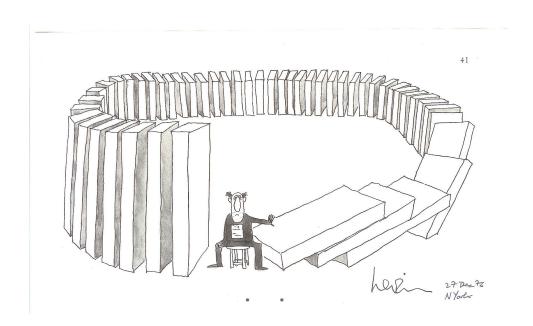
Foundations of Computer Science Lecture 6

Strong Induction

Strengthening the Induction Hypothesis Strong Induction Many Flavors of Induction



Last Time

- Proving "for all":
 - ▶ $P(n): 4^n 1$ is divisible by 3.
 - $P(n): \sum_{i=1}^{n} i = \frac{1}{2}n(n+1).$ $\forall n : P(n)$?
 - $P(n): \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1).$ $\forall n : P(n)$?
- Induction.
- Induction and Well-Ordering.

 $\forall n : P(n)$?

Today: Twists on Induction

- Solving Harder Problems with Induction
 - $\bullet \ \Sigma_{i=1}^n \frac{1}{\sqrt{i}} \le 2\sqrt{n}$
- 2 Strengthening the Induction Hypothesis
 - $n^2 < 2^n$
 - *L*-tiling.
- Many Flavors of Induction
 - Leaping Induction
 - Postage; $n^3 < 2^n$
 - Strong Induction
 - Fundamental Theorem of Arithmetic
 - Games of Strategy

Proof. $P(n): \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$.

1: [Base case] P(1) claims that $1 \le 2 \times \sqrt{1}$, which is clearly T.

Proof.
$$P(n): \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$$
.

- 1: [Base case] P(1) claims that $1 \le 2 \times \sqrt{1}$, which is clearly T.
- 2: [Induction step] Show $P(n) \to P(n+1)$ for all $n \ge 1$ (direct proof)

Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$.

Show P(n+1) is T: $\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \le 2\sqrt{n+1}$.

Proof.
$$P(n): \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$$
.

- 1: [Base case] P(1) claims that $1 \le 2 \times \sqrt{1}$, which is clearly T.
- 2: [Induction step] Show $P(n) \to P(n+1)$ for all $n \ge 1$ (direct proof) Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$.

Show
$$P(n+1)$$
 is T: $\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \le 2\sqrt{n+1}$.

$$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}}$$

Proof.
$$P(n): \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$$
.

- 1: [Base case] P(1) claims that $1 \le 2 \times \sqrt{1}$, which is clearly T.
- 2: [Induction step] Show $P(n) \to P(n+1)$ for all $n \ge 1$ (direct proof) Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$.

Show P(n+1) is T: $\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \le 2\sqrt{n+1}$.

$$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}}$$

$$\stackrel{\text{IH}}{\leq} 2\sqrt{n} + \frac{1}{\sqrt{n+1}}$$

Proof.
$$P(n): \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$$
.

- 1: [Base case] P(1) claims that $1 \le 2 \times \sqrt{1}$, which is clearly T.
- 2: [Induction step] Show $P(n) \to P(n+1)$ for all $n \ge 1$ (direct proof) Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$.

Show P(n+1) is T: $\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \le 2\sqrt{n+1}$.

$$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}}$$

$$\stackrel{\text{IH}}{\leq} 2\sqrt{n} + \frac{1}{\sqrt{n+1}}$$

Lemma. $2\sqrt{n}+1/\sqrt{n+1} < 2\sqrt{n+1}$ *Proof.* By contradiction.

$$2\sqrt{n} + 1/\sqrt{n+1} > 2\sqrt{n+1}$$

$$\rightarrow 2\sqrt{n(n+1)} + 1 > 2(n+1)$$

$$\rightarrow 4n(n+1) > (2n+1)^2$$

$$\rightarrow 2\sqrt{n(n+1)} + 1 > 2(n+1)$$

$$\rightarrow 4n(n+1) > (2n+1)^{\frac{1}{2}}$$

$$\rightarrow 0 > 1$$
 FISHY!

Proof.
$$P(n): \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$$
.

- 1: [Base case] P(1) claims that $1 \le 2 \times \sqrt{1}$, which is clearly T.
- 2: [Induction step] Show $P(n) \to P(n+1)$ for all $n \ge 1$ (direct proof) Assume (induction hypothesis) P(n) is T: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$.

Show P(n+1) is T: $\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \le 2\sqrt{n+1}$.

$$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}}$$

$$\stackrel{\text{IH}}{\leq} 2\sqrt{n} + \frac{1}{\sqrt{n+1}}$$

$$\stackrel{\text{(lemma)}}{\leq} 2\sqrt{n+1}$$

So,
$$P(n+1)$$
 is T.

3: By induction, P(n) is $\forall n \geq 1$.

Lemma. $2\sqrt{n}+1/\sqrt{n+1} < 2\sqrt{n+1}$ *Proof.* By contradiction.

$$2\sqrt{n+1/\sqrt{n+1}} > 2\sqrt{n+1}$$

$$\rightarrow 4n(n+1) > (2n+1)^2$$

$$\rightarrow 0 > 1$$
 FISHY!

$$n^2 \le 2^n$$
 for $n \ge 4$.

$$n^2 \le 2^n \qquad \text{for } n \ge 4.$$

Induction Step. Must use $n^2 \le 2^n$ to show $(n+1)^2 \le 2^{n+1}$.

$$(n+1)^2 = n^2 + 2n + 1$$

$$n^2 \le 2^n$$
 for $n \ge 4$.

Induction Step. Must use $n^2 \le 2^n$ to show $(n+1)^2 \le 2^{n+1}$.

$$(n+1)^2 = n^2 + 2n + 1 \le 2^n + 2n + 1$$

$$n^2 \le 2^n$$
 for $n \ge 4$.

Induction Step. Must use $n^2 \le 2^n$ to show $(n+1)^2 \le 2^{n+1}$.

$$(n+1)^2 = n^2 + 2n + 1 \le 2^n + \frac{2n}{n} + 1 \le 2^n + 2^n = 2^{n+1}$$

What to do with the 2n + 1?

Would be fine if $2n + 1 \le 2^n$.

$$n^2 \le 2^n$$
 for $n \ge 4$.

Induction Step. Must use $n^2 \le 2^n$ to show $(n+1)^2 \le 2^{n+1}$.

$$(n+1)^2 = n^2 + 2n + 1 \le 2^n + \frac{2n}{n} + 1 \le 2^n + 2^n = 2^{n+1}$$

What to do with the 2n + 1?

Would be fine if $2n + 1 \le 2^n$.

With induction, it can be easier to prove a stronger claim.

$$Q(n):(i) \ n^2 \le 2^n$$
 AND $(ii) \ 2n+1 \le 2^n$.

$$\overline{|Q(4)|} \to Q(5) \to Q(6) \to Q(7) \to Q(8) \to Q(9) \to \cdots$$

$$Q(n): (i) \ n^2 \le 2^n \qquad \text{AND} \qquad (ii) \ 2n+1 \le 2^n.$$

$$\boxed{Q(4)} \to Q(5) \to Q(6) \to Q(7) \to Q(8) \to Q(9) \to \cdots$$

Proof.
$$Q(n):(i) \ n^2 \le 2^n$$
 AND $(ii) \ 2n+1 \le 2^n$.

1: [Base case]
$$Q(4)$$
 claims (i) $4^2 \le 2^4$ AND (ii) $2 \times 4 + 1 \le 2^4$.

Both clearly T.

$$Q(n): (i) \ n^2 \le 2^n \quad \text{AND} \quad (ii) \ 2n+1 \le 2^n.$$

$$\boxed{Q(4)} \to Q(5) \to Q(6) \to Q(7) \to Q(8) \to Q(9) \to \cdots$$

Proof.
$$Q(n): (i) \ n^2 \le 2^n$$
 AND $(ii) \ 2n + 1 \le 2^n$.

1: [Base case] Q(4) claims (i) $4^2 \le 2^4$ AND (ii) $2 \times 4 + 1 \le 2^4$.

- Both clearly T.
- 2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 4$ (direct proof).

$$Q(n): (i) \ n^2 \le 2^n \quad \text{AND} \quad (ii) \ 2n+1 \le 2^n.$$

$$\boxed{Q(4)} \to Q(5) \to Q(6) \to Q(7) \to Q(8) \to Q(9) \to \cdots$$

Proof.
$$Q(n):(i) \ n^2 \le 2^n$$
 AND $(ii) \ 2n+1 \le 2^n$.

1: [Base case] Q(4) claims (i) $4^2 \le 2^4$ AND (ii) $2 \times 4 + 1 \le 2^4$.

Both clearly T.

2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 4$ (direct proof).

Assume (induction hypothesis) Q(n) is T: (i) $n^2 \le 2^n$ AND (ii) $2n + 1 \le 2^n$.

Show Q(n+1) is T: (i) $(n+1)^2 \le 2^{n+1}$ AND (ii) $2(n+1) + 1 \le 2^{n+1}$.

$$Q(n): (i) \ n^2 \le 2^n \quad \text{AND} \quad (ii) \ 2n+1 \le 2^n.$$

$$\boxed{Q(4)} \to Q(5) \to Q(6) \to Q(7) \to Q(8) \to Q(9) \to \cdots$$

Proof. $Q(n): (i) \ n^2 \le 2^n$ AND $(ii) \ 2n + 1 \le 2^n$.

- 1: [Base case] Q(4) claims (i) $4^2 \le 2^4$ AND (ii) $2 \times 4 + 1 \le 2^4$.
 - Both clearly T.
- 2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 4$ (direct proof).

Assume (induction hypothesis) Q(n) is T: (i) $n^2 \le 2^n$ AND (ii) $2n + 1 \le 2^n$.

Show Q(n+1) is T: (i) $(n+1)^2 \le 2^{n+1}$ AND (ii) $2(n+1) + 1 \le 2^{n+1}$.

(i)
$$(n+1)^2 = n^2 + 2n + 1 \le 2^n + 2^n = 2^{n+1} \checkmark$$
 (because from the induction hypothesis $n^2 \le 2^n$ and $2n + 1 \le 2^n$)

$$Q(n): (i) \ n^2 \le 2^n$$
 AND $(ii) \ 2n+1 \le 2^n$.
 $\boxed{Q(4)} \to Q(5) \to Q(6) \to Q(7) \to Q(8) \to Q(9) \to \cdots$

Proof. $Q(n):(i) \ n^2 \le 2^n$ AND $(ii) \ 2n+1 \le 2^n$.

1: [Base case] Q(4) claims (i) $4^2 \le 2^4$ AND (ii) $2 \times 4 + 1 \le 2^4$.

- Both clearly T.
- 2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 4$ (direct proof).

Assume (induction hypothesis) Q(n) is T: (i) $n^2 \le 2^n$ AND (ii) $2n + 1 \le 2^n$.

Show Q(n+1) is T: (i) $(n+1)^2 \le 2^{n+1}$ AND (ii) $2(n+1) + 1 \le 2^{n+1}$.

- $(n+1)^2 = n^2 + 2n + 1 \le 2^n + 2^n = 2^{n+1}$ (because from the induction hypothesis $n^2 \leq 2^n$ and $2n + 1 \leq 2^n$)
- $(ii) \ 2(n+1)+1 = 2+2n+1 \le 2^n+2^n = 2^{n+1} \checkmark$ (because $2 \le 2^n$ and from the induction hypothesis $2n + 1 \le 2^n$)

$$Q(n): (i) \ n^2 \le 2^n$$
 AND $(ii) \ 2n+1 \le 2^n$.
 $\boxed{Q(4)} \to Q(5) \to Q(6) \to Q(7) \to Q(8) \to Q(9) \to \cdots$

Proof. $Q(n):(i) \ n^2 \le 2^n$ AND $(ii) \ 2n+1 \le 2^n$.

1: [Base case] Q(4) claims (i) $4^2 \le 2^4$ AND (ii) $2 \times 4 + 1 \le 2^4$.

- Both clearly T.
- 2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 4$ (direct proof).

Assume (induction hypothesis) Q(n) is T: (i) $n^2 \le 2^n$ AND (ii) $2n + 1 \le 2^n$.

Show Q(n+1) is T: (i) $(n+1)^2 \le 2^{n+1}$ AND (ii) $2(n+1) + 1 \le 2^{n+1}$.

- $(n+1)^2 = n^2 + 2n + 1 \le 2^n + 2^n = 2^{n+1}$ (because from the induction hypothesis $n^2 \leq 2^n$ and $2n + 1 \leq 2^n$)
- $(ii) \ 2(n+1)+1 = 2+2n+1 \le 2^n+2^n = 2^{n+1} \checkmark$ (because $2 \le 2^n$ and from the induction hypothesis $2n + 1 \le 2^n$)

So, Q(n+1) is T.

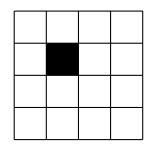
3: By induction, Q(n) is $\forall n \geq 4$.

Can you tile a $2^n \times 2^n$ patio missing a center square. You have only \blacksquare – tiles?

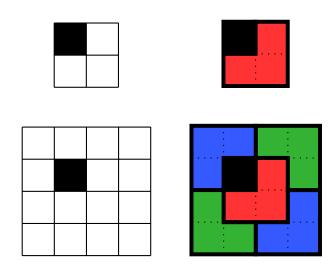
Can you tile a $2^n \times 2^n$ patio missing a center square. You have only \blacksquare – tiles?

Can you tile a $2^n \times 2^n$ patio missing a center square. You have only \blacksquare – tiles?

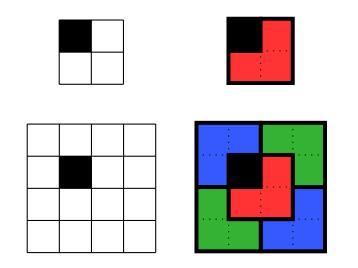
Can you tile a $2^n \times 2^n$ patio missing a center square. You have only \blacksquare – tiles?

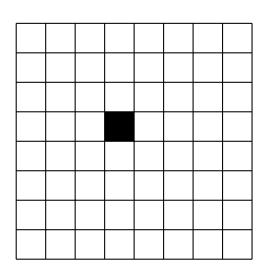


Can you tile a $2^n \times 2^n$ patio missing a center square. You have only \blacksquare – tiles?

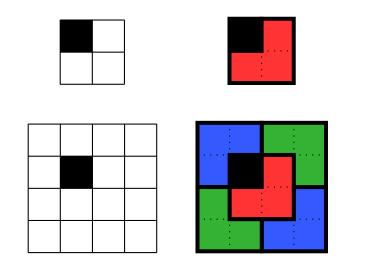


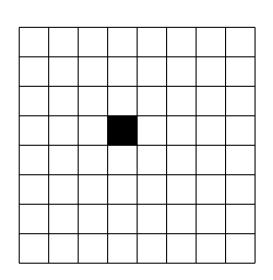
Can you tile a $2^n \times 2^n$ patio missing a center square. You have only \blacksquare – tiles?

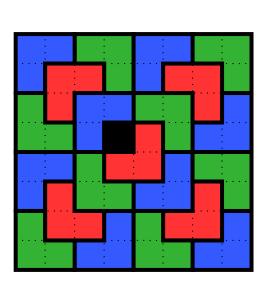




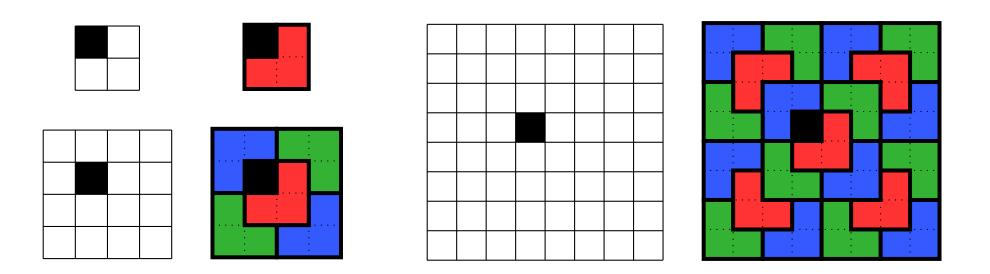
Can you tile a $2^n \times 2^n$ patio missing a center square. You have only \blacksquare – tiles?







Can you tile a $2^n \times 2^n$ patio missing a center square. You have only \blacksquare – tiles?

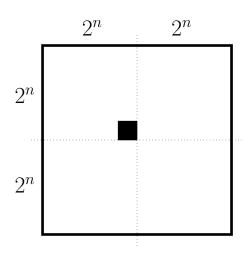


P(n): The $2^n \times 2^n$ grid minus a center-square can be L-tiled.

Suppose P(n) is T. What about P(n+1)?

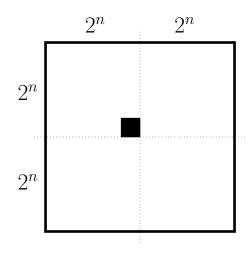
Suppose P(n) is T. What about P(n+1)?

The $2^{n+1} \times 2^{n+1}$ patio can be decomposed into four $2^n \times 2^n$ patios.

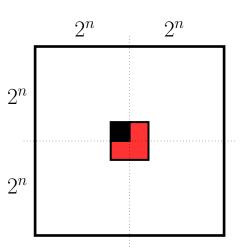


Suppose P(n) is T. What about P(n+1)?

The $2^{n+1} \times 2^{n+1}$ patio can be decomposed into four $2^n \times 2^n$ patios.

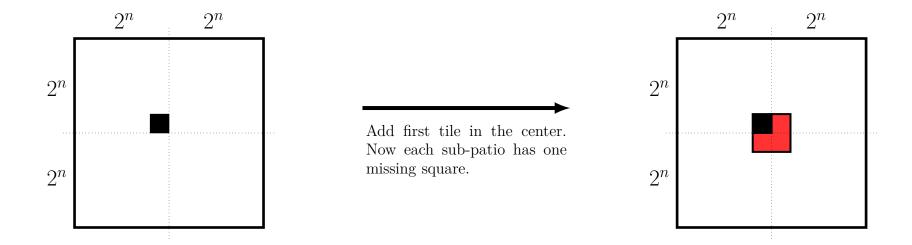


Add first tile in the center. Now each sub-patio has one missing square.



Suppose P(n) is T. What about P(n+1)?

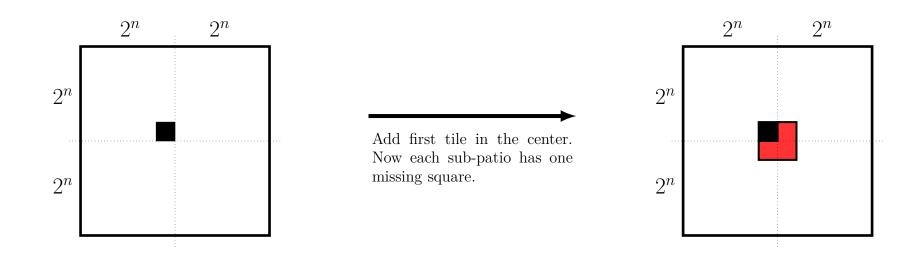
The $2^{n+1} \times 2^{n+1}$ patio can be decomposed into four $2^n \times 2^n$ patios.



Problem. Corner squares are missing. P(n) can be used only if center-square is missing.

Suppose P(n) is T. What about P(n+1)?

The $2^{n+1} \times 2^{n+1}$ patio can be decomposed into four $2^n \times 2^n$ patios.



Problem. Corner squares are missing. P(n) can be used only if center-square is missing.

Solution. Strengthen claim to also include patios missing corner-squares.

Q(n): (i) The $2^n \times 2^n$ grid missing a **center-square** can be L-tiled; AND (ii) The $2^n \times 2^n$ grid missing a **corner-square** can be L-tiled.

L-Tile Land: Induction Proof of Stronger Claim

Assume Q(n): (i) The $2^n \times 2^n$ grid missing a **center-square** can be L-tiled; AND (ii) The $2^n \times 2^n$ grid missing a **corner-square** can be L-tiled.

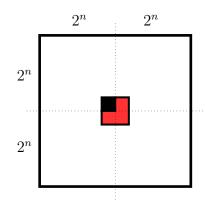
Induction step: Must prove two things for Q(n+1), namely (i) and (ii).

L-Tile Land: Induction Proof of Stronger Claim

Assume Q(n): (i) The $2^n \times 2^n$ grid missing a **center-square** can be L-tiled; AND (ii) The $2^n \times 2^n$ grid missing a **corner-square** can be L-tiled.

Induction step: Must prove two things for Q(n+1), namely (i) and (ii).

(i) Center square missing.



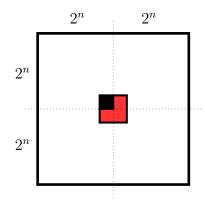
use Q(n) with corner squares.

L-Tile Land: Induction Proof of Stronger Claim

Assume Q(n): (i) The $2^n \times 2^n$ grid missing a **center-square** can be L-tiled; AND (ii) The $2^n \times 2^n$ grid missing a **corner-square** can be L-tiled.

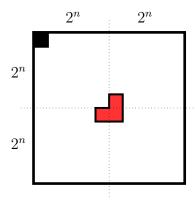
Induction step: Must prove two things for Q(n+1), namely (i) and (ii).

(i) Center square missing.



use Q(n) with corner squares.

(ii) Corner square missing.



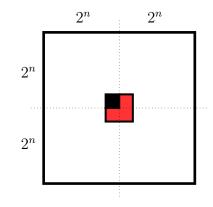
use Q(n) with corner squares.

L-Tile Land: Induction Proof of Stronger Claim

Assume Q(n): (i) The $2^n \times 2^n$ grid missing a **center-square** can be L-tiled; AND (ii) The $2^n \times 2^n$ grid missing a **corner-square** can be L-tiled.

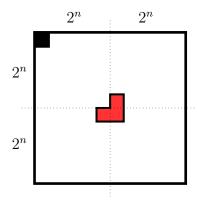
Induction step: Must prove two things for Q(n+1), namely (i) and (ii).

(i) Center square missing.



use Q(n) with corner squares.

(ii) Corner square missing.



use Q(n) with corner squares.

Your task: Add base cases and complete the formal proof.

Exercise 6.4. What if the missing square is some random square? Strengthen further.

$$P(n): n^3 < 2^n,$$
 for $n \ge 10$.

for
$$n \ge 10$$
.

(Exercise 6.2)

$$P(n): n^3 < 2^n,$$
 for $n \ge 10$.

(Exercise 6.2)

$$(n+2)^3 = n^3 + 6n^2 + 12n + 8$$

$$P(n): n^3 < 2^n,$$
 for $n \ge 10.$ (Exercise 6.2)

$$(n+2)^3 = n^3 + 6n^2 + 12n + 8$$

 $< n^3 + n \cdot n^2 + n^2 \cdot n + n^3$ $(n \ge 10 \to 6 < n; 12 < n^2; 8 < n^3)$

$$P(n): n^3 < 2^n,$$
 for $n \ge 10.$ (Exercise 6.2)

$$(n+2)^3 = n^3 + 6n^2 + 12n + 8$$

 $< n^3 + n \cdot n^2 + n^2 \cdot n + n^3$ $(n \ge 10 \to 6 < n; 12 < n^2; 8 < n^3)$
 $= 4n^3$

$$P(n): n^3 < 2^n,$$
 for $n \ge 10.$ (Exercise 6.2)

$$(n+2)^3 = n^3 + 6n^2 + 12n + 8$$

 $< n^3 + n \cdot n^2 + n^2 \cdot n + n^3$ $(n \ge 10 \to 6 < n; 12 < n^2; 8 < n^3)$
 $= 4n^3 < 4 \cdot 2^n = 2^{n+2}$ $(P(n) \text{ gives } n^3 < 2^n)$

$$P(n): n^3 < 2^n,$$
 for $n \ge 10.$ (Exercise 6.2)

$$(n+2)^3 = n^3 + 6n^2 + 12n + 8$$

 $< n^3 + n \cdot n^2 + n^2 \cdot n + n^3$ $(n \ge 10 \to 6 < n; 12 < n^2; 8 < n^3)$
 $= 4n^3 < 4 \cdot 2^n = 2^{n+2}$ $(P(n) \text{ gives } n^3 < 2^n)$

$$P(n) \rightarrow P(n+2)$$
.

$$P(n): n^3 < 2^n,$$
 for $n \ge 10.$ (Exercise 6.2)

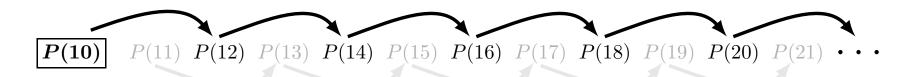
Suppose P(n) is T. Consider $P(n+2): (n+2)^3 < 2^{n+2}$?

$$(n+2)^3 = n^3 + 6n^2 + 12n + 8$$

 $< n^3 + n \cdot n^2 + n^2 \cdot n + n^3$
 $= 4n^3 < 4 \cdot 2^n = 2^{n+2}$ $(n \ge 10 \to 6 < n; 12 < n^2; 8 < n^3)$
 $(P(n) \text{ gives } n^3 < 2^n)$

$$P(n) \to P(n+2)$$
.

Base case. $P(10): 10^3 < 2^{10}$



$$P(n): n^3 < 2^n,$$
 for $n \ge 10.$ (Exercise 6.2)

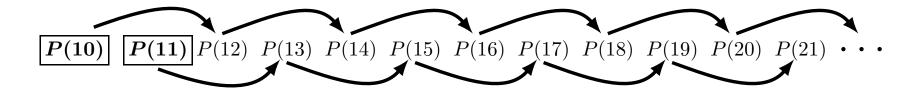
Suppose P(n) is T. Consider $P(n+2): (n+2)^3 < 2^{n+2}$?

$$(n+2)^3 = n^3 + 6n^2 + 12n + 8$$

 $< n^3 + n \cdot n^2 + n^2 \cdot n + n^3$
 $= 4n^3 < 4 \cdot 2^n = 2^{n+2}$ $(n \ge 10 \to 6 < n; 12 < n^2; 8 < n^3)$
 $(p(n) \text{ gives } n^3 < 2^n)$

$$P(n) \to P(n+2).$$

Base cases. $P(10): 10^3 < 2^{10}$ and $P(11): 11^3 < 2^{11}$



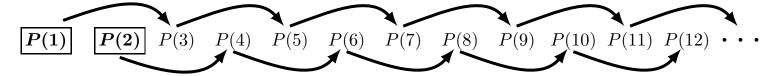
Induction. One base case.

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow \cdots$$

Induction. One base case.

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow \cdots$$

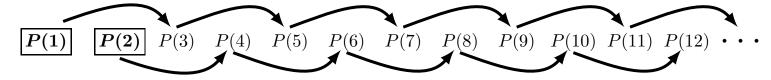
Leaping Induction. More than one base case.



Induction. One base case.

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow \cdots$$

Leaping Induction. More than one base case.



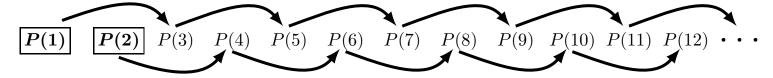
Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

3¢	4c	$5\mathfrak{e}$	6¢	7¢	8¢	9¢	10¢	11¢	12¢	• • •
3	4	_	3,3	3,4	4,4	3,3,3	3,3,4	3,4,4	4,4,4	

Induction. One base case.

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow \cdots$$

Leaping Induction. More than one base case.



Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

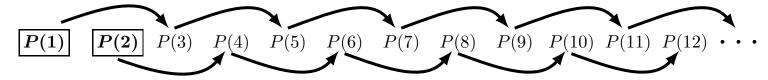
3¢	4¢	5¢	6¢	7¢	8¢	9¢	10¢	11¢	12¢	• • •
3	4	_	3,3	3,4	4,4	3,3,3	3,3,4	3,4,4	4,4,4	•••

P(n): Postage of n cents can be made using only 3¢ and 4¢ stamps.

Induction. One base case.

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow \cdots$$

Leaping Induction. More than one base case.



Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

3¢	4¢	5¢	6¢	7¢	8¢	9¢	10¢	11¢	12¢	• • •
3	4	_	3,3	3,4	4,4	3,3,3	3,3,4	3,4,4	4,4,4	•••

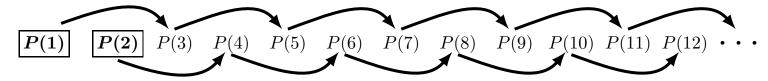
P(n): Postage of n cents can be made using only 3¢ and 4¢ stamps.

$$P(n) \to P(n+3)$$
 (add a 3¢ stamp to n)

Induction. One base case.

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow \cdots$$

Leaping Induction. More than one base case.



Example. Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

$3\mathfrak{e}$	4c	5¢	6¢	7¢	8¢	9¢	10¢	11¢	12¢	
3	4	_	3,3	3,4	4,4	3,3,3	3,3,4	3,4,4	4,4,4	• • •

P(n): Postage of n cents can be made using only 3¢ and 4¢ stamps.

$$P(n) \to P(n+3)$$
 (add a 3¢ stamp to n)

Base cases: 6¢, 7¢, 8¢.

Practice. Exercise 6.6

 $2015 = 5 \times 13 \times 31$.

$$2015 = 5 \times 13 \times 31.$$

Theorem. (The Primes $\mathcal{P} = \{2, 3, 5, 7, 11, \ldots\}$ are the atoms for numbers.)

Suppose $n \geq 2$. Then,

- n can be written as a product of factors all of which are prime.
- The representation of n as a product of primes is unique (up to reordering).

P(n): n is a product of primes.

$$2015 = 5 \times 13 \times 31.$$

Theorem. (The Primes $\mathcal{P} = \{2, 3, 5, 7, 11, \ldots\}$ are the atoms for numbers.)

Suppose $n \geq 2$. Then,

- n can be written as a product of factors all of which are prime.
- The representation of n as a product of primes is unique (up to reordering).

P(n): n is a product of primes.

What's the first thing we do?

$$2015 = 5 \times 13 \times 31.$$

Theorem. (The Primes $\mathcal{P} = \{2, 3, 5, 7, 11, \ldots\}$ are the atoms for numbers.)

Suppose $n \geq 2$. Then,

- n can be written as a product of factors all of which are prime.
- The representation of n as a product of primes is unique (up to reordering).

P(n): n is a product of primes.

What's the first thing we do? **TINKER!**

$$2016 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7.$$

$$2015 = 5 \times 13 \times 31.$$

Theorem. (The Primes $\mathcal{P} = \{2, 3, 5, 7, 11, \ldots\}$ are the atoms for numbers.)

Suppose $n \geq 2$. Then,

- n can be written as a product of factors all of which are prime.
- The representation of n as a product of primes is unique (up to reordering).

P(n): n is a product of primes.

What's the first thing we do? **TINKER!**

$$2016 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7.$$

Wow! No similarity between the factors of 2015 and those of 2016.

$$2015 = 5 \times 13 \times 31.$$

Theorem. (The Primes $\mathcal{P} = \{2, 3, 5, 7, 11, \ldots\}$ are the atoms for numbers.)

Suppose $n \geq 2$. Then,

- n can be written as a product of factors all of which are prime.
- The representation of n as a product of primes is unique (up to reordering).

P(n): n is a product of primes.

What's the first thing we do? **TINKER!**

$$2016 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7.$$

Wow! No similarity between the factors of 2015 and those of 2016.

How will P(n) help us to prove P(n+1)?

$$2015 = 5 \times 13 \times 31.$$

Theorem. (The Primes $\mathcal{P} = \{2, 3, 5, 7, 11, \ldots\}$ are the atoms for numbers.)

Suppose $n \geq 2$. Then,

- n can be written as a product of factors all of which are prime.
- The representation of n as a product of primes is unique (up to reordering).

P(n): n is a product of primes.

What's the first thing we do? **TINKER!**

$$2016 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7.$$

Wow! No similarity between the factors of 2015 and those of 2016.

How will P(n) help us to prove P(n+1)?

Do smaller values of n help with 2016? Yes!

$$2016 = 32 \times 63$$

$$P(32) \land P(63) \to P(2016)$$

(like leaping induction)

Do smaller values of n help with 2016? Yes!

$$2016 = 32 \times 63$$

 $P(32) \wedge P(63) \to P(2016)$

(like leaping induction)

Much Stronger Claim:

 $Q(n): 2, 3, \ldots, n$ are all products of primes.

Do smaller values of n help with 2016? Yes!

$$2016 = 32 \times 63$$

$$P(32) \land P(63) \to P(2016)$$

(like leaping induction)

Much Stronger Claim:

 $Q(n): 2, 3, \ldots, n$ are all products of primes.

P(n): n is a product of primes.

(Compare)

$$Q(n) = P(2) \wedge P(3) \wedge P(4) \wedge \cdots \wedge P(n).$$

Do smaller values of n help with 2016? Yes!

$$2016 = 32 \times 63$$

$$P(32) \land P(63) \to P(2016)$$

(like leaping induction)

Much Stronger Claim:

 $Q(n): 2, 3, \ldots, n$ are all products of primes.

P(n): n is a product of primes.

(Compare)

$$Q(n) = P(2) \wedge P(3) \wedge P(4) \wedge \cdots \wedge P(n).$$

Surprise! The much stronger claim is much easier to prove. Also, $Q(n) \to P(n)$.

P(n): n is a product of primes.

$$Q(n) = P(2) \land P(3) \land P(4) \land \cdots \land P(n).$$

(By Induction that Q(n) is T for $n \geq 2$.)

P(n): n is a product of primes.

$$Q(n) = P(2) \land P(3) \land P(4) \land \cdots \land P(n).$$

(By Induction that Q(n) is T for $n \geq 2$.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.

P(n): n is a product of primes.

$$Q(n) = P(2) \land P(3) \land P(4) \land \cdots \land P(n).$$

(By Induction that Q(n) is T for $n \geq 2$.)

- 1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.
- 2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 2$ (direct proof).

P(n): n is a product of primes.

$$Q(n) = P(2) \land P(3) \land P(4) \land \cdots \land P(n).$$

(By Induction that Q(n) is T for $n \geq 2$.)

- 1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.
- [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 2$ (direct proof).

Assume Q(n) is T: each of $2, 3, \ldots, n$ are a product of primes.

Show Q(n+1) is T: each of $2, 3, \ldots, n, n+1$ is a product of primes.

P(n): n is a product of primes.

$$Q(n) = P(2) \land P(3) \land P(4) \land \cdots \land P(n).$$

(By Induction that Q(n) is T for $n \geq 2$.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.

[Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 2$ (direct proof).

Assume Q(n) is T: each of $2, 3, \ldots, n$ are a product of primes.

Show Q(n+1) is T: each of $2, 3, \ldots, n, n+1$ is a product of primes.

Since we assumed Q(n), we already have that $2, 3, \ldots, n$ are products of primes.

P(n): n is a product of primes.

$$Q(n) = P(2) \wedge P(3) \wedge P(4) \wedge \cdots \wedge P(n).$$

(By Induction that Q(n) is T for $n \geq 2$.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.

2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 2$ (direct proof).

Assume Q(n) is T: each of $2, 3, \ldots, n$ are a product of primes.

Show Q(n+1) is T: each of $2, 3, \ldots, n, n+1$ is a product of primes.

Since we assumed Q(n), we already have that $2, 3, \ldots, n$ are products of primes.

To prove Q(n+1), we only need to prove n+1 is a product of primes.

P(n): n is a product of primes.

$$Q(n) = P(2) \wedge P(3) \wedge P(4) \wedge \cdots \wedge P(n).$$

(By Induction that Q(n) is T for $n \geq 2$.)

1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.

2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 2$ (direct proof).

Assume Q(n) is T: each of $2, 3, \ldots, n$ are a product of primes.

Show Q(n+1) is T: each of $2, 3, \ldots, n, n+1$ is a product of primes.

Since we assumed Q(n), we already have that $2, 3, \ldots, n$ are products of primes.

To prove Q(n+1), we only need to prove n+1 is a product of primes.

 \bullet n+1 is prime. Done (nothing to prove).

P(n): n is a product of primes.

$$Q(n) = P(2) \wedge P(3) \wedge P(4) \wedge \cdots \wedge P(n).$$

(By Induction that Q(n) is T for $n \geq 2$.)

- 1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.
- 2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 2$ (direct proof).

Assume Q(n) is T: each of $2, 3, \ldots, n$ are a product of primes.

Show Q(n+1) is T: each of $2, 3, \ldots, n, n+1$ is a product of primes.

Since we assumed Q(n), we already have that $2, 3, \ldots, n$ are products of primes.

To prove Q(n+1), we only need to prove n+1 is a product of primes.

- \bullet n+1 is prime. Done (nothing to prove).
- n+1 is not prime, $n+1=k\ell$, where $2 \le k, \ell \le n$.

P(n): n is a product of primes.

$$Q(n) = P(2) \wedge P(3) \wedge P(4) \wedge \cdots \wedge P(n).$$

(By Induction that Q(n) is T for $n \geq 2$.)

- 1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.
- 2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 2$ (direct proof).

Assume Q(n) is T: each of $2, 3, \ldots, n$ are a product of primes.

Show Q(n+1) is T: each of $2, 3, \ldots, n, n+1$ is a product of primes.

Since we assumed Q(n), we already have that $2, 3, \ldots, n$ are products of primes.

To prove Q(n+1), we only need to prove n+1 is a product of primes.

- n+1 is prime. Done (nothing to prove).
- n+1 is not prime, $n+1=k\ell$, where $2 \le k, \ell \le n$.

 $P(k) \to k$ is a product of primes.

 $P(\ell) \to \ell$ is a product of primes.

Fundamental Theorem of Arithmetic: Proof of Part (i)

P(n): n is a product of primes.

$$Q(n) = P(2) \wedge P(3) \wedge P(4) \wedge \cdots \wedge P(n).$$

Proof. (By Induction that Q(n) is T for $n \geq 2$.)

- 1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.
- 2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 2$ (direct proof).

Assume Q(n) is T: each of $2, 3, \ldots, n$ are a product of primes.

Show Q(n+1) is T: each of $2, 3, \ldots, n, n+1$ is a product of primes.

Since we assumed Q(n), we already have that $2, 3, \ldots, n$ are products of primes.

To prove Q(n+1), we only need to prove n+1 is a product of primes.

- n+1 is prime. Done (nothing to prove).
- n+1 is not prime, $n+1=k\ell$, where $2 \le k, \ell \le n$.

 $P(k) \to k$ is a product of primes.

 $P(\ell) \to \ell$ is a product of primes.

 $n+1=k\ell$ is a product of primes and Q(n+1) is T.

Fundamental Theorem of Arithmetic: Proof of Part (i)

P(n): n is a product of primes.

$$Q(n) = P(2) \wedge P(3) \wedge P(4) \wedge \cdots \wedge P(n).$$

Proof. (By Induction that Q(n) is T for $n \geq 2$.)

- 1: [Base case] Q(1) claims that 2 is a product of primes, which is clearly T.
- 2: [Induction step] Show $Q(n) \to Q(n+1)$ for $n \ge 2$ (direct proof).

Assume Q(n) is T: each of $2, 3, \ldots, n$ are a product of primes.

Show Q(n+1) is T: each of $2, 3, \ldots, n, n+1$ is a product of primes.

Since we assumed Q(n), we already have that $2, 3, \ldots, n$ are products of primes.

To prove Q(n+1), we only need to prove n+1 is a product of primes.

- n+1 is prime. Done (nothing to prove).
- n+1 is not prime, $n+1=k\ell$, where $2 \le k, \ell \le n$.

 $P(k) \to k$ is a product of primes.

 $P(\ell) \to \ell$ is a product of primes.

 $n+1=k\ell$ is a product of primes and Q(n+1) is T.

3: By induction, Q(n) is $\forall n \geq 2$.

Strong Induction. To prove $P(n) \forall n \geq 1$ by strong induction, you use induction to prove the *stronger* claim:

Q(n): each of P(1), P(2), ..., P(n) are T.

Strong Induction. To prove $P(n) \forall n \geq 1$ by strong induction, you use induction to prove the *stronger* claim:

$$Q(n)$$
: each of $P(1), P(2), ..., P(n)$ are T.

Ordinary Induction

Base Case Prove P(1)

Strong Induction. To prove $P(n) \forall n \geq 1$ by strong induction, you use induction to prove the *stronger* claim:

Q(n): each of P(1), P(2), ..., P(n) are T.

Ordinary Induction

Base Case Prove P(1)

Induction Step Assume: P(n)

Prove: P(n+1)

Strong Induction. To prove $P(n) \forall n \geq 1$ by strong induction, you use induction to prove the *stronger* claim:

$$Q(n)$$
: each of $P(1), P(2), ..., P(n)$ are T.

	Ordinary Induction	Strong Induction
Base Case	Prove $P(1)$	Prove $Q(1) = P(1)$
Induction Step	Assume: $P(n)$	
	Prove: $P(n+1)$	

Strong Induction. To prove $P(n) \forall n \geq 1$ by strong induction, you use induction to prove the *stronger* claim:

$$Q(n)$$
: each of $P(1), P(2), ..., P(n)$ are T.

	Ordinary Induction	Strong Induction
Base Case	Prove $P(1)$	Prove $Q(1) = P(1)$
Induction Step	Assume: $P(n)$	Assume: $Q(n) = P(1) \land P(2) \land \cdots \land P(n)$
	Prove: $P(n+1)$	

Strong Induction. To prove $P(n) \forall n \geq 1$ by strong induction, you use induction to prove the *stronger* claim:

$$Q(n)$$
: each of $P(1), P(2), ..., P(n)$ are T.

	Ordinary Induction	Strong Induction
Base Case	Prove $P(1)$	Prove $Q(1) = P(1)$
Induction Step	Assume: $P(n)$	Assume: $Q(n) = P(1) \land P(2) \land \cdots \land P(n)$
	Prove: $P(n+1)$	Prove: $P(n+1)$

Strong Induction. To prove $P(n) \forall n \geq 1$ by strong induction, you use induction to prove the *stronger* claim:

Q(n): each of P(1), P(2), ..., P(n) are T.

	Ordinary Induction	Strong Induction
Base Case	Prove $P(1)$	Prove $Q(1) = P(1)$
Induction Step	Assume: $P(n)$	Assume: $Q(n) = P(1) \land P(2) \land \cdots \land P(n)$
	Prove: $P(n+1)$	Prove: $P(n+1)$

Strong induction is always easier.

Every $n \ge 1$ Has a Binary Expansion

P(n): Every $n \ge 1$ is a sum of distinct powers of two (its binary expansion).

$$22 = 2^{1} + 2^{2} + 2^{4}. (22_{\text{binary}} = {}^{2^{4}} \, {}^{2^{3}} \, {}^{2^{2}} \, {}^{2^{1}} \, {}^{2^{0}}.)$$

Every $n \ge 1$ Has a Binary Expansion

P(n): Every $n \ge 1$ is a sum of distinct powers of two (its binary expansion).

$$22 = 2^{1} + 2^{2} + 2^{4}. (22_{\text{binary}} = {}^{2^{4}} \, {}^{2^{3}} \, {}^{2^{2}} \, {}^{2^{1}} \, {}^{2^{0}}.)$$

Base Case: P(1) is T: $1 = 2^0$

Every $n \geq 1$ Has a Binary Expansion

P(n): Every $n \ge 1$ is a sum of distinct powers of two (its binary expansion).

$$22 = 2^{1} + 2^{2} + 2^{4}. (22_{\text{binary}} = 1 \ 0 \ 1 \ 1 \ 0.)$$

Base Case: P(1) is T: $1 = 2^0$

Strong Induction: Assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n)$ and prove P(n+1).

Every $n \ge 1$ Has a Binary Expansion

P(n): Every $n \ge 1$ is a sum of distinct powers of two (its binary expansion).

$$22 = 2^{1} + 2^{2} + 2^{4}. (22_{\text{binary}} = 1 \ 0 \ 1 \ 1 \ 0.)$$

Base Case: P(1) is T: $1 = 2^0$

Strong Induction: Assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n)$ and prove P(n+1).

If n is even, then $n + 1 = 2^0 + \text{binary expansion of } n$,

e.g.
$$23 = 2^0 + \underbrace{2^1 + 2^2 + 2^4}_{22}$$

Every $n \ge 1$ Has a Binary Expansion

P(n): Every $n \ge 1$ is a sum of distinct powers of two (its binary expansion).

$$22 = 2^{1} + 2^{2} + 2^{4}. (22_{\text{binary}} = 1 \ 0 \ 1 \ 1 \ 0.)$$

Base Case: P(1) is T: $1 = 2^0$

Strong Induction: Assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n)$ and prove P(n+1).

If n is even, then $n + 1 = 2^0 + \text{binary expansion of } n$,

e.g.
$$23 = 2^0 + \underbrace{2^1 + 2^2 + 2^4}_{22}$$

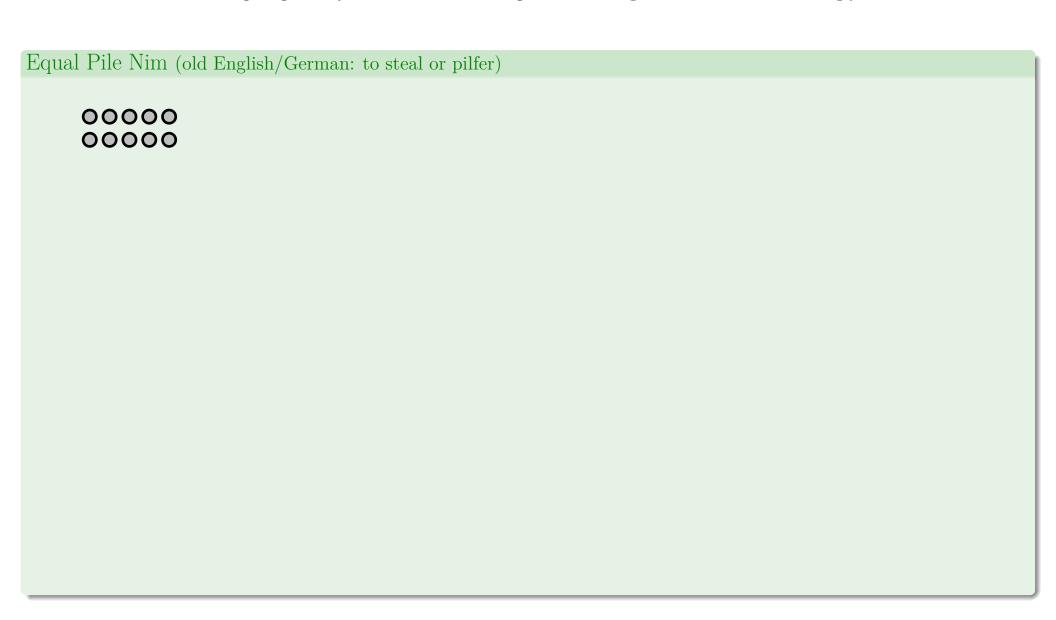
If n is odd, then multiply each term in the expansion of $\frac{1}{2}(n+1)$ by 2 to get n+1.

e.g.
$$24 = 2 \times (\underbrace{2^2 + 2^3}_{12}) = 2^3 + 2^4$$

Exercise. Give the formal proof by strong induction.

Tournament rankings, greedy or recursive algorithms, games of strategy,

Tournament rankings, greedy or recursive algorithms, **games of strategy**,



Tournament rankings, greedy or recursive algorithms, **games of strategy**,

```
Equal Pile Nim (old English/German: to steal or pilfer)
     00000
                           00000
                 player 1
     00000
```

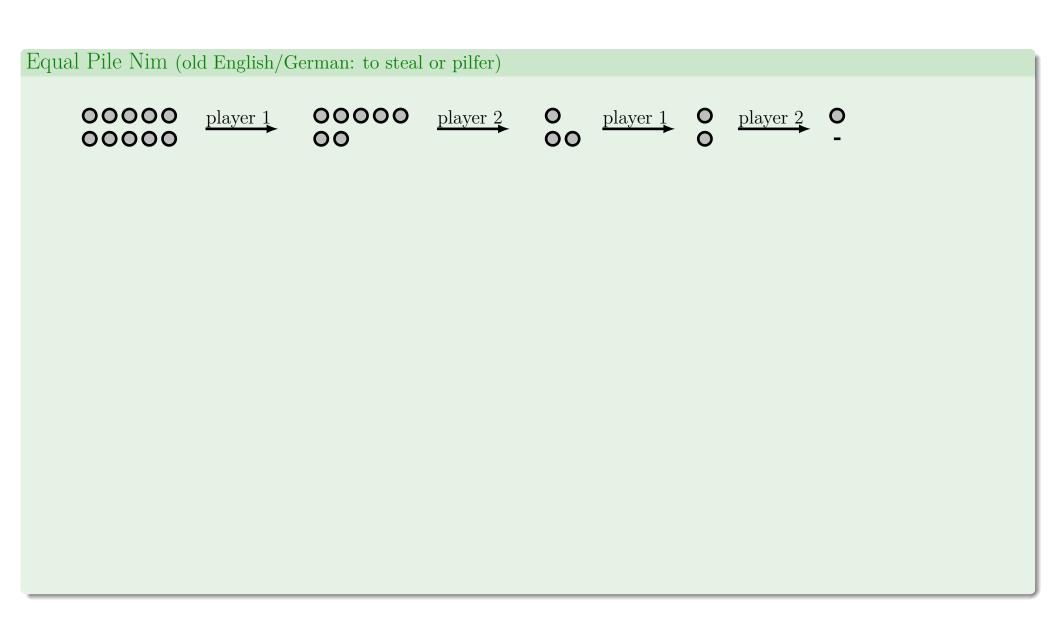
Tournament rankings, greedy or recursive algorithms, **games of strategy**,

```
Equal Pile Nim (old English/German: to steal or pilfer)
     00000
                           00000
                                       player 2
                 player 1
     00000
```

Tournament rankings, greedy or recursive algorithms, **games of strategy**,

```
Equal Pile Nim (old English/German: to steal or pilfer)
     00000
                           00000
                 player 1
                                                        player 1
                                        player 2
     00000
```

Tournament rankings, greedy or recursive algorithms, **games of strategy**,



Tournament rankings, greedy or recursive algorithms, **games of strategy**,

Equal Pile Nim (old English/German: to steal or pilfer)

Tournament rankings, greedy or recursive algorithms, **games of strategy**,

Equal Pile Nim (old English/German: to steal or pilfer)

P(n): Player 2 can win the game that starts with n pennies in each row.

Tournament rankings, greedy or recursive algorithms, games of strategy,

Equal Pile Nim (old English/German: to steal or pilfer)

P(n): Player 2 can win the game that starts with n pennies in each row.

Equalization strategy:

Tournament rankings, greedy or recursive algorithms, **games of strategy**,

Equal Pile Nim (old English/German: to steal or pilfer)

P(n): Player 2 can win the game that starts with n pennies in each row.

Equalization strategy:

Tournament rankings, greedy or recursive algorithms, **games of strategy**,

Equal Pile Nim (old English/German: to steal or pilfer)

P(n): Player 2 can win the game that starts with n pennies in each row.

Equalization strategy:

Player 2 can always return the game to *smaller* equal piles.

Tournament rankings, greedy or recursive algorithms, **games of strategy**,

Equal Pile Nim (old English/German: to steal or pilfer)

P(n): Player 2 can win the game that starts with n pennies in each row.

Equalization strategy:

Player 2 can always return the game to *smaller* equal piles.

If Player 2 wins the smaller game, Player 2 wins the larger game. That's strong induction!

Exercise. Give the full formal proof by strong induction.

Challenge. What about more than 2 piles. What about unequal piles. (Problem 6.20).

Checklist When Approaching an Induction Problem. Are you trying to prove a "For all ..." claim?

- Are you trying to prove a "For all ..." claim?
- \bigcirc Identify the claim P(n), especially the parameter n. Here is an example.

- Are you trying to prove a "For all ..." claim?
- ldentify the claim P(n), especially the parameter n. Here is an example. Prove: geometric mean \leq arithmetic mean.

- Are you trying to prove a "For all ..." claim?
- ldentify the claim P(n), especially the parameter n. Here is an example. Prove: geometric mean \leq arithmetic mean. What is P(n)?

- Are you trying to prove a "For all ..." claim?
- Identify the claim P(n), especially the parameter n. Here is an example. Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?

- Are you trying to prove a "For all ..." claim?
- O Identify the claim P(n), especially the parameter n. Here is an example.

Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?

P(n): geometric mean \leq arithmetic mean for every set of n positive numbers.

- Are you trying to prove a "For all ..." claim?
- \bigcirc Identify the claim P(n), especially the parameter n. Here is an example.

Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?

P(n): geometric mean \leq arithmetic mean for every set of n positive numbers.

Identifying the right claim is important.

- Are you trying to prove a "For all ..." claim?
- O Identify the claim P(n), especially the parameter n. Here is an example.

Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?

P(n) : geometric mean \leq arithmetic mean for every set of n positive numbers.

Identifying the right claim is important.

You may fail because you try to prove too much. Your P(n+1) is too heavy a burden. You may fail because you try to prove too *little*. Your P(n) is too weak a support. You must balance the strength of your claim so that the support is just enough for the burden. — G. Polya (paraphrased).

Tinker. Does the claim hold for small n (n = 1, 2, 3, ...)? These become base cases.

- Are you trying to prove a "For all ..." claim?
- \bigcirc Identify the claim P(n), especially the parameter n. Here is an example.

Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?

P(n): geometric mean \leq arithmetic mean for every set of n positive numbers.

Identifying the right claim is important.

- Tinker. Does the claim hold for small n (n = 1, 2, 3, ...)? These become base cases.
- Tinker. Can you see why (say) P(5) follows from P(1), P(2), P(3), P(4)?

 This is the crux of induction; to build up from smaller n to a larger n.

- Are you trying to prove a "For all ..." claim?
- O Identify the claim P(n), especially the parameter n. Here is an example.

Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?

P(n): geometric mean \leq arithmetic mean for every set of n positive numbers.

Identifying the right claim is important.

- Tinker. Does the claim hold for small n (n = 1, 2, 3, ...)? These become base cases.
- Tinker. Can you see why (say) P(5) follows from P(1), P(2), P(3), P(4)?

 This is the crux of induction; to build up from smaller n to a larger n.
- Determine the type of induction: try strong induction first.

Checklist When Approaching an Induction Problem.

- Are you trying to prove a "For all ..." claim?
- O Identify the claim P(n), especially the parameter n. Here is an example.

Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?

P(n): geometric mean \leq arithmetic mean for every set of n positive numbers.

Identifying the right claim is important.

- Tinker. Does the claim hold for small n (n = 1, 2, 3, ...)? These become base cases.
- Tinker. Can you see why (say) P(5) follows from P(1), P(2), P(3), P(4)?

 This is the crux of induction; to build up from smaller n to a larger n.
- Determine the type of induction: try strong induction first.
- Write out the skeleton of the proof to see exactly what you need to prove.

Checklist When Approaching an Induction Problem.

- Are you trying to prove a "For all ..." claim?
- O Identify the claim P(n), especially the parameter n. Here is an example.

Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?

P(n): geometric mean \leq arithmetic mean for every set of n positive numbers.

Identifying the right claim is important.

- Tinker. Does the claim hold for small n (n = 1, 2, 3, ...)? These become base cases.
- Tinker. Can you see why (say) P(5) follows from P(1), P(2), P(3), P(4)?

 This is the crux of induction; to build up from smaller n to a larger n.
- Determine the type of induction: try strong induction first.
- Write out the skeleton of the proof to see exactly what you need to prove.
- Determine and prove the base cases.

Checklist When Approaching an Induction Problem.

- Are you trying to prove a "For all ..." claim?
- Identify the claim P(n), especially the parameter n. Here is an example.

Prove: geometric mean \leq arithmetic mean. What is P(n)? What is n?

P(n): geometric mean \leq arithmetic mean for every set of n positive numbers.

Identifying the right claim is important.

- Tinker. Does the claim hold for small n (n = 1, 2, 3, ...)? These become base cases.
- Tinker. Can you see why (say) P(5) follows from P(1), P(2), P(3), P(4)? This is the crux of induction; to build up from smaller n to a larger n.
- Determine the type of induction: try strong induction first.
- Write out the skeleton of the proof to see exactly what you need to prove.
- Determine and prove the base cases.
- Prove P(n+1) in the induction step. You must use the induction hypothesis.