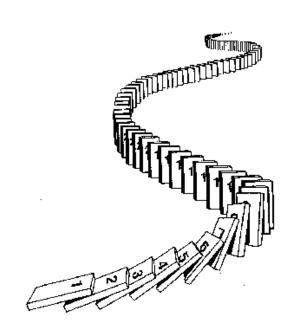
Foundations of Computer Science Lecture 5

Induction: Proving "For All ..."

Induction: What and Why?

Induction: Good, Bad and Ugly

Induction, Well-Ordering and the Smallest Counter-Example



Last Time

- Proving "IF ..., THEN ...".
- Proving "... IF AND ONLY IF ...".
- Proof patterns:
 - direct proof;
 - \star If $x, y \in \mathbb{Q}$, then $x + y \in \mathbb{Q}$.
 - ★ If $4^x 1$ is divisible by 3, then $4^{x+1} 1$ is divisible by 3.
 - contraposition;
 - \star If r is irrational, then \sqrt{r} is irrational.
 - \star If x^2 is even, then x is even.
 - ► contradiction.
 - $\star \sqrt{2}$ is irrational.
 - $\star a^2 4b \neq 2$.
 - $\star 2\sqrt{n} + 1/\sqrt{n+1} \le 2\sqrt{n+1}.$

Today: Induction, Proving "... for all ..."

- What is induction.
- Why do we need it?
- The principle of induction. Toppling the dominos. The induction template.
- Examples.
- Induction, Well-Ordering and the Smallest Counter-Example.

Dispensing Postage Using 5¢ and 7¢ Stamps

19c	20¢	21¢	22¢	23¢
7,7,5	5,5,5,5	7,7,7	5,5,5,7	?

Perseverance is a virtue when tinkering.

19¢	20¢	21¢	22¢	23¢	24¢	25¢	26¢	27¢	28¢
7,7,5	5,5,5,5	7,7,7	5,5,5,7	_	7,7,5,5	5,5,5,5,5	7,7,7,5	5,5,5,5,7	7,7,7,7

Can every postage greater than 23¢ can be dispensed?

Intuitively yes.

Induction formalizes that intuition.

Why Do We Need Induction?

	Predicate	Claim
(i)	P(n) = "5¢ and 7¢ stamps can make postage n ."	$\forall n \ge 24 : P(n)$
(ii)	$P(n) = "n^2 - n + 41$ a prime number."	$\forall n \ge 1 : P(n)$
(iii)	$P(n) = 4^n - 1$ is divisible by 3."	$\forall n \geq 1 : P(n)$

TINKER!

$\underline{\hspace{1cm}}$	1	2	3	4	5	6	7	8	40	41
$n^2 - n + 41$	41	43	47 ✓	53 √	61	71	831	97✓ · · ·	1601	1681 ×
$(4^n - 1)/3$	1	5	21	85	341	1365	5461	21845		

How can we prove something for all $n \geq 1$? Verification takes too long! Prove for general n. Can be tricky.

Induction. Systematic.

Is $4^n - 1$ Divisible by 3 for $n \ge 1$?

$$P(n) = 4^n - 1$$
 is divisible by 3."

We proved:

IF
$$\underbrace{4^n - 1}_{P(n)}$$
 is divisible by 3, THEN $\underbrace{4^{n+1} - 1}_{P(n+1)}$ is divisible by 3.

Proof. We prove the claim using a direct proof.

- 1: Assume that P(n) is T, that is $4^n 1$ is divisible by 3.
- 2: This means that $4^n 1 = 3k$ for an integer k, or that $4^n = 3k + 1$.
- 3: Observe that $4^{n+1} = 4 \cdot 4^n$, and since $4^n = 3k + 1$, it follows that $4^{n+1} = 4 \cdot (3k+1) = 12k+4.$

Therefore $4^{n+1} - 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 (4k + 1) is an integer).

- 4: Since $4^{n+1} 1$ is a multiple of 3, we have shown that $4^{n+1} 1$ is divisible by 3.
- 5: Therefore, P(n+1) is T.

We proved:

$$P(n) \to P(n+1)$$

What use is this?

(Reasoning in the absense of facts.)

 $4^n - 1$ is Divisible by 3 for $n \ge 1$

$$P(n) = 4^n - 1$$
 is divisible by 3."

$$P(n) \to P(n+1)$$

NEW INFORMATION:

From tinkering we know that P(1) is T: $4^1 - 3 = 3$

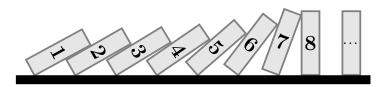
 \leftarrow divisible by 3 (new fact)

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n-1) \rightarrow P(n) \rightarrow \cdots$$

By Induction, $4^n - 1$ is Divisible by 3 for $n \ge 1$

$$P(n) = 4^n - 1$$
 is divisible by 3."

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow \cdots$$



P(n) form an infinite chain of dominos. Topple the first and they all fall.

Practice. Exercise 5.2.

Induction Template

Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1: Show that P(1) is T. ("simple" verification.)

[base case]

2: Show $P(n) \to P(n+1)$ for $n \ge 1$

[induction step]

```
Prove the implication using direct proof or contraposition.
 Direct
                                  Contraposition
Assume P(n) is T.
                                  Assume P(n+1) is F.
    (valid derivations)
                                     (valid derivations)
   must show for any n \ge 1 must show for any n \ge 1 must use P(n) here must use \neg P(n+1) here
                                     must use \neg P(n+1) here
 Show P(n+1) is T.
                                  Show P(n) is F.
```

- 3: Conclude: by induction, $\forall n \geq 1 : P(n)$.
- Prove the implication $P(n) \to P(n+1)$ for a general $n \ge 1$. (Often direct proof) Why is this easier than just proving P(n) for general n?
- Assume P(n) is T, and reformulate it mathematically.
- Somewhere in the proof you must use P(n) to prove P(n+1).
- End with a statement that P(n+1) is T.

Sum of Integers

$$1+2+3+\cdots+(n-1)+n = ?$$

The GREAT Gauss (age 8-10):

$$S(n) = 1 + 2 + \cdots + n$$

$$S(n) = n + n - 1 + \cdots + 1$$

$$2S(n) = (n+1) + (n+1) + \cdots + (n+1)$$

$$= n \times (n+1)$$

$$S(n) = 1 + 2 + 3 + \dots + (n-1) + n = \frac{1}{2}n(n+1)$$

Proof:
$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

Proof. (By Induction)
$$P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$
.

- 1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.
- 2: [Induction step] We show $P(n) \to P(n+1)$ for all $n \ge 1$, using a direct proof. Assume (induction hypothesis) P(n) is $T: \sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$. Show P(n+1) is T: $\sum_{i=1}^{n+1} i = \frac{1}{2} (n+1)(n+1+1)$.

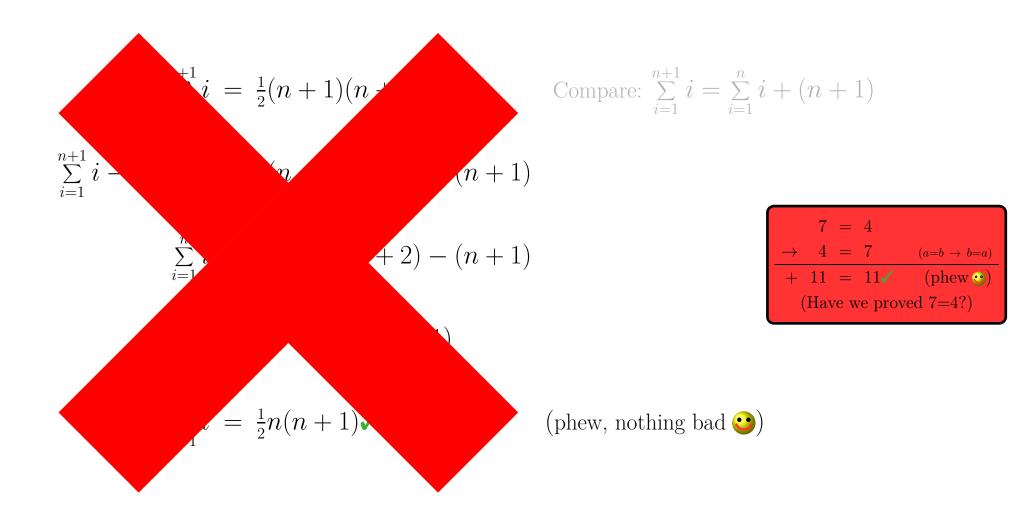
$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$
 [key step]
$$= \frac{1}{2} n(n+1) + (n+1)$$
 [induction hypothesis $P(n)$]
$$= \frac{1}{2} (n+1)(n+2)$$
 [algebra]
$$= \frac{1}{2} (n+1)(n+1).$$

This is exactly what was to be shown. So, P(n+1) is T.

3: By induction, P(n) is T for all $n \ge 1$.

Creator: Malik Magdon-Ismail

VERY BAD! Induction Step



To start, you can **NEVER** assert (as though its true) what you are trying to prove.

Sum of Integer Squares

$$S(n) = 1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = ?$$

Replace Gauss with TINKERING: method of differences.

	n	1	2	3	4	5	6	7
	S(n)	1	5	14	30	55	91	140
1st difference	S'(n)		4	9	16	25	36	49
2nd difference	S''(n)			5	7	9	11	13
3rd difference	S'''(n)				2	2	2	2

3'rd difference constant is like 3'rd derivative constant. So guess:

$$S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3.$$

$$a_{0} + a_{1} + a_{2} + a_{3} = 1$$

$$a_{0} + 2a_{1} + 4a_{2} + 8a_{3} = 5$$

$$a_{0} + 3a_{1} + 9a_{2} + 27a_{3} = 14$$

$$a_{0} + 4a_{1} + 16a_{2} + 64a_{3} = 30$$

$$a_{0} = 0, \ a_{1} = \frac{1}{6}, \ a_{2} = \frac{1}{2}, \ a_{3} = \frac{1}{3}$$

Proof:
$$S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

Proof. (By induction.)
$$P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$$
.

- [Base case] P(1), claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.
- [Induction step] Show $P(n) \to P(n+1)$ for all $n \ge 1$. Direct proof. Assume (induction hypothesis) P(n) is $T: \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$. Show P(n+1) is T: $\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$.

$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2$$
 [key step]
$$= \frac{1}{6} n(n+1)(2n+1) + (n+1)^2$$
 [induction hypothesis $P(n)$]
$$= \frac{1}{6} (n+1)(n+2)(2n+3)$$
 [algebra]

This is exactly what was to be shown. So, P(n+1) is T.

3: By induction, P(n) is T for all $n \ge 1$.

Induction Gone Wrong

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow P(6) \rightarrow P(7) \rightarrow \cdots$$

No Base Case.

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots$$

False: $P(n): n \le n+1$ for all $n \ge 1$.

$$n \le n+1 \to n+1 \le n+2$$
 therefore $P(n) \to P(n+1)$.

Every link is proved, but without the base case, you have *nothing*.

Broken Chain.

$$P(1)$$
 $P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots$

False: P(n): "all balls in any set of n balls are the same color."

Induction step. Suppose any set of n balls have the same color. Consider any set of n+1 balls $b_1, b_2, \ldots, b_n, b_{n+1}$. So, b_1, b_2, \ldots, b_n have the same color and $b_2, b_3, \ldots, b_{n+1}$ have the same color. Thus $b_1, b_2, b_3, \ldots, b_{n+1}$ have the same color.

$$P(n) \rightarrow P(n+1)$$
?

A single broken link kills the entire proof.

Induction: Proving "For All ...": 15/18

Well Ordering Principle

Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let P(1) and $P(n) \to P(n+1)$ be T.

Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering).

$$\boxed{P(1)} \rightarrow \boxed{P(2)} \rightarrow \boxed{P(3)} \rightarrow \boxed{P(4)} \rightarrow \cdots \rightarrow \boxed{P(n_* - 1)} \rightarrow P(n_*) \rightarrow \cdots$$

Now how can $P(n_* - 1) \rightarrow P(n_*)$ be T?

Any induction proof can also be done using well-ordering.

Example Well-Ordering Proof: $n < 2^n$ for n > 1

Proof. [Induction] $P(n): n < 2^n$.

Base case. P(1) is T because $1 < 2^1$.

Induction. Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n+1 < 2^{n+1}$.

$$n+1 \le n+n = 2n \le 2 \times 2^n = 2^{n+1}$$
.

Therefore P(n+1) is T and, by induction, P(n) is T for $n \geq 1$.

Proof. [Well-ordering] Proof by **contradiction**.

Assume that there is an $n \geq 1$ for which $n \geq 2^n$.

Let n_* be the **minimum** such **counter-example**, $n_* \geq 2^{n_*}$.

← well ordering

Since $1 < 2^1$, $n_* \ge 2$. Since $n_* \ge 2$, $\frac{1}{2}n_* \ge 1$ and so,

$$n_* - 1 \ge n_* - \frac{1}{2}n_* = \frac{1}{2}n_* \ge \frac{1}{2} \times 2^{n_*} = 2^{n_* - 1}.$$

So, $n_* - 1$ is a *smaller* counter example. **FISHY!**

The **method of minimum counter-example** is very powerful.

TINKER

PRACTICE

Challenge. A circle has 2n distinct points, n are red and n are blue. Prove that one can start at a blue point and move clockwise always having passed as many blue points as red.

Practice. All exercises and pop-quizzes in chapter 5.

Problems in chapter 5. Strengthen.