l.

a)							
р	q	r	q∨r	p ∧ (q ∨ r)	p∧q	p∧r	$(p \land q) \lor (p \land r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F
b)							

D)					
р	q	r	p∧q	(p ∧ q) ∨ r	¬ ((p ∧ q) ∨ r)
Т	Т	Т	Т	Т	F
Т	Т	F	Т	Т	F
Т	F	Т	F	Т	F
Т	F	F	F	F	Т
F	Т	Т	F	Т	F
F	Т	F	F	F	Т
F	F	Т	F	Т	F
F	F	F	F	F	Т

¬р	¬ q	¬ r	¬р∧¬r	¬q∧¬r	(¬p∧¬r) ∨ (¬q∧¬r)
F	F	F	F	F	F
F	F	Т	F	F	F
F	Т	F	F	F	F
F	Т	Т	F	Т	Т
Т	F	F	F	F	F
Т	F	Т	Т	F	Т
Т	Т	F	F	F	F
Т	Т	Т	Т	Т	T

II. Predicate Logic Problems

You are given the following predicates defined on the domain of "everyone on the RPI campus":

S(x) = "x is a student"; W(x) = "x is wise"; F(x,y) = "x is a friend of y". Use these predicates to formalize the following English sentences in predicate logic.

(a) Puckman is a student. # Note: Just like Python, you may use a literal as function input.

S(Puckman)

(b) No students are wise.

$$\forall x (S(x) \to \neg W(x))$$

or equivalently:

$$\neg \exists x (S(x) \land W(x))$$

(c) All wise students are friends with Puckman.

$$\forall x((W(x) \land S(x)) \rightarrow F(x, \text{Puckman}))$$

(d) There is exactly one student who is a friend of Dan's. # Note: $x \neq y$ is a proposition you may find useful here.

$$\exists x (S(x) \land F(x, \mathrm{Dan}) \land \forall y ((y \neq x \to \neg (S(y) \land F(y, \mathrm{Dan})))))$$

Same thing as

$$\exists x (S(x) \land F(x, \mathrm{Dan}) \land \forall y ((S(y) \land F(y, \mathrm{Dan})) \to x = y))$$

- a) m \wedge f \rightarrow A f == T / uncertain
- b) m $V f \rightarrow A$ f == T / yes
- c) m \wedge f \rightarrow A A == T / yes
- d) m $\forall f \rightarrow A$ A == T / uncertain
- e) m \wedge f \rightarrow A A == F / uncertain
- f) m \forall f \rightarrow A A == F / no

IV. Give direct proofs of the following statements:

(a) $(x \in \mathbb{Q} \land y \in \mathbb{Q}) \implies xy \in \mathbb{Q}$.

Proof. Let x and y be rational numbers. Then, by definition of rational numbers, there exist integers $a,b,c,d\in\mathbb{Z}$ with $b\neq 0$ and $d\neq 0$ such that

$$x = \frac{a}{b}, \quad y = \frac{c}{d}.$$

Their product is

$$xy = \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

Since ac and bd are integers and $bd \neq 0$, it follows that $\frac{ac}{bd}$ is a rational number. Hence xy is rational.

Therefore, whenever $x, y \in \mathbb{Q}$, their product xy is also in \mathbb{Q} .

(b) $n \in \mathbb{N} \implies n^2 + n$ is even.

Proof. Let n be a natural number. We consider two cases:

Case 1: n is even. Then n=2k for some integer $k \in \mathbb{Z}$. Hence

$$n^2 + n = (2k)^2 + 2k = 4k^2 + 2k = 2(2k^2 + k),$$

which is an even integer.

Case 2: n is odd. Then n = 2k + 1 for some integer $k \in \mathbb{N}_0$. Hence

$$n^2 + n = (2k+1)^2 + (2k+1) = 4k^2 + 4k + 1 + 2k + 1 = 4k^2 + 6k + 2 = 2(2k^2 + 3k + 1),$$

which is an even integer.

In both cases, $n^2 + n$ is even. Therefore, for every natural number n, the sum $n^2 + n$ is even.

V. Prove by Contraposition

Prove the following by contraposition:

(a) If x is irrational, then \sqrt{x} is irrational.

Proof by contraposition: We will prove that if \sqrt{x} is rational, then x is rational.

- Assume \sqrt{x} is rational.
- Then $\sqrt{x} = \frac{a}{b}$ for some integers a and b where $b \neq 0$.
- Therefore $x = (\sqrt{x})^2 = (\frac{a}{b})^2 = \frac{a^2}{b^2}$.
- Squares of integers are integers.
- Since a^2 and b^2 are integers and $b^2 \neq 0$, this shows that x is rational.
- Thus we have proven that if \sqrt{x} is rational, then x is rational.
- By contraposition, this proves that if x is irrational, then \sqrt{x} is irrational.
- (b) $\forall m, n, d \in \mathbb{N}$, if mn is not divisible by d, then neither m nor n is divisible by d.

Proof by contraposition: We will prove that if either m or n is divisible by d, then mn is divisible by d.

- Assume either m or n is divisible by d.
- Case 1: If m is divisible by d, then m = kd for some $k \in \mathbb{N}$.
 - Then mn = (kd)n = d(kn)
 - Since k and n are natural numbers, their product kn is also a natural number
 - Therefore mn = d(kn) where $kn \in \mathbb{N}$, showing mn is divisible by d
- Case 2: If n is divisible by d, then n = kd for some $k \in \mathbb{N}$.
 - Then mn = m(kd) = d(mk)
 - Since m and k are natural numbers, their product mk is also a natural number
 - Therefore mn = d(mk) where $mk \in \mathbb{N}$, showing mn is divisible by d
- In both cases, we have shown that mn is divisible by d.
- Thus we have proven that if either m or n is divisible by d, then mn is divisible by d.
- By contraposition, this proves that if mn is not divisible by d, then neither m nor n is divisible by d.

CSCI 2200 Foundations of Computer Science

Recitation 2 Solutions

- (VI) Prove the following by contradiction:
- (a) There is no smallest positive rational number.

Suppose there exists a smallest positive rational number $q^* = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and b > 0. Notice that since $q^* > 0$, we have $q^* \cdot \frac{1}{2} < q^*$.

Substituting $q^* = \frac{a}{b}$, we find that

$$\frac{q^*}{2} = \frac{a}{2b}$$

which is rational since $a, 2b \in \mathbb{Z}$ and $2b \neq 0$.

Thus, $\frac{q^*}{2}$ is a positive rational number smaller than q^* , contradicting the assumption that q^* is the smallest positive rational number.

Therefore we have shown that there is no smallest rational number by contradiction.

(b) $\log_2 9$ is irrational.

Suppose that $\log_2 9$ rational. Then, there exist $a,b\in\mathbb{Z}$ with b>0 such that

$$\log_2 9 = \frac{a}{b}$$

Applying the definition of logarithms, we have

$$2^{a/b} = 9$$

Raising both sides to the power of b, we obtain

$$2^a = 9^b$$

However, 2^a is an even number, while 9^b is an odd number. Since an even number cannot equal an odd number, this leads to a contradiction.

Therefore we have shown that $\log_2 9$ is irrational by contradiction.