WEEKLY PARTICIPATION 1: CONDITIONAL INDEPENDENCE

Often we can have a high number of potential features to be used in predicting our target \mathbf{y} , e.g. $\mathbf{x} \in \mathbb{R}^{1000}$, and a large number of these features may not be relevant to the prediction of the target.

- (a) Let S be indices of some subset of the features, and \mathbf{x}_S denote the corresponding random vector. Use the notion of independence to explain when the features \mathbf{x}_S are irrelevant to predicting \mathbf{y} .
- (b) More subtly, if we have a good subset of predictors \mathbf{x}_G already, then we may say that a candidate set of features \mathbf{x}_S doesn't add any additional value on top of \mathbf{x}_G in predicting \mathbf{y} . Use the notion of conditional independence to explain when this happens.

1