Recitation 4 solutions - CSCI 2200 (FOCS)

Problem I

I. Prove the following using basic induction:

 $\forall n \geq 2 \ (n \in \mathbb{N})$, a $2^n \times 2^n$ square grid with a 2×2 corner removed can be precisely tiled using L-shaped tiles of size 3. ("Precisely tiled" means covering the full area with no tiles overlapping or hanging off the edge of the board. Tiles may be rotated or flipped. A sample L-tile, board with n=2, and board with n=3 are show.)

We will prove this by induction.

Base case: n=2

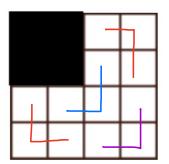
- (1) For n=2, we have a 4×4 grid with a 2×2 corner removed
- (2) This leaves 12 squares to be covered.
- (3) As shown in the example diagram A, this can be covered exactly by 4 L-shaped tiles

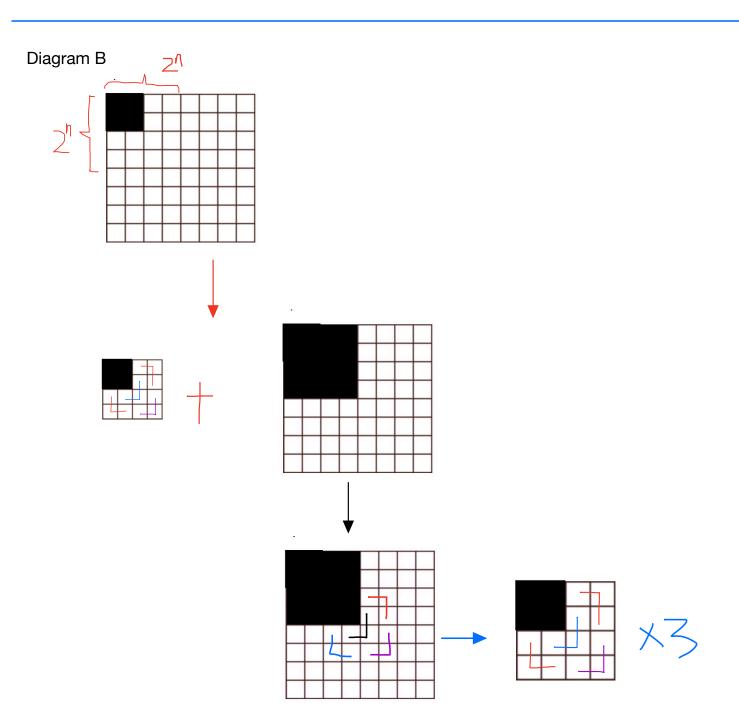
Inductive step: Assume that for some $k \ge 2$, a $2^k \times 2^k$ grid with a 2×2 corner removed can be tiled with L-shaped pieces. We will prove this holds for n = k + 1. Refer to example diagram B.

- (1) For n = k + 1, we have a $2^{k+1} \times 2^{k+1}$ grid with a 2×2 corner removed
- (2) Divide this grid into four quadrants, each of size $2^k \times 2^k$
- (3) The 2×2 removed corner lies entirely within one quadrant
- (4) For the quadrant containing the removed corner:
 - By our inductive hypothesis, this can be tiled with L-shaped pieces
- (5) Where the other three quadrants meet, place one L-shaped tile to connect them
- (6) The remaining areas in each of these three quadrants are now $2^k \times 2^k$ grids with 2×2 corners removed
- (7) By our inductive hypothesis, each of these can be tiled with L-shaped pieces

Since we've shown both the base case and inductive step, we have proved by induction that a $2^n \times 2^n$ square grid with a 2×2 corner removed can be precisely tiled using L-shaped tiles for all $n \ge 2$.

Diagram A





Problem II and Problem V

II. Prove using Leaping Induction: for all $n \in \mathbb{N}_0$, the expression $n^2 + n + 1$ is not divisible by 5.

Using step size of 5:

Base Cases:

$$n = 0$$
, $0^2 + 0 + 1 = 1$, not divisible by 5
 $n = 1$, $1^2 + 1 + 1 = 3$, not divisible by 5
 $n = 2$, $2^2 + 2 + 1 = 7$, not divisible by 5
 $n = 3$, $3^2 + 3 + 1 = 13$, not divisible by 5
 $n = 4$, $4^2 + 4 + 1 = 21$, not divisible by 5

Inductive Step:

Assume that for $n = k \in \mathbb{N}_0$, the expression $k^2 + k + 1$ is not divisible by 5. for n = k + 5:

$$(k+5)^{2} + (k+5) + 1$$

$$= k^{2} + 10k + 25 + k + 5 + 1$$

$$= (k^{2} + k + 1) + 10k + 25 + 5$$

$$= (k^{2} + k + 1) + 5(2k + 5 + 1)$$

Since $k^2 + k + 1$ is not divisible by 5, $= (k^2 + k + 1) + 5(2k + 5 + 1)$ is also not divisible by 5.

This proves that if it holds for n = k, it holds for n = k + 5. Thus by leap induction, we proved that for all $n \in \mathbb{N}_0$, the expression $n^2 + n + 1$ is not divisible by 5.

V. Recursive Definition of $\{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, ...\}$:

$$f(n) = \begin{cases} 1 & n = 1 \\ 2 & n = 2 \\ 3 & n = 3 \\ 4 & n = 4 \\ f(n-4) + 5 & n > 4 \end{cases}$$

(III) Claim In any directed graph in which every pair of vertices has a single one-way link between them, there is some route that touches all vertices. Prove this claim using strong induction.

Proof We will prove that for all $n \in \mathbb{N}$ that a directed graph with n vertices in which every pair of vertices has a single one-way link between them, there is some path that touches all vertices.

[Base Case] A graph with one vertex clearly has a path that touches all the vertices (just the vertex itself).

[Induction Step] Suppose that for all $1 \le n \le k$, any directed graph with n vertices in which every pair of vertices has a single one-way link between them has path that touches all vertices. We will show that a directed graph with k+1 vertices in which every pair of vertices has a single one-way link between them has a path that touches all vertices.

Let G be a directed graph that satisfies the critera given above where |V| = k+1 and let v be an arbitrary vertex of G. By the construction of G, we know that for every other vertex u in G, there exists exactly one directed edge that connects u and v. Therefore, we can partition the set of vertices excluding v into two sets $V_{\rm in}$ and $V_{\rm out}$ where $V_{\rm in}$ contains all vertices u such that the edge (u,v) is in G and $V_{\rm out}$ contains all vertices u such that the edge (v,u) is in G.

Let $G_{\rm in}$ and $G_{\rm out}$ be the subgraphs of G induced by $V_{\rm in}$ and $V_{\rm out}$ respectively.

By construction of G, both of these subgraphs must both satisfy the property that every pair of vertices has a single one-way link between them.

Since $|V| = |V_{\rm in}| + |V_{\rm out}| + 1$, it follows that if one of these partitions is non-empty, then the corresponding induced subgraph will have between 1 and k vertices which means that by our induction hypothesis that there exists a path that touches all vertices.

In addition, since G must have at least 2 vertices, at least one of these graphs is guaranteed to be non-empty. Therefore we can consider three cases:

- (1) $V_{\text{in}} = \emptyset$ and $V_{\text{out}} \neq \emptyset$
- (2) $V_{\rm in} \neq \emptyset$ and $V_{\rm out} = \emptyset$
- (3) $V_{\rm in} \neq \emptyset$ and $V_{\rm out} \neq \emptyset$

In case (1), we know that for every vertex u not equal to v, there exists an edge (v, u). Since G_{out} is non-empty, it has a path that touches all vertices and thus there exists a path in G starting at v that connects to the start of the path in G_{out} .

In case (2) we know that for every vertex u not equal to v, there exists an edge (u, v). Since G_{in} is non-empty, it has a path that touches all vertices and thus there exists a path in G which is precisely the path in G_{in} with v appended.

In case (3), we know that both $G_{\rm in}$ and $G_{\rm out}$ are both non-empty, both graphs must have paths $P_{\rm in}$ and $P_{\rm out}$ such that these paths touch all vertices in their respective graphs. Therefore we can construct the path $P_{\rm in} \to v \to P_{\rm out}$ which will touch all vertices in G.

Therefore, we have shown that if any directed graph with n vertices in which every pair of vertices has a single one-way link between them has path that touches all vertices for all $1 \le n \le k$ then a graph with the same construction with k+1 vertices has a path that touches all vertices.

Thus we have proven our claim by strong induction.

IV.

$$T_0 = 2$$
; $T_n = T_{n-1} + 3n$ for $n \ge 1$

Create a table to find out the difference:

#	0	1	2	3	4
0th	2	5	11	20	32
1st	-	3	6	9	12

for each n, 3n is added to final value. So, we can set up summation rule for 3,

$$\sum_{i=0}^{n} 3n = 3 \times \sum_{i=0}^{n} n = 3 \times \frac{n(n+1)}{2}$$

This will make the final values:

#	0	1	2	3	4
-	0	3	9	18	30

So simply add 2 at the end, so the final formular will be:

$$T_n = \frac{3n(n+1)}{2} + 2$$

$$T_0 = 3; T_n = 2 \times T_{n-1} + n \text{ for } n \ge 1$$

Similar approach:

#	0	1	2	3	4	5	6
0th	3	7	16	35	74	153	312
1st	-	4	9	19	39	79	159
2nd	-	-	5	10	20	40	80

From here, we can find out that for each n, the value grows exponentially, or, by $5 \times 2^{n-2}$ at 2nd order difference row.

Then, to calculate 1st order row...

$$\sum_{i=0}^{n-2} 5 \times 2^i = 5 \times \sum_{i=0}^{n-2} 2^i = 5 \times (2^{n-1} - 1)$$

...and +4 as a constant.

Here, since we conclude that for every n, $5(2^{n-1}-1)+4$ is added to the final value, we can set up:

$$\sum_{i=0}^{n} 5(2^{i-1} - 1) + 4 = 4n + 5 \times \left(\sum_{i=0}^{n} 2^{i-1} - 1\right)$$
$$= 4n - 5n + 5 \times \sum_{i=0}^{n} 2^{i-1} = 4n - 5n + 5 \times (2^{n} - 1) = 5(2^{n} - 1) - n$$

The final formula makes table:

...so don't forget to add constant 3.

$$T_n = 5(2^n - 1) - n + 3$$
, or, $= 5 \times 2^n - n - 2$

- (VI) What is contained in the following recursively defined set S?
 - (1) $3, 4 \in \mathcal{S}$
 - (2) $x, y \in \mathcal{S} \Rightarrow x + y \in \mathcal{S}$

Assuming minimality, we know that 3 and 4 are both in S. We can clearly generate the following values using our constructor rule:

$$3+3=6 \in \mathcal{S}, \quad 3+4=7 \in \mathcal{S}, \quad 4+4=8 \in \mathcal{S}$$

Therefore, since we have three consecutive values in S, we can generate all natural numbers greater than or equal to 6. A good guess for what our set S should be is $\mathbb{N} \setminus \{1, 2, 5\}$ which is all the natural numbers excluding 1, 2, and 5. Here is a proof (not required for this specific problem) that these two sets are equal.

Claim $S = \mathbb{N} \setminus \{1, 2, 5\}.$

Proof To prove that these sets are equal, we must show that $S \subseteq \mathbb{N} \setminus \{1, 2, 5\}$ and that $\mathbb{N} \setminus \{1, 2, 5\} \subseteq S$.

We will first show that $S \subseteq \mathbb{N} \setminus \{1, 2, 5\}$ by showing that $S \subseteq \mathbb{N}$ and that $\{1, 2, 5\} \cap S = \emptyset$. To show that $S \subseteq \mathbb{N}$, we will use structural induction using the claim if $x \in S$, $x \in \mathbb{N}$.

[Base Case] It is clear that both $3, 4 \in \mathbb{N}$.

[Induction Step] Suppose that for some $x, y \in \mathcal{S}$ that $x, y \in \mathbb{N}$. Since \mathbb{N} is closed under addition, we know that $x + y \in \mathbb{N}$.

Therefore, $S \subseteq \mathbb{N}$ by structural induction. We will now show that $S \cap \{1, 2, 5\} = \emptyset$ by contradiction.

Suppose for the sake of contradiction that $S \cap \{1, 2, 5\} \neq \emptyset$. Therefore, there exists some $n \in \{1, 2, 5\}$ such that $n \in S$. Since we have already shown that $S \subseteq \mathbb{N}$, we know that n = x + y where $x, y \in \mathbb{N}$. Using this knowledge, it follows that $n \geq 2$ which means that $n \neq 1$. That then tells us that $x, y \geq 2$ which means that $x \geq 4$. Therefore we know that 3 must be the minumum element of S and thus $x \geq 6$. This however is a contradiction since we assumed that $x \in \{1, 2, 5\}$ which means that $x \leq 6$.

Therefore, we have shown that $S \cap \{1, 2, 5\} = \emptyset$ by contradiction which tells us that $S \subseteq \mathbb{N} \setminus \{1, 2, 5\}$.

Next, we will show that $\mathbb{N} \setminus \{1,2,5\} \subseteq \mathcal{S}$. Let $n \in \mathbb{N} \setminus \{1,2,5\}$ We consider two cases: $n \in \{3,4\}$ and $n \geq 6$. If $n \in \{3,4\}$ then it is clear by our basis that $n \in \mathcal{S}$. Otherwise, if $n \geq 6$, we will show that $n \in \mathcal{S}$ by 3-leaping induction.

[Base Cases] We will use three base cases of 6, 7, 8. We can represent 6 = 3 + 3, 7 = 4 + 3, and 8 = 4 + 4 which means that by our constructor, $6, 7, 8 \in \mathcal{S}$.

[Induction Step] Suppose that for some $n \geq 6$, $n \in \mathcal{S}$. Therefore, since $3 \in \mathcal{S}$, it follows that $n + 3 \in \mathcal{S}$ by our constructor.

Therefore we have shown that if $n \geq 6$ then $n \in \mathcal{S}$ by 3-leaping induction. This means that $\mathbb{N} \setminus \{1, 2, 5\} \subseteq \mathcal{S}$.

Since we have shown that $S \subseteq \mathbb{N} \setminus \{1, 2, 5\}$ and $\mathbb{N} \setminus \{1, 2, 5\} \subseteq S$, we have proven our claim that $S = \mathbb{N} \setminus \{1, 2, 5\}$.